Optical Bistability in an Acousto-Optic Tunable Filter (AOTF) Operating with Short Optical Pulses


In this paper we report for the first time the presence of bistability in an acoustic-optic tunable filter (AOTF) operating with ultrashort (2 ps) optical light pulses. The results for the study of bistability has shown the dependence of the hysteresis curve with the product of the coupling constant (κ) by the length of the device (ξL) and the conversion power-coupling constant factor (G). The range of bistability varies significantly with both G and with κξL parameters. The variation of κξL directly increases the size of the range of bistability hysteresis while the increase in G causes the bistability to occur at low powers. The phenomenon of optical bistability (OB) is the object of increasing interest due to its possibilities for important device applications. A bistable device is a device with a capability to generate two different outputs for a given input and the physical requirements for this are an intensity-dependence refractive index and an optical feedback mechanism.

Share and Cite:

K. Sabóia, A. Queiroz, F. Lima, C. Sobrinho, J. Menezes and A. Sombra, "Optical Bistability in an Acousto-Optic Tunable Filter (AOTF) Operating with Short Optical Pulses," Journal of Electromagnetic Analysis and Applications, Vol. 4 No. 3, 2012, pp. 112-117. doi: 10.4236/jemaa.2012.43015.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Stofferl and Y. S. Kivshar, “Optical Bistability in a Nonlinear Photonic Crystal Waveguide Notch Filter,” Pro- ceedings Symposium IEEE/LEOS Benelux Chapter, Delft, 2000, pp. 247-250.
[2] F. S. Felber and J. H. Marburger, “Theory of Nonresonant Multistable Optical Devices,” Applied Physics Letters, Vol. 28, No. 731, 1976, pp. 335-342. doi:10.1063/1.88632
[3] J. H. Marburger and F. S. Felber, “Theory of a Lossless Nonlinear Fabry-Perot Interferometer,” Physical Review A, Vol. 17, 1978, pp. 335-342. doi:10.1103/PhysRevA.17.335
[4] Herbert G. Winful, J. H. Marburger and E. Garmire, “Theory of Bistability in Nonlinear Distributed Feedback Structures,” Applied Physics Letters, Vol. 35, No. 5, 1979, p. 379. doi:10.1063/1.91131
[5] P. W. Hawkes, “Advances in Electronics and Electron Physcs,” Academic Press, Inc., London, 1994.
[6] A. E. Siegman, “Lasers,” University Science Books, Mill Valley, 1986.
[7] R. W. Boyd, “Nonlinear Optics,” Academic Press, Inc., San Diego, 1992.
[8] C. Bowden, M. Ciftan and H. R. Robl, “Optical Bistabil- ity,” Plenum, New York, 1981. doi:10.1007/978-1-4684-3941-0
[9] B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, “All- Fiber Acousto-Optic Frequency Shifter,” Optics Letters, Vol. 11, No. 6, 1986, pp. 389-391. doi:10.1364/OL.11.000389
[10] T. A. Birks, P. St. J. Russel and D. O. Culverhouse, “The Acoust-Optic Effectin Single-Mode Fiber Tapers and Cou- plers,” Journal of Lightwave Technology, Vol. 14, No. 11, 1996, pp. 2519-2529. doi:10.1109/50.548150
[11] R. Feced, C. Alegria, M. N. Zervas and R. I. Laming, “Acoustooptic Attenuation Filters Based on Tapered Op- tical Fibers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 5, 1999, pp. 1278-1288. doi:10.1109/2944.806753
[12] A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz and M. V. Andrés, “Dynamic Fiber-Optic Add-drop Multiplexer Using Bragg Gratings and Acousto-Optic-Induced Cou- pling,” Technology Letters, Vol. 15, No. 1, 2003, pp. 84-86. doi:10.1109/LPT.2002.805867
[13] R. A. Oliveira, C. A. F Marques, C. E. N. Mayer, J. T. Pereira, R. N. Nogueira and A. A. P. Pohl, “Single Device for Excitation of Both Flexural and Longitudinal Acousto- Optic Effects in Fiber Bragg gratings,” Microwave and Optoelectronics Conference (IMOC), 2009 SBMO/IEEE MTT-S International, Belem, 3-6 November 2009, pp. 546-549. doi:10.1109/IMOC.2009.5427526
[14] W. F. Liu, P. St. J. Russell and L. Dong, “Acousto-Optic Superlattice Modulator Using a Fiber Bragg Grating,” Optics Letters, Vol. 22, No. 19, 1997, pp. 1515-1517. doi:10.1364/OL.22.001515
[15] W.-F. Liu, I-M. Liu, L.-W. Chung, D.-W. Huang and C. C. Yang, “Acoustic-Induced Switching of the Reflection Wavelength in a Fiber Bragg Grating,” Optics Letters, Vol. 25, No. 18, 2000, pp. 1319-1321. doi:10.1364/OL.25.001319
[16] B. L. Heffner, D. A Smith, J. E. Baran and K. W. Cheung, “Integrated Optic Acoustically-Tunable Infrared Optical Filter,” Electronics Letters, Vol. 24, No. 1, 1988, pp. 1562- 1563. doi:10.1049/el:19881065
[17] H. Hermann and St. Schmidt, “Integrated Acousto-Opti- cal Mode Converters with Weighted Coupling Using Sur- face Acoustic Wave Directional Couplers,” Electronics Letters, Vol. 28, No. 11, 1992, pp. 979-980. doi:10.1049/el:19920622
[18] D. A. Smith, J. E. Baran, J. J. Johnson and K.-W. Cheung, “Integrated-Optic Acoustically Tunable Filters for WDM Networks,” IEEE Journal on Selected Areas in Commu- nication, Vol. 8, No. 6, 1990, pp. 1151-1159.
[19] C. D. Tran and R. J. Furlan, “Spectrofluorometer Based on Acousto-Optic Tunable Filters for Rapid Scanning and Multicomponent Sample Analyses,” Analytical Chemis- try, Vol. 65, No. 13, 1993, pp. 1675-1681. doi:10.1021/ac00061a008
[20] D. Chieu and L. Jian, “Characterization of the Acousto- Optic Tunable Filter for the Ultraviolet and Visible Re- gions and Development of an Acousto-Optic Tunable Filter Based Rapid Scanning Detector for High-Perfor- mance Liquid Chromatography,” Analytical Chimica Acta, Vol. 314, No. 57, 1995, pp. 57-66. doi:10.1016/0003-2670(95)00306
[21] C. D. Tran and G. H. Gao, “Characterization of an Er- bium-Doped Fiber Amplifier as a Light Source and De- velopment of a Near-Infrared Spectrophotometer Based on the EDFA and an Acoustooptic Tunable Filter,” Ana- lytical Chemistry, Vol. 68, No. 13, 1996, pp. 2264-2269. doi:10.1021/ac9600262
[22] C. Pasquini, J. Lu, C. D. Tran and S. Smirnov, “Detection of Flow Injection Analysis with Ph Gradient by Acousto- Optic Tunable Filter Based Spectrophotometry,” Ana- lytica Chimica Acta, Vol. 319, No. 3, 1996, pp. 315-324. doi:10.1016/0003-2670(95)00509-9
[23] A. Yariv and P. Yeh, “Optical Waves in Crystal: Propa- gation and Control of Laser Adiation,” John Wiley and Sons, New York, 1984.
[24] C. S. Sobrinho and A. S. B. Sombra. “Picosecond Pulse Switching in an Acousto-Optic Tunable Filter (AOTF) with Loss,” Nonlinear Optics, Vol. 29. No. 1, 2002, pp. 79-97. doi:10.1080/10587260213929
[25] C. S. Sobrinho, J. L. S. Lima, E. F. de Almeida and A. S. B. Sombra, “Acousto-Optic Tunable Filter (AOTF) with Increasing Non-linearity and Loss,” Optics Communica- tions, Vol. 208, No. 4, 2002, pp. 415-426. doi:10.1016/S0030-4018(02)01599-7
[26] C. D. Tran, “Principles and Analytical Applications of Acousto-Optic Tunable Filters, an Overview,” Talanta, Vol. 45, No. 2, 1997, pp. 237-248. doi:10.1016/S0039-9140(97)00146
[27] Y. Jung, S. B. Lee, J. W. Lee and K. Oh, “Bandwidth Control in a Hybrid Fiber Acousto-Optic Filter,” Optics Letters, Vol. 30, No. 1, 2005, pp. 84-86. doi:10.1364/OL.30.000084
[28] C. S. Sobrinho, A. F. G. F. Filho, J. C. Sales, A. F. M. Neto, E. F. de Almeida and A. S. B. Sombra, “Acousto- Optic Tunable Filter (AOTF) Revisited: Ultrashort Opti- cal Pulses Crosstalk Studies on the Lossy Filter,” Fiber and Integrated Optics, Vol. 25, No. 3, 2006, pp. 195-211. doi:10.1080/01468030600569834
[29] C. S. Sobrinho, C. S. N. Rios and A. S. B. Sombra, “Inte- grated Acousto-Optical Temperature Sensor,” Fiber and Integrated Optics, Vol. 25, No. 6, 2006, pp. 387-402. doi:10.1080/01468030600910731
[30] T. R. Taha and M. J. Ablowitz, “Analytical and Numeri- cal Aspects of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear Schr?dinger Equation,” Journal of Computational Physics, Vol. 55, No. 2, 1984, pp. 203- 230. doi:10.1016/0021-9991(84)90003-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.