|
[1]
|
Schmela, M., Rossi, R., Lits, C., Chunduri, S.K., Shah, A., Muthyal, R., et al. (2023) Advancements in Solar Technology, Markets, and Investments—A Summary of the 2022 ISA World Solar Reports. Solar Compass, 6, Article ID: 100045.[CrossRef]
|
|
[2]
|
Niewelt, T., Steinhauser, B., Richter, A., Veith-Wolf, B., Fell, A., Hammann, B., et al. (2022) Reassessment of the Intrinsic Bulk Recombination in Crystalline Silicon. Solar Energy Materials and Solar Cells, 235, Article ID: 111467.[CrossRef]
|
|
[3]
|
Shahivandi, H. (2025) Understanding Thermal Effects on Band Gap and Absorption in MAPbI3 Perovskite Solar Cells. Solid State Sciences, 168, Article ID: 108054.[CrossRef]
|
|
[4]
|
Khir, H., Pandey, A.K., Saidur, R., Ahmad, M.S. and Samykano, M. (2025) Advancements, Challenges and Future Prospects of Flexible Pb-Free Perovskite Solar Cells. Journal of Power Sources, 656, Article ID: 238025.[CrossRef]
|
|
[5]
|
Fischer, O., Bett, A.J., Zhu, Y., Messmer, C., Bui, A.D., Schygulla, P., et al. (2025) Revealing Charge Carrier Transport and Selectivity Losses in Perovskite Silicon Tandem Solar Cells. Matter.[CrossRef]
|
|
[6]
|
Jakob, L., Wiedenmann, F., Hanser, M., Schube, J., Bivour, M., Fischer, O., et al. (2026) Multifunctional Ti(Al)Ox Layers for Silver and Indium-Free Perovskite/Silicon Tandem Solar Cells. Solar Energy Materials and Solar Cells, 294, Article ID: 113892.[CrossRef]
|
|
[7]
|
Szmytkowski, J., Huang, C., Bykkam, S., Glowienka, D. and Galagan, Y. (2025) Interface Passivation of a Hole Transporting Material in Order to Improve the Efficiency of Perovskite Solar Cells. Solar Energy, 300, Article ID: 113817.[CrossRef]
|
|
[8]
|
Wu, T., Liu, X., Luo, X., Lin, X., Cui, D., Wang, Y., et al. (2021) Lead-Free Tin Perovskite Solar Cells. Joule, 5, 863-886.[CrossRef]
|
|
[9]
|
Kim, G., Min, H., Lee, K.S., Lee, D.Y., Yoon, S.M. and Seok, S.I. (2020) Impact of Strain Relaxation on Performance of α-Formamidinium Lead Iodide Perovskite Solar Cells. Science, 370, 108-112.[CrossRef] [PubMed]
|
|
[10]
|
Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., et al. (2019) Surface Passivation of Perovskite Film for Efficient Solar Cells. Nature Photonics, 13, 460-466.[CrossRef]
|
|
[11]
|
Njema, G.G., Kibet, J.K. and Ngari, S.M. (2025) Performance Optimization of a Novel Perovskite Solar Cell with Power Conversion Efficiency Exceeding 37% Based on Methylammonium Tin Iodide. Next Energy, 6, Article ID: 100182.[CrossRef]
|
|
[12]
|
Moyofola, O.O. and Emetere, M.E. (2025) Improving the Performance Conversion Efficiency of Perovskite Solar Cells through Optimization of Charge Transport Layers: A Review. Renewable and Sustainable Energy Reviews, 222, Article ID: 115943.[CrossRef]
|
|
[13]
|
Panda, P., Kaur, J., Basu, R., Sharma, A.K., Madan, J. and Pandey, R. (2025) Toward High-Efficiency Photovoltaics: MASnI3 and FASnI3 Double Absorber Perovskite Solar Cells with Optimized Conversion Efficiency of 28%. Physica B: Condensed Matter, 710, Article ID: 417232.[CrossRef]
|
|
[14]
|
Ghosh, A., Zishan, A.S., Moumita, M., Kumar, Y.A., Roy, A.K., Islam, S., et al. (2025) Improving the Performance of AgCdF3-Based Perovskite Solar Cells Using Machine Learning-Driven Adjustment of Active Layer and Charge Transport Materials with SCAPS-1D. Inorganic Chemistry Communications, 179, Article ID: 114829.[CrossRef]
|
|
[15]
|
Hsu, C., Kumar, A., Reddy, M.S., Dehghanipour, M., Khorshidi, E., Al-Hasnaawei, S., et al. (2025) Emerging Multifunctional Additives in the Perovskite Layer and Its Interfaces with Charge Transport Layers: A Roadmap for Customized Applications in Perovskite Solar Cells. Journal of Alloys and Compounds, 1040, Article ID: 183421.[CrossRef]
|
|
[16]
|
Lekshmy, R.R., Ammar, M., Ahmad, Z., Shakoor, A., Touati, F., Iwamoto, M., et al. (2025) Progress and Challenges in HTL-Free Pervoskite Solar Cells. Solar Energy, 300, Article ID: 113831.[CrossRef]
|
|
[17]
|
Calió, L., Kazim, S., Grätzel, M. and Ahmad, S. (2016) Hole-Transport Materials for Perovskite Solar Cells. Angewandte Chemie International Edition, 55, 14522-14545.[CrossRef] [PubMed]
|
|
[18]
|
Chien, H., Pölzl, M., Koller, G., Challinger, S., Fairbairn, C., Baikie, I., et al. (2017) Effects of Hole-Transport Layer Homogeneity in Organic Solar Cells—A Multi-Length Scale Study. Surfaces and Interfaces, 6, 72-80.[CrossRef]
|
|
[19]
|
Liu, X., Jiang, X., Wang, K., Miao, C. and Zhang, S. (2022) Recent Advances in Selenophene-Based Materials for Organic Solar Cells. Materials, 15, Article 7883.[CrossRef] [PubMed]
|
|
[20]
|
Bakr, Z.H., Wali, Q., Fakharuddin, A., Schmidt-Mende, L., Brown, T.M. and Jose, R. (2017) Advances in Hole Transport Materials Engineering for Stable and Efficient Perovskite Solar Cells. Nano Energy, 34, 271-305.[CrossRef]
|
|
[21]
|
Wang, Y., Luo, Q., Wu, N., Wang, Q., Zhu, H., Chen, L., et al. (2015) Solution-Processed MoO3:PEDOT:PSS Hybrid Hole Transporting Layer for Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 7, 7170-7179.[CrossRef] [PubMed]
|
|
[22]
|
Kenfack, A.D.K. and Msimanga, M. (2025) Effect of Low-Cost Hole Transport Layers (HTLs) on the Performance Parameters of Lead-Free Homojunction CsGeI2Br-Based Perovskite Solar Cells. Next Materials, 6, Article ID: 100482.[CrossRef]
|
|
[23]
|
Tuo, S., Koffi, K.B.M.K., Kamenan, K.A., Datte, J. and Yapi, A.S. (2024) SCAPS 1D Simulation of a Lead-Free Perovskite Photovoltaic Solar Cell Using Hematite as Electron Transport Layer. Modeling and Numerical Simulation of Material Science, 14, 97-106.[CrossRef]
|
|
[24]
|
Waychunas, G.A., Kim, C.S. and Banfield, J.F. (2005) Nanoparticulate Iron Oxide Minerals in Soils and Sediments: Unique Properties and Contaminant Scavenging Mechanisms. Journal of Nanoparticle Research, 7, 409-433.[CrossRef]
|
|
[25]
|
Burgelman, M., Nollet, P. and Degrave, S. (2000) Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Films, 361, 527-532.[CrossRef]
|
|
[26]
|
Patel, P.K. (2021) Device Simulation of Highly Efficient Eco-Friendly CH3NH3SnI3 Perovskite Solar Cell. Scientific Reports, 11, Article No. 3082.[CrossRef] [PubMed]
|
|
[27]
|
Berardi, S., Cristino, V., Bignozzi, C.A., Grandi, S. and Caramori, S. (2022) Hematite-based Photoelectrochemical Interfaces for Solar Fuel Production. Inorganica Chimica Acta, 535, Article ID: 120862.[CrossRef]
|
|
[28]
|
Mandadapu, U., Thyagarajan, K. and Vedanayakam, S.V. (2017) Simulation and Analysis of Lead Based Perovskite Solar Cell Using SCAPS-1D. Indian Journal of Science and Technology, 10, 1-8.[CrossRef]
|
|
[29]
|
Alkhazali, A.M. (2019) Investigation the Effect of Post Deposition Thermal Treatment on Properties P3HT and P3HT:PCBM Blend. Iraqi Journal of Physics, 17, 65-75.[CrossRef]
|
|
[30]
|
Kunya, S.I., Abdu, Y., Mustafa, M.K. and Ahmad, M.K. (2022) Cuprous Oxide (Cu2O) Based Solar Cell Thickness Dependence. British Journal of Physics Studies, 1, 1-7.[CrossRef]
|
|
[31]
|
Slami, A., Bouchaour, M. and Merad, L. (2019) Numerical Study of Based Perovskite Solar Cells by SCAPS-1D. International Journal of Energy and Environment, 13, 17-21.
|
|
[32]
|
Akel, S., Kulkarni, A., Rau, U. and Kirchartz, T. (2023) Relevance of Long Diffusion Lengths for Efficient Halide Perovskite Solar Cells. PRX Energy, 2, Article ID: 013004.[CrossRef]
|
|
[33]
|
Oishi, A.H., Anjum, M.T., Islam, M.M. and Nayan, M.F. (2023) Impact of Absorber Layer Thickness on Perovskite Solar Cell Efficiency: A Performance Analysis. European Journal of Electrical Engineering and Computer Science, 7, 48-51.[CrossRef]
|
|
[34]
|
Qureshi, A.A., Javed, S., Akram, M.A., Schmidt-Mende, L. and Fakharuddin, A. (2023) Solvent-Assisted Crystallization of an α-Fe2O3 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells Featuring Negligible Hysteresis. ACS Omega, 8, 18106-18115.[CrossRef] [PubMed]
|
|
[35]
|
Bouderbala, I.Y. and Hamdi, N.H. (2023) Effects of Absorber Layer Thickness and Doping Density on the Performance of Perovskite Solar Cells: A Simulation Analysis Using SCAPS-1D Software. Algerian Journal of Research and Technology, 8, 131-137.
|
|
[36]
|
Rakstys, K., Igci, C. and Nazeeruddin, M.K. (2019) Efficiency vs. Stability: Dopant-Free Hole Transporting Materials Towards Stabilized Perovskite Solar Cells. Chemical Science, 10, 6748-6769.[CrossRef] [PubMed]
|
|
[37]
|
Cameron, J. and Skabara, P.J. (2020) The Damaging Effects of the Acidity in PEDOT:PSS on Semiconductor Device Performance and Solutions Based on Non-Acidic Alternatives. Materials Horizons, 7, 1759-1772.[CrossRef]
|
|
[38]
|
Li, S., Cao, Y., Li, W. and Bo, Z. (2021) A Brief Review of Hole Transporting Materials Commonly Used in Perovskite Solar Cells. Rare Metals, 40, 2712-2729.[CrossRef]
|
|
[39]
|
Lin, C., Liu, G., Xi, X., Wang, L., Wang, Q., Sun, Q., et al. (2022) The Investigation of the Influence of a Cu2O Buffer Layer on Hole Transport Layers in MAPbI3-Based Perovskite Solar Cells. Materials, 15, Article 8142.[CrossRef] [PubMed]
|
|
[40]
|
Yousuf, M.H., Saeed, F. and Tauqeer, H.A. (2022) Numerical Investigation of Cu2O as a Hole Transport Layer for High-Efficiency, Cadmium Free CIGS Solar Cell.[CrossRef]
|
|
[41]
|
Ahamad, M. and Hossain, A.K.M.A. (2023) Design and Optimization of Non-Toxic and Highly Efficient Tin-Based Organic Perovskite Solar Cells by Device Simulation. Heliyon, 9, e19389.[CrossRef] [PubMed]
|
|
[42]
|
Liang, J., Wang, Y., Liu, X., Chen, J., Peng, L. and Lin, J. (2024) Theoretical Analysis of Doping of Perovskite Light-Absorbing Layer for Highly Efficient Perovskite Solar Cells. Journal of Physics and Chemistry of Solids, 188, Article ID: 111901.[CrossRef]
|
|
[43]
|
Sinha, N.K., Roy, P., Ghosh, D.S. and Khare, A. (2023) Investigation of Effect of Doping in Perovskite Solar Cells: A Numerical Simulation Approach. Materials Today: Proceedings, 83, 6-13.[CrossRef]
|