Effect of Unilateral Low-Frequency Stimulation of Hippocampus on Rapid Kindling—Induced Seizure Development in Rats


Since the last decade deep brain stimulation has been proposed as an alternative treatment for patients who do not become seizure-free with the current pharmacological treatments and cannot undergo resective surgical procedure. However, the optimal stimulation parameters remain undetermined and active research in humans and animals is necessary. The present study was designed to investigate the effect of unilateral Low Frequency Stimulation (LFS) of hippocampus on seizure development by using the hippocampal rapid kindling method (hRK) in rats. We used male Wistar rats implanted with electrodes in the ventral hippocampus. All rats underwent hRK (biphasic square wave pulses, 20 Hz for 10 seconds) during three consecutive days (twelve stimulations per day). The control group (hRK; n = 6) received only RK stimulus, while the treated group (LFS-hRK; n = 8) received also LFS (biphasic square wave pulses, 1 Hz for 30 seconds) immediately before the RK stimulus, during three consecutive days. At the end of behavioral testing on day 3, 62% (P < 0.05) of the animals receiving LFS treatment were still not fully kindled staying in stages 0-III (P < 0.01). The number of stimulations needed to achieve generalized seizures (stage IV-V of Racine scale) was significantly higher (P < 0.05) in the LFS group with respect to control group. No significant differences in the cumulative daily afterdischarge duration were observed between both groups. These findings suggest that preemptive LFS can significantly decrease the incidence of hippocampus-kindled seizures and delay the progression and secondary generalization of focal seizures.

Share and Cite:

L. Toibaro, M. Pereyra, J. Pastorino, A. Smigliani, F. Ocariz, G. Ortmann, M. Galardi, M. Gori and S. Kochen, "Effect of Unilateral Low-Frequency Stimulation of Hippocampus on Rapid Kindling—Induced Seizure Development in Rats," Neuroscience and Medicine, Vol. 3 No. 2, 2012, pp. 174-180. doi: 10.4236/nm.2012.32022.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. C. Jobst, “Brain Stimulation for Surgical Epilepsy,” Epilepsy Research, Vol. 89, No. 1, 2010, pp. 154-161. doi:10.1016/j.eplepsyres.2009.08.017
[2] A. Schulze-Bonhage, “Deep Brain Stimulation: A New Approach to the Treatment of Epilepsy,” Deutsches ?rzteblatt International, Vol. 106, No. 24, 2009, pp. 407-412. doi:10.3238/arztebl.2009.0407
[3] M. A. Mirski, L. A. Rossell, J. B. Terryb and R. S. Fisherc, “Anticonvulsant Effect of Anterior Thalamic High Frequency Electrical Stimulation in the Rat,” Epilepsy Research, Vol. 28, No. 2, 1997, pp. 89-100. doi:10.1016/S0920-1211(97)00034-X
[4] M. Hodaie, R. A. Wennberg, J. O. Dostrovsky and A. M. Lozano, “Chronic Anterior Thalamus Stimulation for Intractable Epilepsy,” Epilepsia, Vol. 43, No. 6, 2002, pp. 603-608. doi:10.1046/j.1528-1157.2002.26001.x
[5] I. Osorio, J. Overman, J. Giftakis and S. B. Wilkinson, “High Frequency Thalamic Stimulation for Inoperable Mesial Temporal Epilepsy,” Epilepsia, Vol. 48, No. 8, 2007, pp. 1561-1571. doi:10.1111/j.1528-1167.2007.01044.x
[6] X. L. Zhong, K. R. Lv, Q. Zhang, J. T. Yua, Y. Y. Xing, N. D. Wangd and L. Tan, “Low-Frequency Stimulation of Bilateral Anterior Nucleus of Thalamus Inhibits Amygdale-Kindled Seizures in Rats,” Brain Research Bulletin, Vol. 86, No. 5-6, 2011, pp. 422-427. doi:10.1016/j.brainresbull.2011.08.014
[7] N. Usui, S. Maesawa, Y. Kajita, O. Endo, S. Takebayashi and J. Yoshida, “Suppression of Secondary Generalization of Limbic Seizures by Stimulation of Subthalamic Nucleus in Rats,” Journal of Neurosurgery, Vol. 102, No. 6, 2005, pp. 1122-1129. doi:10.3171/jns.2005.102.6.1122
[8] A. Handforth, A. A. DeSalles and S. E. Krahl, “Deep Brain Stimulation of the Subthalamic Nucleus as Adjunct Treatment for Refractory Epilepsy,” Epilepsia, Vol. 47, No. 7, 2006, pp. 1239-1241. doi:10.1111/j.1528-1167.2006.00563.x
[9] R.S. Fisher, S. Uematsu, G.L. Krauss, B.J. Cysyk, R. McPherson, R.P. Lesser, B. Gordon, P. Schwerdt and M. Rise, “Placebo-Controlled Pilot Study of Centromedian Thalamic Stimulation in Treatment of Intractable Seizures,” Epilepsia, Vol. 33, No. 5, 1992, pp.841-851. doi:10.1111/j.1528-1157.1992.tb02192.x
[10] D. M. Andrade, D. Zumsteg, C. Hamani, M. Hodaie, S. Sarkissian, A. M. Lozano and R.A. Wennberg, “Long-Term Follow-Up of Patients with Thalamic Deep Brain Stimulation for Epilepsy,” Neurology, Vol. 66, No. 10, 2006, pp. 1571-1573. doi:10.1212/01.wnl.0000206364.19772.39
[11] S. A. Chkhenkeli, M. Sramka, G. S. Lortkipanidze, T. N. Rakviashvili, E. S. Bregvadze, G. E. Magalashvili, T. S. Gagoshidze and I. S. Chkhenkeli, “Electrophysiological Effects and Clinical Results of Direct Brain Stimulation for Intractable Epilepsy,” Clinical Neurology and Neurosurgery, Vol. 106, No.4, 2004,pp.318-329. doi:10.1016/j.clineuro.2004.01.009
[12] I. S. Cooper, I. Amin, M. Riklan, J. M. Waltz and T. P. Poon, “Chronic Cerebellar Stimulation in Epilepsy. Clinical and Anatomical Studies,” Archives of Neurology, Vol. 33, No. 8, 1976, pp. 559-570.
[13] C. Rubio, V. Custodio, F. Juárez and C. Paz, “Stimulation of the Superior Cerebellar Peduncle during the Development of Amygdaloid Kindling in Rats,” Brain Research, Vol. 1010, No. 1-2, 2004, pp. 151-155. doi:10.1016/j.brainres.2004.03.015
[14] F. Velasco, J. D. Carrillo-Ruiz, F. Brito, M. Velasco, A. L. Velasco, I. Marquez and R. Davis, “Double-Blind, Randomized Controlled Pilot Study of Bilateral Cerebellar Stimulation for Treatment of Intractable Motor Seizures,” Epilepsia, Vol. 46, No. 7,2005,pp.1071-1081. doi:10.1111/j.1528-1167.2005.70504.x
[15] M. Velasco, F. Velasco and A. L. Velasco, “Centromedian-Thalamic and Hippocampal Electrical Stimulation for the Control of Intractable Epileptic Seizures,” Journal of Clinical Neurophysiology, Vol. 18, No. 6, 2001, pp. 495-513. doi:10.1097/00004691-200111000-00001
[16] J. F. Tellez-Zenteno, R. S. McLachlan, A. Parrent, C. S. Kubu and S. Wiebe, “Hippocampal Electrical Stimulation in Mesial Temporal Lobe Epilepsy,” Neurology, Vol. 66, No. 10, 2006, pp. 1490-1494. doi:10.1212/01.wnl.0000209300.49308.8f
[17] P. Boon, K. Vonck, V. De Herdt, A. Van Dycke, M. Goethals, L. Goossens, M. Van Zandijcke, T. De Smedt, I. Dewaele, R. Achten, W. Wadman, F. Dewaele, J. Caemaert and D. Van Roost, “Deep Brain Stimulation in Patients with Refractory Temporal Lobe Epilepsy,” Epilepsia, Vol. 48, No. 8, 2007,pp.1551-1560. doi:10.1111/j.1528-1167.2007.01005.x
[18] T. Wyckhuys, T. De Smedt, P. Claeys, R. Raedt, L. Waterschoot, K. Vonck, C. Van den Broecke, C. Mabilde, L. Leybaert, W. Wadman and P. Boon, “High Frequency Deep Brain Stimulation in the Hippocampus Modifies Seizure Characteristics in Kindled Rats,” Epilepsia, Vol. 48, No. 8, 2007, pp. 1543-1550. doi:10.1111/j.1528-1167.2007.01038.x
[19] B. C. Jobst, T.M. Darcey, V. M. Thadani and D. W. Roberts, “Brain Stimulation for the Treatment of Epilepsy,” Epilepsia, Vol. 51, No. S3, 2010, pp. 88-92. doi:10.1111/j.1528-1167.2010.02618.x
[20] G. V. Goddard, “The Kindling Model of Epilepsy,” Trends in Neurosciences, Vol. 6, 1983, pp. 275-279. doi:10.1016/0166-2236(83)90118-2
[21] E. W. Lothman, R. A. Salerno, J. B. Perlin and D. L. Kaiser, “Screening and Characterization of Antiepileptic Drugs with Rapidly Recurring Hippocampal Seizures in Rats,” Epilepsy Research, Vol. 2, No. 6, 1988, pp. 367-379. doi:10.1016/0920-1211(88)90048-4
[22] E. W. Lothman and J. M. Williamson, “Rapid Kindling with Recurrent Hippocampal Seizures,” Epilepsy Research, Vol. 14, No. 3, 1993, pp. 209-220. doi:10.1016/0920-1211(93)90045-9
[23] E. W. Lothman and J. M. Williamson, “Closely Spaced Recurrent Hippocampal Seizures Elicit Two Types of Heightened Epileptogenesis: A Rapidly Developing, Transient Kindling and a Slowly Developing, Enduring Kindling,” Brain Research, Vol. 649, No 1-2, 1994, pp. 71-84. doi:10.1016/0006-8993(94)91050-2
[24] E. Bertram, “The Relevance of Kindling for Human Epilepsy,” Epilepsia, Vol. 48, No. S2, 2007, pp. 65-74.
[25] D. C. McIntyre, M. O. Poulter and K. Gilby, “Kindling: Some Old and Some New,” Epilepsy Research, Vol. 50, No. 1-2, 2002, pp. 79-92. doi:10.1016/S0920-1211(02)00071-2
[26] J. H. Goodman, R. E. Berger and T. K Tcheng, “Preemptive Low-Frequency Stimulation Decreases the Incidence of Amygdala-Kindled Seizures,” Epilepsia, Vol. 46, No. 1, 2005, pp. 1-7. doi:10.1111/j.0013-9580.2005.03804.x
[27] M. Kinoshita, A. Ikeda, M. Matsuhashi, R. Matsumoto, T. Hitomi T. Begum, K. Usui, M. Takayama, N. Mikuni, S. Miyamoto, N. Hashimoto and H. Shibasaki, “Electric Cortical Stimulation Suppresses Epileptic and Background Activities in Neocortical Epilepsy and Mesial Temporal Lobe Epilepsy,” Clinical Neurophysiology, Vol. 116, No. 6, 2005, pp. 1291-1299. doi:10.1016/j.clinph.2005.02.010
[28] L. X. Yang, C. L. Jin, Z. B. Zhu-Ge, S. Wang, E. Q. Wei, I. C. Bruce and Z. Chen, “Unilateral Low-Frequency Stimulation of Central Piriform Cortex Delays Seizure Development Induced by Amygdaloid Kindling in Rats,” Neuroscience, Vol. 138, No. 4, 2006, pp. 1089-1096. doi:10.1016/j.neuroscience.2005.12.006
[29] M. Mohammad-Zadeh, J. Mirnajafi-Zadeh, Y. Fathollahi, M. Javan, P. Ghorbani, M. Sadegh and S. M. Noorbakhsh, “Effect of Low Frequency Stimulation of Perforant Path on Kindling Rate and Synaptic Transmission in the Dentate Gyrus during Kindling Acquisition in Rats,” Epilepsy Research, Vol. 75, No. 2, 2007, pp. 154-161. doi:10.1016/j.eplepsyres.2007.05.003
[30] T. Wyckhuys, R. Raedt, K. Vonck, W. Wadman and P. Boon, “Comparison of Hippocampal DBS with High (130 Hz) and Low (5 Hz) Frequency on Afterdischarges in Kindled Rats,” Epilepsy Research, Vol. 88, No. 2-3, 2010, pp. 239-246. doi:10.1016/j.eplepsyres.2009.11.014
[31] T. De Smedt, S. De Rouck, R. Raedt, T. Wyckhuys, L. Waterschoot, V. De Herdt, A. Van Dycke, R. E. Tahry, K. Vonck and P. Boon, “Serial Day Rapid Kindling Is an Effective Tool in Screening the Anti-Epileptic Properties of Topiramate,” Seizure, Vol. 16, No. 7, 2007, pp. 620-626. doi:10.1016/j.seizure.2007.04.013
[32] G. Paxinos and C. Watson, “The Rat Brain in Stereotaxic Coordinates,” 4th Editon, Academic Press, San Diego, 1998.
[33] R. J. Racine, “Modification of Seizure Activity by Electrical Stimulation: I. Afterdischarge Threshold and II. Motor Seizure,” Electroencephalography and Clinical Neurophysiology, Vol. 32, No. 3, 1972, pp.269-294. doi:10.1016/0013-4694(72)90176-9
[34] M. Sato, R. J. Racine and D. C. McIntyre, “Kindling: Basic Mechanisms and Clinic Validity,” Electroencephalography and Clinical Neurophysiology, Vol. 76, No. 5, 1990, pp. 459-472. doi:10.1016/0013-4694(90)90099-6
[35] I. Kanter-Schlifke, B. Georgievska, D. Kirik and M. Kokaia, “Seizure Suppression by GDNF Gene Therapy in Animal Models of Epilepsy,” Molecular Therapy: The Journal of the American society of Gene therapy, Vol. 15, No. 6, 2007, pp. 1106-1113.
[36] S. L. Moshé, P. K. Stanton and E. F. Sperber, “Sensitivity of the Immature Central Nervous System to Epileptogenic Stimuli,” In: P. A. Schwartzkroin, Ed., Epilepsy: Models, Mechanisms and Concepts, Cambridge University Press, Cambridge, 1993, p. 173.
[37] S. H. Zhang, H. L. Sun, Q. Fang, K. Zhong, D. C. Wu, S. Wang and Z. Chen, “Low-Frequency Stimulation of the Hippocampal CA3 Subfield Is Anti-Epileptogenic and Anti-Ictogenic in Rat Amygdaloid Kindling Model of Epilepsy,” Neuroscience Letters, Vol. 455, No. 1, 2009, pp. 51-55. doi:10.1016/j.neulet.2009.03.041
[38] M. Sadegh, J. Mirnajafi-Zadeh and V. Sheibani, “Serine/ Threonine Protein Phosphatases Have No Role in the Inhibitory Effects of Low-Frequency Stimulation in Perforant Path Kindling Acquisition in Rats,” Neuroscience Letters, Vol. 451, No. 3, 2009, pp. 266-269. doi:10.1016/j.neulet.2009.01.001
[39] P. Ghorbani, M. Mohammad-Zadeh, J. Mirnajafi-Zadeh and Y. Fathollahi, “Effect of Different Patterns of Low-Frequency Stimulation on Piriform Cortex Kindled Seizures,” Neuroscience Letters, Vol. 425, No. 3, 2007, pp. 162-166. doi:10.1016/j.neulet.2007.08.023
[40] M. Shahpari, J. Mirnajafi-Zadeh, S. M. P. Firoozabadi and A. Yadollahpour, “Effect of Low-Frequency Electrical Stimulation Parameters on Its Anticonvulsant Action during Rapid Perforant Path Kindling in Rat,” Epilepsy Research, Vol. 99, No. 1-2, 2011, pp. 69-77.
[41] I. S. Cooper, A. R. Upton and I. Amin, “Reversibility of Chronic Neurologic Deficits. Some Effects of Electrical Stimulation of the Thalamus and Internal Capsule in Man,” Applied Neurophysiology, Vol. 43, No. 3-5, 1980, pp. 244-258.
[42] A. R. Upton, I. Amin, S. Garnett, M. Springman, C. Nahmias and I. S. Cooper, “Evoked Metabolic Responses in the Limbic-Striate System Produced by Stimulation of Anterior Thalamic Nucleus in Man,” Pacing and Clinical Electrophysiology, Vol. 10, No. 1, 1987, pp. 217-225. doi:10.1111/j.1540-8159.1987.tb05952.x
[43] X. L. Zhong, J. T. Yu, Q. Zhang, N. D. Wang and L. Tan, “Deep Brain Stimulation for Epilepsy in Clinical Practice and in Animal Models,” Brain Research Bulletin, Vol. 85, No. 3-4, 2011, pp. 81-88. doi:10.1016/j.brainresbull.2011.03.020
[44] Q. Zhang, Z. C. Wu, J. T. Yu, X. L. Zhong, Y. Y. Xing, Y. T. D. Miao and L. Tan, “Anticonvulsant Effect of Unilateral Anterior Thalamic High Frequency Electrical Stimulation on Amygdala-Kindled Seizures in Rat,” Brain Research Bulletin, Vol. 87, No. 2-3, 2012, pp. 221-226. doi:10.1016/j.brainresbull.2011.11.023
[45] K. Gale, “Subcortical Structures and Pathways Involved in Convulsive Seizure Generation,” Journal of Clinical Neurophysiology, Vol. 9, No. 2, 1992, pp.264-277. doi:10.1097/00004691-199204010-00007
[46] D. C. McIntyre, K. Gilby and C. A. Carrington, “Effect of Low-Frequency Stimulation on Amygdala-Kindled Afterdischarge Thresholds and Seizure Profile in Fast and Slow Kindling Rat Strains,” Epilepsia, Vol. 48, No.8, 2002, pp. 1604-1613.
[47] L. Velísek, J. Velísková and P. K. Stanton, “Low-Frequency Stimulation of the Kindling Focus Delays Basolateralamygdala Kindling Inimmature Rats,” Neuroscience Letters, Vol. 326, No. 1, 2002, pp. 61-63. doi:10.1016/S0304-3940(02)00294-X
[48] S. R. Weiss, A. Eidsath, X. L. Li, T. Heynen and R. M. Post, “Quenching revisited: Low Level Direct Current Inhibits Amygdala-Kindled Seizures,” Experimental Neurology, Vol. 154, No. 1, 1998, pp. 185-192. doi:10.1006/exnr.1998.6932.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.