Calibration of SWAT2009 Using Crop Biomass, Evapotranspiration, and Deep Recharge: Calera Watershed in Zacatecas, Mexico Case Study
Jose R. Ávila-Carrasco, Francisco Mojarro Dávila, Daniel N. Moriasi, Prasanna H. Gowda, Carlos Bautista-Capetillo, Francisco G. Echavarria-Cháirez, Jurgen D. Garbrecht, Jean L. Steiner, Terry A. Howell, Edward T. Kanemasu, Alan J. Verser, Kevin Wagner, Jairo Hernandez
Department of Civil Engineering, Boise State University, Boise, USA.
Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP), Zacatecas Calera de V.R., Zac., Mexico.
Office of Global Programs, University of Georgia, Georgia, USA.
Texas Water Resources Institute, Texas A&M Institute of Renewable Natural Resources, College Station, USA.
Universidad Autónoma de Zacatecas, Zacatecas, México.
USDA-ARS-Conservation and Production Research Laboratory, Bushland, USA.
USDA-ARS-Grazinglands Research Laboratory, El Reno, USA.
DOI: 10.4236/jwarp.2012.47051   PDF    HTML     5,814 Downloads   9,324 Views   Citations


Groundwater is the main source of water in the semi-arid Calera watershed, located in the State of Zacatecas, Mexico. Due to increasing population, rapid industrial growth, and increased irrigation to meet growing food demand, groundwater extraction in the Calera watershed are exceeding recharge rates. Therefore, development and evaluation of alter-native water management strategies are needed for sustainable development of the region. The Soil and Water Assessment Tool (SWAT) model was selected for this purpose as it has been used to simulate a wide range of agricultural production, the extensive testing and application in diverse watersheds worldwide, and the potential for future linkage of this model to groundwater models. However, crucial flow data which are commonly used for calibrating hydrologic models are not available in this watershed. This paper describes a novel calibration methodology that uses biomass and water balance approach which has potential for calibration of hydrologic models in ungauged or data-scarce watersheds, which are prevalent in many parts of the world. Estimated long-term annual average actual evapotranspiration (AET), and deep aquifer recharge rates and plant biomass values based on the expert knowledge of researchers and managers in the watershed were used as targets for calibration. The model performance was assessed using the Nash-Sutcliffe effi-ciency coefficient (NSE), coefficient of determination (R2), and percent bias (PBIAS, %) statistics. On average, the calibrated SWAT model yielded annual Nash-Sutcliffe efficiency coefficient values of 0.95, 0.99, and 0.85 for AET, recharge, and biomass, respectively. The coefficient of determination, values for AET, recharge, and biomass were 0.95, 0.94, and 0.99 respectively. The percent bias values of ±2.21%, ±0.18%, and ±0.96% for AET, recharge, and biomass, respectively, indicated that the model reproduced the calibration target values of the three water budget variables within an acceptable value of ± 10.0%. Therefore, it is concluded that the calibrated SWAT model can be used in evaluating alternative water management scenarios for the Calera watershed without further validation. Considering the relative ease in developing calibration data and excellent performance statistics, the calibration methodology proposed in this study may have the potential to be used for ungauged or data-scare agricultural watersheds that are prevalent in many parts of the world.

Share and Cite:

J. R. Ávila-Carrasco, F. Mojarro Dávila, D. N. Moriasi, P. H. Gowda, C. Bautista-Capetillo, F. G. Echavarria-Cháirez, J. D. Garbrecht, J. L. Steiner, T. A. Howell, E. T. Kanemasu, A. J. Verser, K. Wagner and J. Hernandez, "Calibration of SWAT2009 Using Crop Biomass, Evapotranspiration, and Deep Recharge: Calera Watershed in Zacatecas, Mexico Case Study," Journal of Water Resource and Protection, Vol. 4 No. 7, 2012, pp. 439-450. doi: 10.4236/jwarp.2012.47051.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] COTAS-Calera, “Plan Hídrico De Los Acuíferos Aguanaval, Calera y Chupaderos En el Estado De Zacatecas,” Comités Técnicos de Aguas Subterráneas Acuíferos Aguanaval, Calera y Chupaderos, Zacatecas, 2007.
[2] CONAGUA, “Actualización de la Disponibilidad Media Anual del agua Subterránea Acuífero (3225) Calera Estado de Zacatecas,” 2009.
[3] G. Jurgen, “Scenario Analysis of the Annual Water Budget of the Calera Aquifer Watershed,” 2011.
[4] J. E. Hernández, P. H. Gowda, T. A. Howell, J. L. Steiner, F. Mojarro, E. P. Nu?ez and J. R. Avila, “Groundwater Modeling of the Calera Aquifer Region in Central Mexico,” World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, ASCE, Palm Springs California, 22-26 May 2011, pp. 1009-1018.
[5] E. P. Núnez-Pena, “El Acuífero de Calera, Zacatecas, Situación Actual y Perspectivas para un Desarrollo Sustentable,” Master’s Thesis, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, N.L., 2003.
[6] CONAGUA, “Actualización Piezométrica del Acuífero Calera Zacatecas,” Comisión Nacional del Agua, Zacatecas, 2004.
[7] M. J. Montero-Martinez, J. Martinez-Jimenez, N. I. Castillo-Perez and B. E. Espinoza-Tamarindo, “Escenarios Climaticos en Mexico Proyectados para el Siglo XXI: Precipitacion y Temperaturas Maxima y Minima,” In: P. F. Martinez and C. Plati?o, Eds., Atlas de Vulnerabilidad Hídrica en México ante el Cambio Climático, Instituto Mexicano de Tecnologia del Agua, Morelos, 2010, pp. 39-65.
[8] M. Ruiz, “Evaluación Física de la Sequía en el Estado de Zacatecas, Mediante el uso del índice de Severidad de Sequía de Palmer, 1980-2005,” Master’s Thesis, Universidad Autonoma de Zacatecas, Zacatecas, Zacatecas, 2007.
[9] D. V. Santos, P. L. Sousa and R. E. Smith, “Model Simulation of Water and Nitrate Movement in a Level-Basin under Fertigation Treatments,” Agricultural Water Management, Vol. 32, No. 3, 1996, pp. 293-306. doi:10.1016/S0378-3774(96)01273-5
[10] E. Torres-Benites, D. S. Fernández-Reynoso, J. L. Oropeza-Mota1 and E. Mejía-Saenz, “Calibration of the Hydrologic Model SWAT in the Watershed El Tejocote, Atlacomulco, State of Mexico,” Terra Latinoamericana, Vol. 22, No. 4, 2004, pp. 437-444.
[11] J. de D. Benavides-Solorio and L. H. MacDonald, “Post-Fire Runoff and Erosion from Simulation Rainfall on Small Plots, Colorado Front Range,” Hydrological Processes, Vol. 15, 2001, pp. 2931-2952. doi:10.1002/hyp.383
[12] J. G. Arnold, R. Srinivasan, R. S. Muttiah and J. R. Williams, “Large Area Hydrologic Modeling and Assessment Part I: Model Development,” Journal of the American Water Resources Association, Vol. 34, No. 1, 1998, pp. 73-89. doi:10.1111/j.1752-1688.1998.tb05961.x
[13] P. Gassman, M. Reyes, C. Green and J. Arnold, “The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions,” Transactions of the ASABE, Vol. 50, No. 4, 2007, pp. 1211-1250.
[14] K. R. Douglas-Mankin, R. Srinivasan and J. G. Arnold, “Soil and Water Assessment Tool (SWAT) Model: Current Development and Applications,” Transactions of the ASABE, Vol. 53, No. 5, 2010, pp. 1423-1431.
[15] S. N. Miller, D. J. Semmens, D. C. Goodrich, M. Hernandez, R. C. Miller, W. G. Kepner and D. P. Guertin, “The Automated Geospatial Watershed Assessment Tool,” Journal of Environmental Modeling and Software, Vol. 22, No. 3, 2007, pp. 365-377. doi:10.1016/j.envsoft.2005.12.004
[16] D. C. Goodrich, C. L. Unkrich, R. E. Smith and D. A. Woolhiser, “KINEROS2—A Distributed Kinematic Runoff and Erosion Model,” Proceedings of 2nd Federal Interagency Conferences on Hydrologic Modeling, Las Vegas, 2002.
[17] X. Zhang, R. Srinivasan and M. Van Liew, “Multi-Site Calibration of the SWAT Model for Hydrologic Modeling,” Transactions of the ASABE, Vol. 51, No. 6, 2008, pp. 2039-2049.
[18] I. Barlund, T. Kirkkala, O. Malve and J. Kamari, “Assessing the SWAT Model Performance in the Evaluation of Management Actions for the Implementation of the Water Framework Directive in a Finnish Catchment,” Environmental Modeling and Software, Vol. 22, No. 5, 2007, pp. 719-724. doi:10.1016/j.envsoft.2005.12.030
[19] C. G. Rossi, T. J. Dybala, D. N. Moriasi, J. G. Arnold, C. Amonett and T. Marek, “Hydrologic Calibration and Validation of the Soil and Water Assessment Tool for the Leon River Watershed,” Journal of Soil and Water Conservation, Vol. 63, No. 6, 2008, pp. 553-541. doi:10.2489/jswc.63.6.533
[20] G. G. Vazquez-Amabile and B. A. Engel, “Use of SWAT to Compute Groundwater Table Depth and Streamflow in the Muscatatuck River Watershed,” Transactions of the ASAE, Vol. 48, No. 3, 2005, pp. 991-1003.
[21] S. Behera and R. K. Panda, “Evaluation and Management Alternatives for an Agricultural Watershed in a Sub-Humid Subtropical Region Using a Physical Process Model,” Agriculture, Ecosystems and Environment, Vol. 113, No. 1-4, 2006, pp. 62-72. doi:10.1016/j.agee.2005.08.032
[22] D. D. Bosch, J. M. Sheridan, H. L. Batten and J. G. Arnold, “Evaluation of the SWAT Model on a Coastal Plain Agricultural Watershed,” Transactions of the ASAE, Vol. 47, No. 5, 2004, pp. 1493-1506.
[23] H. Cheng, W. Ouyang, F. Hao, X. Ren and S. Yang, “The Non-Point Source Pollution in Livestock-Breeding Areas of the Heihe River Basin in Yellow River,” Stochastic Environmental Research and Risk Assessment, Vol. 21, No. 3, 2007, pp. 213-221.
[24] B. Du, J. G. Arnold, A. Saleh and D. B. Jaynes, “Development and Application of SWAT to Landscapes with Tiles and Potholes,” Transactions of the ASAE, Vol. 48, No. 3, 2005, pp. 1121-1133.
[25] C. Qi and S. Grundwald, “GIS-Based Hydrologicic Modeling in Sandusky Watershed Using SWAT,” Transactions of the ASABE, Vol. 48, No. 1, 2005, pp. 169-180.
[26] R. Srinivasan, X. Zhang and J. Arnold, “SWAT Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin,” Transactions of the ASABE, Vol. 53, No. 5, 2010, pp. 1533-1546.
[27] S. L. Neitsch, J. G. Arnold, J. R. Kiniry, R. Srinivasan and J. R. Willimas, “Soil and Water Assessment Tool Input/Ouput File Documentation, Version 2009,” 2009.
[28] M. K. Kenneth, “National Engineering Handbook, Section 4 Hydrology, Chapter 15, Travel Time, Time of Concentration and Lag,” 1972.
[29] J. L. Monteith, “Evaporation and the Environment in the State and Movement of Water in Living Organisms,” Proceedings of the Society for Experimental Biology, Symposium No. 19, Cambridge University Press, Cambridge, 1965, pp. 205-234.
[30] L. Navarro, E. Nunez, A. Cardona, J. Castro, E. Villalpando and A. Bueno, “Analisis y Distribución de Elementos Mayores en el Agua Subterránea del Acuífero de Calera, Zacatecas,” XV Congreso Nacional de Geoquimica INAGEQ Instituto Nacional de Geoquímica, Vol. 1, 2005.
[31] E. Villalpando, E. Núnez, A. Cardona, J. Castro, L. Navarro and A. Bueno, “Distribución y Movilidad de Elementos traza en el agua Subterránea de la Cuenca Hidrológica de Calera, Zacatecas,” Actas INAGEQ, 2005, pp. 11-10.
[32] A. N. Sharpley and J. R. Williams “EPIC. Erosion/Productivity Impact Calculator: 1. Model Documentation,” Technical Bulletin No. 1768, U.S. Department of Agriculture (USDA), Madison, Wisconsin, 1990.
[33] K. E. Saxton and W. J. Rawls, “Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions,” Soil Science Society of America Journal, Vol. 70, No. 5, 2006, pp. 1569-1578. doi:10.2136/sssaj2005.0117
[34] J. C. Villegas, “Ecosystem Water Exchange and Partitioning of Evapotranspiration along Vegetation Gradients: Implications of Projected Dust-Bowl Climate in Arizona,” 2008.
[35] D. F. Mojarro and L. A. Bravo, “Alternativas para Mejorar la Productividad del Agua de Riego: Caso Zacatecas, México,” Congreso Internacional de la Sociedad Mexicana de Horticultura, Zacatecas, 2007.
[36] J. R. Avila-Carrasco. “Calibracion del Modelo Hidrologico SWAT en la Cuenca Calera,” Master’s Thesis, Universidad Autonoma de Zacatecas, Zacatecas, 2011.
[37] B. R. Scanlon, K. E. Keese, A. L. Flint, L. E. Flint, W. M. Edumunds and I. Simmers, “Global Synthesis of Groundwater Recharge in Semiarid and Arid Regions,” Hydrological Processes, Vol. 20, 2006, pp. 3335-3370. doi:10.1002/hyp.6335
[38] P. Crespo, C. Coello, V. I?iguez, P. Cisneros, M. Ramírez, and J. Feyen, “Evaluación de SWAT2000 Como Herramienta Para el Análisis de Escenarios de Cambio de uso del suelo en Microcuencas de Monta?a del sur del Ecuador,” 2008.
[39] D. N. Moriasi and P. J. Starks, “Effects of the Resolution of soil Dataset and Precipitation Dataset on SWAT2005 Streamflow Calibration Parameters and Simulation Accuracy,” Journal of Soil and Water Conservation, Vol. 65, No. 2 , 2010, pp. 63-78.
[40] M. D. Amador-Ramirez, A. G. Bravo-Lozano, F. Mojarro-Davila and M. D. Alvarado-Nava, “Radiation Use Efficiency for Dry Chili Pepper Grown under Four Production Systems,” Second World Pepper Convention, Zacatecas, 2005, pp. 354-358.
[41] D. F. Mojarro and F. Rincon, “Modelo de Crecimiento y Producción de Chile a Varios Ambientes: En Optimizacion del Sistema Producto Chile en la Region Norte-Centro de Mexico,” INIFAP, Zacatecas, 2002, pp. 44-55.
[42] H. V. Gupta, S. Sorooshian and P. O. Yapo, “Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration,” Journal of Hydrologic Engineering, Vol. 4, No 2, 1999, pp. 135-143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)
[43] J. E. Nash and R. M. Sutcliffe, “River Flow Forcasting through Conceptual Models: Part 1. A Discussion of Principles,” Journal Hydrology, Vol. 10, No. 3, 1970, pp. 282-290. doi:10.1016/0022-1694(70)90255-6
[44] D. N. Moriasi, J. G. Arnold, M. W. Van liew, R. L. Bingner, R. D. Harmel and T. L. Beith, “Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations,” Transactions of the ASABE, Vol. 50, No. 3, 2007, pp. 885-900.
[45] P. Krause, D. P. Boyle and F. Base, “Comparison of Different Efficiency Criteria for Hydrological Model Assessment,” Advances in Geosciencies, Vol. 5, No. 1, 2005, pp. 89-97. doi:10.5194/adgeo-5-89-2005
[46] J. G. Arnold and P. M. Allen “Estimating Hydrologic Budgets for Three Illinois Watersheds,” Journal of Hydrology, Vol. 176, 1996, pp. 57-77. doi:10.1016/0022-1694(95)02782-3
[47] G. W. Gee, P. J. Wierenga, B. J. Andraski, M. H. Young, M. J. Fayer and M. L. Rockhold, “Variations in Water Balance and Recharge Potential at Three Western Desert Sites,” Soil Science Society of America Journal, Vol. 58, No. 1, 1994, pp. 63-71. doi:10.2136/sssaj1994.03615995005800010009x
[48] X. P. Wang, R. Berndtsson, X. R. Li and E. S. Kang, “Water Balance Change for a Re-Vegetated Xerophyte Shrub Area,” Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, Vol. 49, No. 2, 2004, pp. 283-295.
[49] B. R. Scanlon, M. Abhijit, J. Gates, R. C. Reedy and A. Sindha, “Groundwater Recharge in Natural Dune Systems and Agricultural Ecosystems in the Thar Desert Region, Rajasthan, India,” Hydrology Journal, Vol. 18, No. 4, 2010, pp. 959-972.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.