Accumulation of the betaine and ectoine in osmotic stress adaptation of biocontrol agents against Fusarium verticillioides in maize


The aims of this study was to examine the effect of the osmotic (NaCl) water stress on, growth and accumulation of endogenous compatible solutes of Bacillus amyloliquefaciens and Microbacterium oleovorans, biocontrol agents against Fusarium verticillioides. Triptic soya broth media were modified ionically to 0.99; 0.98; 0.97 and 0.96 aw with NaCl. The endogenous contents of the intracellular compatible solutes glycine-betaine and ectoine were quantified. Cells grown under ionic solute stress showed accumulation of significant amounts of both amino acids in all treatments. The growth rate of F. verticillioides was decreased significantly by interaction with B. amyloliquefaciens and M. oleovorans physiologically adapted at 0.96 aw. This study have demonstrated the ability to synthesize betaine and ectoine under high-osmolality conditions of B. amyloliquefaciens and M. oleovorans cells. Such ecophysiological manipulation, especially to water stress, may increase the potential for biological control of F. verticillioides at field under wider aw conditions.

Share and Cite:

Sartori, M. , Nesci, A. , Magan, N. and Etcheverry, M. (2012) Accumulation of the betaine and ectoine in osmotic stress adaptation of biocontrol agents against Fusarium verticillioides in maize. Agricultural Sciences, 3, 83-89. doi: 10.4236/as.2012.31011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bacon, C., Hinton, D. and Richardson, M. (1994) A corn seedling test for resistance to Fusarium moniliforme. Plant Disease, 78, 302-305. doi:10.1094/PD-78-0302
[2] Munkvold, G. and Desjardins, A. (1997) Fumonisins in maize—Can we reduce their occurrence? Plant Disease, 81, 556-565. doi:10.1094/PDIS.1997.81.6.556
[3] Munkvold, G. (2003) Cultural and genetic approaches to managing mycotoxins in maize. Annual Review of Phytopathology, 41, 99-116. doi:10.1146/annurev.phyto.41.052002.095510
[4] Pitt, J. and Hocking, A. (1997) Fungi and food spoilage. 2nd Edition, Blackie Academic and Professional, London. doi:10.1007/978-1-4615-6391-4
[5] CAST (Council for Agricultural Science Technology) (2003) Mycotoxins: Risks in plant, animal, human systems. Task Force Report, Ames, Iowa, No. 139, 1-199.
[6] Thield, P., Sydenham, E., Shepard, G. and Gelderblom, W. (1992) The implication of naturally occuring levels of fumonisin in maize for human and animal health. Mycopathologia, 117, 3-9. doi:10.1007/BF00497272
[7] Chu, F. and Li, G. (1994) Simultaneous occurrence of fumonisin B1 and other mycotoxins in moldy maize collected from People's Republic of China in regions with high incidences of esophageal cancer. Applied and Environmental Microbiology, 60, 847-852.
[8] IARC (2002) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 82, Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. International Agency for Research on Cancer, Lyon, France.
[9] FDA (US Food and Drug Administration) (2001) Guidance for industry: Fumonisin levels in human foods and animal feeds; final guidance.
[10] European Commission (2007) Commission Regulation 1126/2007 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Official Journal European Union, 255, 14-17.
[11] Pereira, P., Nesci, A. and Etcheverry, M. (2007) Effects of biocontrol agents on Fusarium verticillioides count and fumonisin content in the maize agroecosystem: Impact on rhizospheric bacterial and fungal groups. Biological Control, 42, 281-287. doi:10.1016/j.biocontrol.2007.05.015
[12] Pereira, P., Nesci, A. and Etcheverry, M. (2009) Efficacy of bacterial seed treatments for the control of Fusarium verticillioides in maize. BioControl, 54, 103-111. doi:10.1007/s10526-007-9148-3
[13] Pereira, P., Nesci, A. Castillo, C. and Etcheverry, M. (2010) Impact of bacterial biological control agents on fumonisin B1 content and Fusarium verticillioides infection of field-grown maize. Biological Control, 53, 258- 266. doi:10.1016/j.biocontrol.2010.02.001
[14] Harris, R. (1981) Effect of water potential on microbial growth and activity. In: Parr, J.F., et al., Eds., Water Potential Relations in Soil Microbiology. SSSA Spec. Madison W.I., 9, 23-96.
[15] Teixidó, N., Canamás, T., Abadías, M,, Usall, J., Torres, R., Magan, N. and Vinas, I. (2005) Accumulation of compatible solutes, glycine-betaine and ectoine, in osmotic stress adaptation and heat shock cross-protetion in the biocontrol agent Pantoea agglomerans CPA-2. Letters Applied of Microbiology, 41, 248-252. doi:10.1111/j.1472-765X.2005.01757.x
[16] Teixidó, N., Vinas, I., Usall, J. and Magan, N. (1998) Improving ecological fitness and environmental stress tolerance of the biocontrol yeast Candida sake by manipulation of intracellular sugar alcohol and sugar contet. Mycological Research, 102, 1409-1417. doi:10.1017/S0953756298006716
[17] Mokiou, S. and Magan, N. (2002) Ecophysiological manipulation of the fermentation process improves viability of the biocontrol yeast Pichia anomala. Biocontrol Fungal and Bacterial Plant Pathogens. IOBC/WPRS Bulletin, 25, 395-398.
[18] Sartori, M., Nesci, A. and Etcheverry, M. (2010) Impact of osmotic/matric stress and heat-shock on environmental tolerance induction of bacterial biocontrol agents against Fusarium verticillioides. Research in Microbiology, 161, 681-686. doi:10.1016/j.resmic.2010.06.008
[19] Sartori, M., Nesci, A. and Etcheverry, M. (2011) Production of Fusarium verticillioides biocontrol agents, Bacillus amyloliquefaciens and Microbacterium oleovorans, using different growth media: Evaluation of biomass and viability after freeze-drying. Food Additives and Contaminants, Part A. doi:10.1080/19440049.2011.563369
[20] Csonka, L. (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews, 53, 121-147.
[21] Kuhlmann, A. and Bremer, E. (2002) Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Journal of Bacteriology, 68, 772-783.
[22] Record, M., Courtenay, E., Cayley, D. and Guttman, H. (1998) Responses of E. Coli to osmitic stress: Large changes in amounts of cytoplasmic solutes and water. Trends in Biochemical Sciences, 23, 143-148. doi:10.1016/S0968-0004(98)01196-7
[23] Da Costa, M., San-tos, H. and Galinski, E. (1998) An overview of the role and diversity of compatible solutes in bacteria and archae. In: Scheper, T., Ed., Advances in Biochemical Engineering/Biotechnology, Springer-Verlag, Berlin, 61, 117-153.
[24] Lentzen, G. and Schwarz, T. (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Applied Microbiology and Biotechnology, 72, 623-634. doi:10.1007/s00253-006-0553-9
[25] Holt, J. (1993) Bergey’s manual of systematic bacteriology. Williams & Wilkins Co. Baltimore, Maryland.
[26] Dallyn, H. and Fox, A. (1980) Spoilage of material of reduced water activity by xerophilic fungi. In: Gould, G. and Corry, E., Eds., Society of Applied Bacteriology Technical Series, Academic Press, London, 129-139.
[27] Kunte, H., Galinski, E. and Trüper, H. (1993) A modified FMOC-method for the detection of amino acid-type osmolytes and tetrhydropyrimidines (ectoines). Journal of Microbiological Methods, 17, 129-136. doi:10.1016/0167-7012(93)90006-4
[28] Capellini, R. and Peterson, J. (1965) Macroconidium formation in submerged cultures by sporulating strain of Giberella zeae. Mycologia, 57, 962-966. doi:10.2307/3756895
[29] Cavaglieri, L., Passone, A. and Etcheverry, M. (2004) Screening procedures to select rhizobacteria with biocontrol activity on Fusarium verticillioides growth and fumonisin B1 production. Research in Microbiology, 155, 747-754. doi:10.1016/j.resmic.2004.06.001
[30] Cavaglieri, L., Passone, A. and Etcheverry, M. (2004) Correlation between screening procedures to select root endophytes for biological control of Fusarium verticallioides in Zea mays L. Biological Control, 31, 259-267. doi:10.1016/j.biocontrol.2004.07.006
[31] Cavaglieri, L., Orlando, J. and Etcheverry, M. (2005) In vitro influence of bacterial mixtures on F. verticillioides growth and fumonisin B1 production. Effect of seed treatment on maize root colonization. Letters Applied of Microbiology, 41, 390-396. doi:10.1111/j.1472-765X.2005.01785.x
[32] Cavaglieri, L., Andrés, L., Ibanez, M. and Etcheverry, M. (2005) Rhizobacteria and their potential to control Fusarium verticillioides: Effect of maize bacterisation and inoculum density. Antoine Van Leeuwenhoek, 87, 179-187. doi:10.1007/s10482-004-3193-z
[33] Pereira, P., Nesci, A., Castillo, C. and Etcheverry, M. (2011) Field Studies on the Relationship between Fusarium verticillioides and Maize (Zea mays L.): Effect of biocontrol agents on fungal infection and toxin content of grains at harvest. International Journal of Agronomy. doi:10.1155/2011/486914
[34] Kohl, J. and Fokkema, N. (1998) Strategies for biological control of necrotrofic fungal foliar pathogens. In: Boland, G. and Kuykendall, L. Eds., Plant-Microbe interactions and Biological Control, Marcel Dekker, Inc., New York, 49-88.
[35] Goller, K., Ofer, A. and Galinski, A. (1998) Construction and characterization of an NaCl-sensitive mutant of Halomonas elongata impaired in ectoine biosynthesis. FEMS Microbiology Letters, 161, 293-300.
[36] Brown, A. (1976) Microbial water stress. Bacteriological Reviews, 40, 803-846.
[37] Poolman, B. and Glaasker, E. (1998) Regulation of compatible solute accumulation in bacteria. Molecular Microbiology, 29, 397-307. doi:10.1046/j.1365-2958.1998.00875.x
[38] Morbach, S. and Kramer, R. (2002) Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria. Chembiochem, 3, 384-397. doi:10.1002/1439-7633(20020503)3:5<384::AID-CBIC384>3.0.CO;2-H
[39] Kempf, B. and Bremer, E. (1998) Uptake and synthesis of compatible solutes as microbial stress responses to highosmolality environments. Archives of Microbiology, 170, 319-330. doi:10.1007/s002030050649
[40] Louis, P., Trüper, H. and Galinski, E. (1994) Survival of Escherichia coli during drying and storage in the presence of compatible solutes. Applied Microbiology and Biotechnology, 41, 684-688. doi:10.1007/BF00167285
[41] Etcheverry, M., Scandolara, A., Nesci, A., Vilas Boas Ribeiro, M., Pereira, P. and Battilani, P. (2009) Biological interactions to select biological agents against toxigenic strains of Aspergillus flavus and Fusarium verticillioides from maize. Mycopathologia, 167, 287-295. doi:10.1007/s11046-008-9177-1

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.