Effect of the administration of Psidium guava leaves on blood glucose, lipid profiles and sensitivity of the vascular mesenteric bed to Phenylephrine in streptozotocin-induced diabetic rats


The leaf of Psidium guava is traditionally used in Asia to manage, control and treat diabetes. We designed this study to elucidate the effect of the administration of oral doses of aqueous and ethanol extract from Psidium guava leaves on plasma glucose, lipid profiles and the sensitivity of the vascular mesenteric bed to Phenylephrine in diabetic and non diabetic rats. Animals were divided into 5 groups (n = 10): two groups served as non-diabetic controls (NDC), while the other groups had diabetes induced with a single injection of streptozotocin (STZ). Psidium guava-treated chronic diabetic (PSG-CD) and Psidium guava-treated controls (PSG-C) received 1g/l of Psidium guavaadded to the drinking water for 8 weeks. The mesenteric vascular beds were prepared using the McGregor method. Administration of Psidium guava caused Ca/Mg ratio, plasma glucose, high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), total cholesterol and triglyceride concentrations to return to normal levels, and was shown to decrease alteration in vascular reactivity to vasoconstrictor agents. Our results support the hypothesis that Psidium guava could play a role in the management of diabetes and the prevention of vascular complications in STZ-induced diabetic rats.

Share and Cite:

Bahrani, A. , Zaheri, H. , Soltani, N. , Kharazmi, F. , Keshavarz, M. and Kamalinajad, M. (2012) Effect of the administration of Psidium guava leaves on blood glucose, lipid profiles and sensitivity of the vascular mesenteric bed to Phenylephrine in streptozotocin-induced diabetic rats. Journal of Diabetes Mellitus, 2, 138-145. doi: 10.4236/jdm.2012.21023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Shen, S.C., Cheng, F.C. and Wu, N.J. (2008) Effect of Guava (Psidiumguajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats. Phytotherapy Research, 22, 1458-1464. doi:10.1002/ptr.2476
[2] Djurhuus, M.S., Henriksen, J.E., Klitgaard, N.A., Blaabjerg, O., Thye-Ronn, P., Altura, B.M., Altura, B.T. and Beck-Nielsen, H. (1999) Effect of moderate improvement in metabolic control on magnesium and lipid concentrations in patients with type 1 diabetes. Diabetes Care, 22, 546-554. doi:10.2337/diacare.22.4.546
[3] Yajnik, C.S. (2001) The insulin resistance epidemic in India: Fetal origins, later lifestyle, or both? Nutrition Reviews, 59, 1-9. doi:10.1111/j.1753-4887.2001.tb01898.x
[4] Jenkins, A.J., Lyons, T., Zheng, D.Y., Otvos, J.D., Lackland, D.T., Mcgee, D., Garvey, W.T. and Klein, R.L. (2003) Serum lipoproteins in the diabetes control and complications trial/epidemiology of diabetes intervention and complications cohort—Associations with gender and glycemia. Diabetes Care, 26, 810-818. doi:10.2337/diacare.26.3.810
[5] Ceriello, A. (2005) Postprandial hyperglycemia and diabetes complications. Is it time to treat? Diabetes, 54, 1-7. doi:10.2337/diabetes.54.1.1
[6] Abe, A., Kawasoe, C., Kondo, Y. and Sato, K. (2003) Enhancement of norepinephrine-induced transient contraction in aortic smooth muscle of diabetic mice. Acta Medica Okayama, 57, 45-48.
[7] Choi, B.G., Vilahur, G., Viles-Gonzalez, J.F. and Badimon, J.J. (2006) The role of high-density lipoprotein cholesterol in atherothrombosis. Mount Sinai Journal of Medicine, 73, 690-701.
[8] Marles, R.J. and Farnsworth, N. (1995) Antidiabetic plants and their active constituens. Phytomedicine, 2, 137-189. doi:10.1016/S0944-7113(11)80059-0
[9] Pari, L. and Umamaheswari, J. (2000) Antihyperglycaemic activity of Musa Sapientum flowers: Effect on lipid peroxidation in alloxan diabetic rats. Phytotherapy Research, 14, 1-3. doi:10.1002/(SICI)1099-1573(200003)14:2<136::AID-PTR607>3.0.CO;2-K
[10] Ojewole, J.A. (2005) Hypoglycemic and hypotensive effects of Psidiumguajava Linn. (Myrtaceae) leaf aqueous extract. Methods & Findings in Experimental & Clinical Pharmacology, 27, 689-695. doi:10.1358/mf.2005.27.10.948917
[11] Chiwororo, D.H. and Ojewole, J. (2008) Biphasic effect of Psidiumguajava Linn. (Myrtaceae) leaf aqueous extract on rat isolated vascular smooth muscles. Journal of Smooth Muscle Research, 44, 217-229. doi:10.1540/jsmr.44.217
[12] Deguchi, Y. and Miyazaki, K. (2010) Anti-hyperglycemic and anti-hyperlipidemic effects of guava leaf extract. Nutrition & Metabolism (Lond), 7, 9. doi:10.1186/1743-7075-7-9
[13] Obatomi, D.K., Bikomo, E.O. and Temple, V.J. (1994) Antidiabetic properties of African mistletoe in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 43, 13-70. doi:10.1016/0378-8741(94)90111-2
[14] Cheng, F.C. and Shen, S.C. (2009) Effect of guava (Psidiumguajava L.) leaf extract on glucose uptake in rat hepatocytes. Journal of Food Science, 74, H132-138. doi:10.1111/j.1750-3841.2009.01149.x
[15] Sunagawa, M., Shimada, S., Zhang, Z., Oonishi, A., Nakamura, M. and Kosugi, T. (2004) Plasma insulin concentration was increased by long-term ingestion of guava juice in spontaneous non-insulin-dependent diabetes mellitus (NIDDM) rats. Journal of Health Science, 50, 674-678. doi:10.1248/jhs.50.674
[16] Olatunji-Bello, I., Odusanya, A.J., Raji, I. and Ladipo, C.O. (2007) Contractile effect of aqueous extract of Psidiumguajava leaves on aortic rings in rat. Fitoterapia, 78, 241-243. doi:10.1016/j.fitote.2006.11.007
[17] Saunders, J.P., Donner, T.W., Sadler, J.H., Levin, G.V. and Makris, N.G. (1999) Effects of acute and repeated oral doses of D-tagatose on plasma uric acid in normal and diabetic humans. Regulatory Toxicology and Pharmacology, 29, S57-S65. doi:10.1006/rtph.1998.1264
[18] McGregor, D.D. (1965) The effect of sympathetic nerve stimulation of vasoconstrictor responses in perfused mesenteric blood vessels of the rat. Journal of Physiology, 177, 21-30.
[19] Suntornsuk, L., Gritsanapun, W., Nilkamhank, S. and Paochom, A. (2002) Quantitation of vitamin C content in herbal juice using direct titration. Journal of Pharmaceutical and Biomedical Analysis, 28, 849-855. doi:10.1016/S0731-7085(01)00661-6
[20] Soltani, N., Keshavarz, M. and Dehpour, A.R. (2007) Effect of oral magnesium sulfate administration on blood pressure and lipid profile in streptozotocin diabetic rat. European Journal of Pharmacology, 560, 201-205. doi:10.1016/j.ejphar.2006.12.020
[21] Soltani, N., Keshavarz, M., Sohanaki, H., ZahedAsl, S. and Dehpour, A.R. (2005) Relaxatory effect of magnesium on mesenteric vascular beds differs from normal and streptozotocin induced diabetic rats. European Journal of Pharmacology, 508, 177-181.
[22] Soltani, N., Keshavarz, M., Sohanaki, H., Dehpour, A.R. and ZAhediAsl, S. (2005) Oral magnesium administration prevents vascular complications in STZ-diabetic rats. Life Science, 76, 1455-1464.
[23] Altura, B.M. and Altura, B.T. (1995) Magnesium and cardiovascular biology an important link between cardiovascular risk factors and atherogenesis. Cellular and Molecular Biology Research, 41, 347-359.
[24] Altura, B.M. and Altura, B.T. (1991) Cardiovascular risk factors and magnesium: Relationships to atherosclerosis, ischemic heart disease and hypertension. Magnesium and Trace Elements, 10, 182-192.
[25] Ozcelikay, A.T., Tay, A., Guner, S., Tasyaran, V., Yildizoglu-Ar, N., Dincer, U.D. and Altan, V.M. (2000) Reversal effects of L-arginine treatment on blood pressure and vascular responsiveness of streptozotocin-diabetic rats. Pharmacological Research, 41, 201-209. doi:10.1006/phrs.1999.0576

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.