|
[1]
|
Jørgensen, J.T. (2011) A Challenging Drug Development Process in the Era of Personalized Medicine. Drug Discovery Today, 16, 891-897.[CrossRef] [PubMed]
|
|
[2]
|
US President’s Council of Advisors on Science and Technology (PCAST) (2008) Priorities for Personalized Medicine. Executive Office of the President of the United States.
|
|
[3]
|
Chan, I.S. and Ginsburg, G.S. (2011) Personalized Medicine: Progress and Promise. Annual Review of Genomics and Human Genetics, 12, 217-244.[CrossRef] [PubMed]
|
|
[4]
|
Aneesh, T.P., Sonal Sekhar, M., Asha, A., Chandran, L. and Zachariah, S.M. (2009) Pharmacogenomics: The Right Drug to the Right Person. Journal of Clinical Medicine Research, 1, 191-194.[CrossRef] [PubMed]
|
|
[5]
|
Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., et al. (1976) Complete Nucleotide Sequence of Bacteriophage MS2 RNA: Primary and Secondary Structure of the Replicase Gene. Nature, 260, 500-507.[CrossRef] [PubMed]
|
|
[6]
|
Roden, D.M., McLeod, H.L., Relling, M.V., Williams, M.S., Mensah, G.A., Peterson, J.F., et al. (2019) Pharmacogenomics. The Lancet, 394, 521-532.[CrossRef] [PubMed]
|
|
[7]
|
Lu, A.Y. (1998) Drug-Metabolism Research Challenges in the New Millennium: Individual Variability in Drug Therapy and Drug Safety. Drug Metabolism and Disposition, 26, 1217-1222.
|
|
[8]
|
Roden, D.M., Van Driest, S.L., Wells, Q.S., Mosley, J.D., Denny, J.C. and Peterson, J.F. (2018) Opportunities and Challenges in Cardiovascular Pharmacogenomics: From Discovery to Implementation. Circulation Research, 122, 1176-1190.[CrossRef] [PubMed]
|
|
[9]
|
Zhou, Z. (2020) Pharmacogenomics in cardiovascular precision medicine. Journal of Laboratory and Precision Medicine, 5, Article 30.[CrossRef]
|
|
[10]
|
Hodgson, J. and Marshall, A. (1998) Pharmacogenomics: Will the Regulators Approve? Nature Biotechnology, 16, 243-246.[CrossRef] [PubMed]
|
|
[11]
|
Hagihara, K., Kazui, M., Kurihara, A., Yoshiike, M., Honda, K., Okazaki, O., et al. (2009) A Possible Mechanism for the Differences in Efficiency and Variability of Active Metabolite Formation from Thienopyridine Antiplatelet Agents, Prasugrel and Clopidogrel. Drug Metabolism and Disposition, 37, 2145-2152.[CrossRef] [PubMed]
|
|
[12]
|
Kazui, M., Nishiya, Y., Ishizuka, T., Hagihara, K., Farid, N.A., Okazaki, O., et al. (2010) Identification of the Human Cytochrome P450 Enzymes Involved in the Two Oxidative Steps in the Bioactivation of Clopidogrel to Its Pharmacologically Active Metabolite. Drug Metabolism and Disposition, 38, 92-99.[CrossRef] [PubMed]
|
|
[13]
|
Sibbing, D., Koch, W., Gebhard, D., Schuster, T., Braun, S., Stegherr, J., et al. (2010) Cytochrome 2C19*17 Allelic Variant, Platelet Aggregation, Bleeding Events, and Stent Thrombosis in Clopidogrel-Treated Patients with Coronary Stent Placement. Circulation, 121, 512-518.[CrossRef] [PubMed]
|
|
[14]
|
Lee, C.R., Luzum, J.A., Sangkuhl, K., Gammal, R.S., Sabatine, M.S., Stein, C.M., et al. (2022) Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clinical Pharmacology & Therapeutics, 112, 959-967.[CrossRef] [PubMed]
|
|
[15]
|
Holmes, M.V., Perel, P., Shah, T., Hingorani, A.D. and Casas, J.P. (2011) CYP2C19 Genotype, Clopidogrel Metabolism, Platelet Function, and Cardiovascular Events: A Systematic Review and Meta-Analysis. JAMA, 306, 2704-2714.[CrossRef] [PubMed]
|
|
[16]
|
Kayani, M., Sangeetha, G.K., Sarangi, S., Gaddamanugu, L.S., Sharma, S., Adedara, V.O., et al. (2025) Pharmacogenomics and Its Role in Cardiovascular Diseases: A Narrative Literature Review. Current Cardiology Reviews, 21, e1573403X334668.[CrossRef] [PubMed]
|
|
[17]
|
Gennari, C., Nami, R., Pavese, G., Gragnani, S., Bianchini, C. and Buracchi, P. (1989) Calcium-Channel Blockade (Nitrendipine) in Combination with ACE Inhibition (Captopril) in the Treatment of Mild to Moderate Hypertension. Cardiovascular Drugs and Therapy, 3, 319-325.[CrossRef] [PubMed]
|
|
[18]
|
Todd, P.A. and Heel, R.C. (1986) Enalapril. A Review of Its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Use in Hypertension and Congestive Heart Failure. Drugs, 31, 198-248.[CrossRef] [PubMed]
|
|
[19]
|
Messerli, F.H., Bangalore, S., Bavishi, C. and Rimoldi, S.F. (2018) Angiotensin-converting Enzyme Inhibitors in Hypertension. Journal of the American College of Cardiology, 71, 1474-1482.[CrossRef] [PubMed]
|
|
[20]
|
James, P.A., Oparil, S., Carter, B.L., Cushman, W.C., Dennison-Himmelfarb, C., Handler, J., et al. (2014) 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults: Report from the Panel Members Appointed to the Eighth Joint National Committee (JNC 8). JAMA, 311, 507-520. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Rai, C.K., Kafle, R. and Makaju, S. (2022) Hypertension among Current Cigarette Smokers Visiting Outpatient Department of a Tertiary Care Centre: A Descriptive Cross-Sectional Study. Journal of Nepal Medical Association, 60, 381-383.[CrossRef] [PubMed]
|
|
[22]
|
Whelton, P.K., Carey, R.M., Aronow, W.S., Casey, D.E., Collins, K.J., et al. (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APHA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 71, 1269-1324.[CrossRef] [PubMed]
|
|
[23]
|
Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M., et al. (2018) 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. European Heart Journal, 39, 3021-3104.[CrossRef] [PubMed]
|
|
[24]
|
Seedat, Y.K. and Randeree, I.G.H. (1998) Antihypertensive Effect and Tolerability of Perindopril in Indian Hypertensive and Type 2 Diabetic Patients: 1-Year Randomised, Double-Blind, Parallel Study vs Atenolol. Clinical Drug Investigation, 16, 229-240.[CrossRef] [PubMed]
|
|
[25]
|
Gavras, H., Faxon, D.P., Berkoben, J., Brunner, H.R. and Ryan, T.J. (1978) Angiotensin Converting Enzyme Inhibition in Patients with Congestive Heart Failure. Circulation, 58, 770-776.[CrossRef] [PubMed]
|
|
[26]
|
Dzau, V.J., Colucci, W.S., Williams, G.H., Curfman, G., Meggs, L. and Hollenberg, N.K. (1980) Sustained Effectiveness of Converting-Enzyme Inhibition in Patients with Severe Congestive Heart Failure. New England Journal of Medicine, 302, 1373-1379.[CrossRef] [PubMed]
|
|
[27]
|
CONSENSUS Trial Study Group (1987) Effects of Enalapril on Mortality in Severe Congestive Heart Failure. New England Journal of Medicine, 316, 1429-1435.[CrossRef] [PubMed]
|
|
[28]
|
SOLVD Investigators, Yusuf, S., Pitt, B., Davis, C.E., Hood, W.B. and Cohn, J.N. (1991) Effect of Enalapril on Survival in Patients with Reduced Left Ventricular Ejection Fractions and Congestive Heart Failure. New England Journal of Medicine, 325, 293-302.[CrossRef] [PubMed]
|
|
[29]
|
Borghi, C., Omboni, S., Novo, S., Vinereanu, D., Ambrosio, G. and Ambrosioni, E. (2018) Efficacy and Safety of Zofenopril versus Ramipril in the Treatment of Myocardial Infarction and Heart Failure: A Review of the Published and Unpublished Data of the Randomized Double-Blind SMILE-4 Study. Advances in Therapy, 35, 604-618.[CrossRef] [PubMed]
|
|
[30]
|
Pfeffer, M.A., Braunwald, E., Moyé, L.A., Basta, L., Brown, E.J., Cuddy, T.E., et al. (1992) Effect of Captopril on Mortality and Morbidity in Patients with Left Ventricular Dysfunction after Myocardial Infarction. New England Journal of Medicine, 327, 669-677.[CrossRef] [PubMed]
|
|
[31]
|
Yancy, C.W., Jessup, M., Bozkurt, B., Butler, J., Casey, D.E., Colvin, M.M., et al. (2017) 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Journal of the American College of Cardiology, 70, 776-803.[CrossRef] [PubMed]
|
|
[32]
|
Ponikowski, P., Voors, A.A., Anker, S.D., Bueno, H., Cleland, J.G.F., Coats, A.J.S., et al. (2016) 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC)Developed with the Special Contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal, 37, 2129-2200.[CrossRef] [PubMed]
|
|
[33]
|
Folkow, B., Johansson, B. and Mellander, S. (1961) The Comparative Effects of Angiotensin and Noradrenaline on Consecutive Vascular Sections. Acta Physiologica Scandinavica, 53, 99-104.[CrossRef] [PubMed]
|
|
[34]
|
Kagami, S., Border, W.A., Miller, D.E. and Noble, N.A. (1994) Angiotensin II Stimulates Extracellular Matrix Protein Synthesis through Induction of Transforming Growth Factor-Beta Expression in Rat Glomerular Mesangial Cells. Journal of Clinical Investigation, 93, 2431-2437.[CrossRef] [PubMed]
|
|
[35]
|
Berisha, B., Schams, D. and Miyamoto, A. (2002) The Expression of Angiotensin and Endothelin System Members in Bovine Corpus Luteum during Estrous Cycle and Pregnancy. Endocrine, 19, 305-312.[CrossRef] [PubMed]
|
|
[36]
|
Andersson, R.G.G., Karlberg, B.E., Lindgren, B.R., Persson, K. and Rosenqvist, U. (1991) Enalaprilat, but Not Cilazaprilat, Increases Inflammatory Skin Reactions in Guinea-Pigs. Drugs, 41, 48-53.[CrossRef] [PubMed]
|
|
[37]
|
Johnson, J.A., Gong, L., Whirl-Carrillo, M., Gage, B.F., Scott, S.A., Stein, C.M., et al. (2011) Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 Genotypes and Warfarin Dosing. Clinical Pharmacology & Therapeutics, 90, 625-629.[CrossRef] [PubMed]
|
|
[38]
|
Bijl, M., Visser, L., van Schaik, R., Kors, J., Witteman, J., Hofman, A., et al. (2008) Genetic Variation in the CYP2D6 Gene Is Associated with a Lower Heart Rate and Blood Pressure in β-Blocker Users. Clinical Pharmacology & Therapeutics, 85, 45-50.[CrossRef] [PubMed]
|
|
[39]
|
Cavallari, L.H. and Mason, D.L. (2016) Cardiovascular Pharmacogenomics—Implications for Patients with CKD. Advances in Chronic Kidney Disease, 23, 82-90.[CrossRef] [PubMed]
|
|
[40]
|
Chen, L., Meyers, D., Javorsky, G., Burstow, D., Lolekha, P., Lucas, M., et al. (2007) Arg389Gly-β1-Adrenergic Receptors Determine Improvement in Left Ventricular Systolic Function in Nonischemic Cardiomyopathy Patients with Heart Failure after Chronic Treatment with Carvedilol. Pharmacogenetics and Genomics, 17, 941-949.[CrossRef] [PubMed]
|
|
[41]
|
Vecchione, C., Villa, F., Carrizzo, A., Spinelli, C.C., Damato, A., Ambrosio, M., et al. (2017) A Rare Genetic Variant of BPIFB4 Predisposes to High Blood Pressure via Impairment of Nitric Oxide Signaling. Scientific Reports, 7, Article No. 9706.[CrossRef] [PubMed]
|
|
[42]
|
Bristow, M.R., Murphy, G.A., Krause-Steinrauf, H., Anderson, J.L., Carlquist, J.F., Thaneemit-Chen, S., et al. (2010) An α2c-Adrenergic Receptor Polymorphism Alters the Norepinephrine-Lowering Effects and Therapeutic Response of the β-Blocker Bucindolol in Chronic Heart Failure. Circulation: Heart Failure, 3, 21-28.[CrossRef] [PubMed]
|
|
[43]
|
Lakkiss, B. and Refaat, M.M. (2023) β1 and α2c-Adrenergic Receptor Polymorphisms Are Associated with Lower Incident Ventricular Fibrillation in Patients with ST-Segment-Elevation Myocardial Infarction. Journal of the American Heart Association, 12, e029102.[CrossRef] [PubMed]
|
|
[44]
|
Troncoso, R., Moraga, F., Chiong, M., Roldán, J., Bravo, R., Valenzuela, R., et al. (2009) Gln27→Gluβ2-Adrenergic Receptor Polymorphism in Heart Failure Patients: Differential Clinical and Oxidative Response to Carvedilol. Basic & Clinical Pharmacology & Toxicology, 104, 374-378.[CrossRef] [PubMed]
|
|
[45]
|
Qin, B., Yu, L., Wang, R., Tang, Y., Chen, Y., Wang, N., et al. (2023) Chemical Synthesis, Safety and Efficacy of Antihypertensive Candidate Drug 221s (2,9). Molecules, 28, Article 4975. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Green, S.A., Turki, J., Innis, M. and Liggett, S.B. (1994) Amino-Terminal Polymorphisms of the Human β2-Adrenergic Receptor Impart Distinct Agonist-Promoted Regulatory Properties. Biochemistry, 33, 9414-9419.[CrossRef] [PubMed]
|
|
[47]
|
Yao, X., Xue, Y., Ma, Q., Bai, Y., Jia, P., Zhang, Y., et al. (2023) 221s-1a Inhibits Endothelial Proliferation in Pathological Angiogenesis through ERK/c-Myc Signaling. European Journal of Pharmacology, 952, Article ID: 175805.[CrossRef] [PubMed]
|
|
[48]
|
Weeke, P. and Roden, D.M. (2013) Pharmacogenomics and Cardiovascular Disease. Current Cardiology Reports, 15, Article No. 376.[CrossRef] [PubMed]
|
|
[49]
|
Castro‐Moreno, P., Pardo, J.P., Hernández‐Muñoz, R., López‐Guerrero, J.J., Del Valle‐Mondragón, L., Pastelín‐Hernández, G., et al. (2012) Captopril Avoids Hypertension, the Increase in Plasma Angiotensiniibut Increases Angiotensin 1-7 and Angiotensinii-Induced Perfusion Pressure in Isolated Kidney in SHR. Autonomic and Autacoid Pharmacology, 32, 61-69.[CrossRef] [PubMed]
|
|
[50]
|
Petersen, M., Andersen, J.T., Hjelvang, B.R., Broedbaek, K., Afzal, S., Nyegaard, M., et al. (2011) Association of Beta-Adrenergic Receptor Polymorphisms and Mortality in Carvedilol-Treated Chronic Heart-Failure Patients. British Journal of Clinical Pharmacology, 71, 556-565.[CrossRef] [PubMed]
|
|
[51]
|
Chaturvedi, S., Lipszyc, D.H., Licht, C., Craig, J.C. and Parekh, R. (2014) Pharmacological Interventions for Hypertension in Children. Evidence-Based Child Health: A Cochrane Review Journal, 9, 498-580.[CrossRef] [PubMed]
|
|
[52]
|
Jain, N., Nagaich, U., Pandey, M., Chellappan, D.K. and Dua, K. (2022) Predictive Genomic Tools in Disease Stratification and Targeted Prevention: A Recent Update in Personalized Therapy Advancements. EPMA Journal, 13, 561-580.[CrossRef] [PubMed]
|
|
[53]
|
Mangravite, L.M., Thorn, C.F. and Krauss, R.M. (2006) Clinical Implications of Pharmacogenomics of Statin Treatment. The Pharmacogenomics Journal, 6, 360-374.[CrossRef] [PubMed]
|
|
[54]
|
Tirona, R.G., Leake, B.F., Merino, G. and Kim, R.B. (2001) Polymorphisms in OATP-C: Identification of Multiple Allelic Variants Associated with Altered Transport Activity among European-and African-Americans. Journal of Biological Chemistry, 276, 35669-35675.[CrossRef] [PubMed]
|
|
[55]
|
Niemi, M., Backman, J., Kajosaari, L., Leathart, J., Neuvonen, M., Daly, A., et al. (2005) Polymorphic Organic Anion Transporting Polypeptide 1B1 Is a Major Determinant of Repaglinide Pharmacokinetics. Clinical Pharmacology & Therapeutics, 77, 468-478.[CrossRef] [PubMed]
|
|
[56]
|
Igel, M., Arnold, K., Niemi, M., Hofmann, U., Schwab, M., Lutjohann, D., et al. (2006) Impact of the SLCO1B1 Polymorphism on the Pharmacokinetics and Lipid-Lowering Efficacy of Multiple-Dose Pravastatin. Clinical Pharmacology & Therapeutics, 79, 419-426.[CrossRef] [PubMed]
|
|
[57]
|
SEARCH Collaborative Group, Link, E., Parish, S., Armitage, J., Bowman, L., Heath, S., Matsuda, F., Gut, I., Lathrop, M. and Collins, R. (2008) SLCO1B1 Variants and Statin-Induced Myopathy—A Genomewide Study. The New England Journal of Medicine, 359, 789-799.[CrossRef]
|
|
[58]
|
Voora, D., Shah, S.H., Spasojevic, I., Ali, S., Reed, C.R., Salisbury, B.A., et al. (2009) The SLCO1B1*5 Genetic Variant Is Associated with Statin-Induced Side Effects. Journal of the American College of Cardiology, 54, 1609-1616.[CrossRef] [PubMed]
|
|
[59]
|
Donnelly, L.A., Doney, A.S.F., Tavendale, R., Lang, C.C., Pearson, E.R., Colhoun, H.M., et al. (2010) Common Nonsynonymous Substitutions in SLCO1B1 Predispose to Statin Intolerance in Routinely Treated Individuals with Type 2 Diabetes: A Go-Darts Study. Clinical Pharmacology & Therapeutics, 89, 210-216.[CrossRef] [PubMed]
|
|
[60]
|
Voora, D. and Ginsburg, G.S. (2012) Clinical Application of Cardiovascular Pharmacogenetics. Journal of the American College of Cardiology, 60, 9-20.[CrossRef] [PubMed]
|
|
[61]
|
Donnelly, L.A., Doney, A.S.F., Dannfald, J., Whitley, A.L., Lang, C.C., Morris, A.D., et al. (2008) A Paucimorphic Variant in the HMG-CoA Reductase Gene Is Associated with Lipid-Lowering Response to Statin Treatment in Diabetes: A GoDARTS Study. Pharmacogenetics and Genomics, 18, 1021-1026.[CrossRef] [PubMed]
|
|
[62]
|
Thompson, J.F., Hyde, C.L., Wood, L.S., Paciga, S.A., Hinds, D.A., Cox, D.R., et al. (2009) Comprehensive Whole-Genome and Candidate Gene Analysis for Response to Statin Therapy in the Treating to New Targets (TNT) Cohort. Circulation: Cardiovascular Genetics, 2, 173-181.[CrossRef] [PubMed]
|
|
[63]
|
Zintzaras, E., Kitsios, G.D., Triposkiadis, F., Lau, J. and Raman, G. (2009) APOE Gene Polymorphisms and Response to Statin Therapy. The Pharmacogenomics Journal, 9, 248-257.[CrossRef] [PubMed]
|
|
[64]
|
Li, Y., Iakoubova, O.A., Shiffman, D., Devlin, J.J., Forrester, J.S. and Superko, H.R. (2010) KIF6 Polymorphism as a Predictor of Risk of Coronary Events and of Clinical Event Reduction by Statin Therapy. The American Journal of Cardiology, 106, 994-998.[CrossRef] [PubMed]
|
|
[65]
|
Iakoubova, O.A., Robertson, M., Tong, C.H., Rowland, C.M., Catanese, J.J., Blauw, G.J., et al. (2010) KIF6 Trp719Arg Polymorphism and the Effect of Statin Therapy in Elderly Patients: Results from the PROSPER Study. European Journal of Cardiovascular Prevention & Rehabilitation, 17, 455-461.[CrossRef] [PubMed]
|
|
[66]
|
Sainz de Medrano Sainz, J.I. and Brunet Serra, M. (2023) Influence of Pharmacogenetics on the Diversity of Response to Statins Associated with Adverse Drug Reactions. Advances in Laboratory Medicine/Avances en Medicina de Laboratorio, 4, 341-352.[CrossRef] [PubMed]
|
|
[67]
|
Tomlinson, B., Hu, M., Lee, V.W.Y., Lui, S.S.H., Chu, T.T.W., Poon, E.W.M., et al. (2010) ABCG2 Polymorphism Is Associated with the Low-Density Lipoprotein Cholesterol Response to Rosuvastatin. Clinical Pharmacology & Therapeutics, 87, 558-562.[CrossRef] [PubMed]
|
|
[68]
|
Mangravite, L.M., Medina, M.W., Cui, J., Pressman, S., Smith, J.D., Rieder, M.J., et al. (2010) Combined Influence of LDLR and HMGCR Sequence Variation on Lipid-Lowering Response to Simvastatin. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1485-1492.[CrossRef] [PubMed]
|
|
[69]
|
Barber, M.J., Mangravite, L.M., Hyde, C.L., Chasman, D.I., Smith, J.D., McCarty, C.A., et al. (2010) Genome-Wide Association of Lipid-Lowering Response to Statins in Combined Study Populations. PLOS ONE, 5, e9763.[CrossRef] [PubMed]
|
|
[70]
|
Xu, M., Zhang, K. and Song, J. (2021) Targeted Therapy in Cardiovascular Disease: A Precision Therapy Era. Frontiers in Pharmacology, 12, Article 623674.[CrossRef] [PubMed]
|
|
[71]
|
Li, X., Wang, Z., Chen, W., Wei, C., Lu, W., Zhou, R., et al. (2025) Construction and Validation of a Machine Learning Model to Predict the Risk of Nasopharyngeal Carcinoma Using Multimodal Clinical Data: A Single-Center, Retrospective Study. Clinical and Translational Oncology.[CrossRef] [PubMed]
|
|
[72]
|
Abad-Santos, F., Aliño, S.F., Borobia, A.M., García-Martín, E., Gassó, P., Maroñas, O., et al. (2024) Developments in Pharmacogenetics, Pharmacogenomics, and Personalized Medicine. Pharmacological Research, 200, Article ID: 107061.[CrossRef] [PubMed]
|
|
[73]
|
Gulilat, M., Lamb, T., Teft, W.A., Wang, J., Dron, J.S., Robinson, J.F., et al. (2019) Targeted Next Generation Sequencing as a Tool for Precision Medicine. BMC Medical Genomics, 12, Article No. 81.[CrossRef] [PubMed]
|
|
[74]
|
Kim, Y., Landstrom, A.P., Shah, S.H., Wu, J.C. and Seidman, C.E. (2024) Gene Therapy in Cardiovascular Disease: Recent Advances and Future Directions in Science: A Science Advisory from the American Heart Association. Circulation, 150, e471-e480.[CrossRef] [PubMed]
|
|
[75]
|
Collins, F.S., Morgan, M. and Patrinos, A. (2003) The Human Genome Project: Lessons from Large-Scale Biology. Science, 300, 286-290.[CrossRef] [PubMed]
|
|
[76]
|
Schuster, S.C. (2007) Next-Generation Sequencing Transforms Today’s Biology. Nature Methods, 5, 16-18.[CrossRef] [PubMed]
|
|
[77]
|
Yadav, D., Patil-Takbhate, B., Khandagale, A., Bhawalkar, J., Tripathy, S. and Khopkar-Kale, P. (2023) Next-Generation Sequencing Transforming Clinical Practice and Precision Medicine. Clinica Chimica Acta, 551, Article ID: 117568.[CrossRef] [PubMed]
|
|
[78]
|
Zehir, A., Benayed, R., Shah, R.H., Syed, A., Middha, S., Kim, H.R., et al. (2017) Erratum: Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients. Nature Medicine, 23, 1004-1004.[CrossRef] [PubMed]
|
|
[79]
|
Antman, E.M. and Loscalzo, J. (2016) Precision Medicine in Cardiology. Nature Reviews Cardiology, 13, 591-602.[CrossRef] [PubMed]
|
|
[80]
|
Ashina, M., Terwindt, G.M., Al-Karagholi, M.A., de Boer, I., Lee, M.J., Hay, D.L., et al. (2021) Migraine: Disease Characterisation, Biomarkers, and Precision Medicine. The Lancet, 397, 1496-1504.[CrossRef] [PubMed]
|
|
[81]
|
Brown, K.D., Campbell, C. and Roberts, G.V. (2020) Precision Medicine in Kidney Disease: The Patient’s View. Nature Reviews Nephrology, 16, 625-627.[CrossRef] [PubMed]
|
|
[82]
|
Chung, W.K., Erion, K., Florez, J.C., Hattersley, A.T., Hivert, M., Lee, C.G., et al. (2020) Precision Medicine in Diabetes: A Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 63, 1671-1693. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Zheng, R., Zhang, L., Parvin, R., Su, L., Chi, J., Shi, K., et al. (2023) Progress and Perspective of CRISPR-Cas9 Technology in Translational Medicine. Advanced Science, 10, Article ID: 2300195.[CrossRef] [PubMed]
|
|
[84]
|
Aherrahrou, R., Guo, L., Nagraj, V.P., Aguhob, A., Hinkle, J., Chen, L., et al. (2020) Genetic Regulation of Atherosclerosis-Relevant Phenotypes in Human Vascular Smooth Muscle Cells. Circulation Research, 127, 1552-1565.[CrossRef] [PubMed]
|
|
[85]
|
Biros, E., Karan, M. and Golledge, J. (2008) Genetic Variation and Atherosclerosis. Current Genomics, 9, 29-42.[CrossRef] [PubMed]
|
|
[86]
|
Vrablik, M., Dlouha, D., Todorovova, V., Stefler, D. and Hubacek, J.A. (2021) Genetics of Cardiovascular Disease: How Far Are We from Personalized CVD Risk Prediction and Management? International Journal of Molecular Sciences, 22, Article 4182.[CrossRef] [PubMed]
|
|
[87]
|
Gray, B. and Behr, E.R. (2016) New Insights into the Genetic Basis of Inherited Arrhythmia Syndromes. Circulation: Cardiovascular Genetics, 9, 569-577.[CrossRef] [PubMed]
|
|
[88]
|
Franceschini, N. and Le, T.H. (2014) Genetics of Hypertension: Discoveries from the Bench to Human Populations. American Journal of Physiology-Renal Physiology, 306, F1-F11.[CrossRef] [PubMed]
|
|
[89]
|
Bray, A.W. and Ballinger, S.W. (2017) Mitochondrial DNA Mutations and Cardiovascular Disease. Current Opinion in Cardiology, 32, 267-274.[CrossRef] [PubMed]
|
|
[90]
|
German, D.M., Mitalipov, S., Mishra, A. and Kaul, S. (2019) Therapeutic Genome Editing in Cardiovascular Diseases. JACC: Basic to Translational Science, 4, 122-131.[CrossRef] [PubMed]
|
|
[91]
|
WHO (2024) The Top 10 Causes of Death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
|
|
[92]
|
He, Z., Luo, J., Lv, M., Li, Q., Ke, W., Niu, X., et al. (2023) Characteristics and Evaluation of Atherosclerotic Plaques: An Overview of State-Of-The-Art Techniques. Frontiers in Neurology, 14, Article 1159288.[CrossRef] [PubMed]
|
|
[93]
|
Zhao, H., Li, Y., He, L., Pu, W., Yu, W., Li, Y., et al. (2020) In Vivo AAV-CRISPR/Cas9-Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation, 141, 67-79.[CrossRef] [PubMed]
|
|
[94]
|
Hershberger, R.E., Hedges, D.J. and Morales, A. (2013) Dilated Cardiomyopathy: The Complexity of a Diverse Genetic Architecture. Nature Reviews Cardiology, 10, 531-547.[CrossRef] [PubMed]
|
|
[95]
|
Nishiyama, T., Zhang, Y., Cui, M., Li, H., Sanchez-Ortiz, E., McAnally, J.R., et al. (2022) Precise Genomic Editing of Pathogenic Mutations in RBM20 Rescues Dilated Cardiomyopathy. Science Translational Medicine, 14, eade1633.[CrossRef] [PubMed]
|
|
[96]
|
Fomin, A., Gärtner, A., Cyganek, L., Tiburcy, M., Tuleta, I., Wellers, L., et al. (2021) Truncated Titin Proteins and Titin Haploinsufficiency Are Targets for Functional Recovery in Human Cardiomyopathy Due to TTN Mutations. Science Translational Medicine, 13, eabd3079.[CrossRef] [PubMed]
|
|
[97]
|
Bazzone, L.E., King, M., MacKay, C.R., Kyawe, P.P., Meraner, P., Lindstrom, D., et al. (2019) A Disintegrin and Metalloproteinase 9 Domain (ADAM9) Is a Major Susceptibility Factor in the Early Stages of Encephalomyocarditis Virus Infection. mBio, 10, e02734-18.[CrossRef] [PubMed]
|
|
[98]
|
Carroll, K.J., Makarewich, C.A., McAnally, J., Anderson, D.M., Zentilin, L., Liu, N., et al. (2015) A Mouse Model for Adult Cardiac-Specific Gene Deletion with CRISPR/Cas9. Proceedings of the National Academy of Sciences of the United States of America, 113, 338-343.[CrossRef] [PubMed]
|
|
[99]
|
Kyriakopoulou, E., Monnikhof, T. and van Rooij, E. (2023) Gene Editing Innovations and Their Applications in Cardiomyopathy Research. Disease Models & Mechanisms, 16, dmm050088.[CrossRef] [PubMed]
|
|
[100]
|
Hanses, U., Kleinsorge, M., Roos, L., Yigit, G., Li, Y., Barbarics, B., et al. (2020) Intronic CRISPR Repair in a Preclinical Model of Noonan Syndrome-Associated Cardiomyopathy. Circulation, 142, 1059-1076.[CrossRef] [PubMed]
|
|
[101]
|
Hu, D., Hu, D., Liu, L., Barr, D., Liu, Y., Balderrabano-Saucedo, N., et al. (2020) Identification, Clinical Manifestation and Structural Mechanisms of Mutations in AMPK Associated Cardiac Glycogen Storage Disease. EBioMedicine, 54, Article ID: 102723.[CrossRef] [PubMed]
|
|
[102]
|
Xie, C., Zhang, Y., Song, L., Luo, J., Qi, W., Hu, J., et al. (2016) Genome Editing with CRISPR/Cas9 in Postnatal Mice Corrects PRKAG2 Cardiac Syndrome. Cell Research, 26, 1099-1111.[CrossRef] [PubMed]
|
|
[103]
|
Pan, X., Philippen, L., Lahiri, S.K., Lee, C., Park, S.H., Word, T.A., et al. (2018) In Vivo RYR2 Editing Corrects Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation Research, 123, 953-963.[CrossRef] [PubMed]
|
|
[104]
|
Dave, J., Raad, N., Mittal, N., Zhang, L., Fargnoli, A., Oh, J.G., et al. (2022) Gene Editing Reverses Arrhythmia Susceptibility in Humanized PLN-R14del Mice: Modelling a European Cardiomyopathy with Global Impact. Cardiovascular Research, 118, 3140-3150.[CrossRef] [PubMed]
|
|
[105]
|
Bushby, K., Finkel, R., Birnkrant, D.J., Case, L.E., Clemens, P.R., Cripe, L., et al. (2010) Diagnosis and Management of Duchenne Muscular Dystrophy, Part 1: Diagnosis, and Pharmacological and Psychosocial Management. The Lancet Neurology, 9, 77-93.[CrossRef] [PubMed]
|
|
[106]
|
Fayssoil, A., Nardi, O., Orlikowski, D. and Annane, D. (2009) Cardiomyopathy in Duchenne Muscular Dystrophy: Pathogenesis and Therapeutics. Heart Failure Reviews, 15, 103-107.[CrossRef] [PubMed]
|
|
[107]
|
Li, J., Wang, K., Zhang, Y., Qi, T., Yuan, J., Zhang, L., et al. (2021) Therapeutic Exon Skipping through a CRISPR-Guided Cytidine Deaminase Rescues Dystrophic Cardiomyopathy in Vivo. Circulation, 144, 1760-1776.[CrossRef] [PubMed]
|
|
[108]
|
Min, Y., Li, H., Rodriguez-Caycedo, C., Mireault, A.A., Huang, J., Shelton, J.M., et al. (2019) CRISPR-Cas9 Corrects Duchenne Muscular Dystrophy Exon 44 Deletion Mutations in Mice and Human Cells. Science Advances, 5, eaav4324.[CrossRef] [PubMed]
|
|
[109]
|
Singh, D.B. (2019) The Impact of Pharmacogenomics in Personalized Medicine. In: Silva, A.C., Moreira, J.N., Lobo, J.M.S. and Almeida, H., Eds., Current Applications of Pharmaceutical Biotechnology, Springer, 369-394.[CrossRef] [PubMed]
|
|
[110]
|
Naik, K., Goyal, R.K., Foschini, L., Chak, C.W., Thielscher, C., Zhu, H., et al. (2024) Current Status and Future Directions: The Application of Artificial Intelligence/Machine Learning for Precision Medicine. Clinical Pharmacology & Therapeutics, 115, 673-686.[CrossRef] [PubMed]
|
|
[111]
|
Cavallari, L.H. and Weitzel, K. (2015) Pharmacogenomics in Cardiology—Genetics and Drug Response: 10 Years of Progress. Future Cardiology, 11, 281-286.[CrossRef] [PubMed]
|
|
[112]
|
Sibbing, D., Aradi, D., Alexopoulos, D., ten Berg, J., Bhatt, D.L., Bonello, L., et al. (2019) Updated Expert Consensus Statement on Platelet Function and Genetic Testing for Guiding P2Y12 Receptor Inhibitor Treatment in Percutaneous Coronary Intervention. JACC: Cardiovascular Interventions, 12, 1521-1537.[CrossRef] [PubMed]
|
|
[113]
|
Kitzmiller, J., Mikulik, E., Dauki, A., Mukherjee, C. and Luzum, J. (2016) Pharmacogenomics of Statins: Understanding Susceptibility to Adverse Effects. Pharmacogenomics and Personalized Medicine, 9, 97-106.[CrossRef] [PubMed]
|
|
[114]
|
Bonowicz, K., Jerka, D., Piekarska, K., Olagbaju, J., Stapleton, L., Shobowale, M., et al. (2025) CRISPR-Cas9 in Cardiovascular Medicine: Unlocking New Potential for Treatment. Cells, 14, Article 131.[CrossRef] [PubMed]
|
|
[115]
|
Deiman, F.E., Bomer, N., van der Meer, P. and Grote Beverborg, N. (2022) Review: Precision Medicine Approaches for Genetic Cardiomyopathy: Targeting Phospholamban R14del. Current Heart Failure Reports, 19, 170-179.[CrossRef] [PubMed]
|
|
[116]
|
Min, Y., Bassel-Duby, R. and Olson, E.N. (2019) CRISPR Correction of Duchenne Muscular Dystrophy. Annual Review of Medicine, 70, 239-255.[CrossRef] [PubMed]
|
|
[117]
|
Zhu, P., Wu, F., Mosenson, J., Zhang, H., He, T. and Wu, W. (2017) CRISPR/Cas9-Mediated Genome Editing Corrects Dystrophin Mutation in Skeletal Muscle Stem Cells in a Mouse Model of Muscle Dystrophy. Molecular Therapy—Nucleic Acids, 7, 31-41.[CrossRef] [PubMed]
|
|
[118]
|
Ali, A., Rahman, M.Y. and Sheikh, D. (2024) The Role of CRISPR/Cas9 in Revolutionizing Duchenne’s Muscular Dystrophy Treatment: Opportunities and Obstacles. Global Medical Genetics, 11, 349-357.[CrossRef] [PubMed]
|
|
[119]
|
Pirmohamed, M., Burnside, G., Eriksson, N., Jorgensen, A.L., Toh, C.H., Nicholson, T., et al. (2013) A Randomized Trial of Genotype-Guided Dosing of Warfarin. New England Journal of Medicine, 369, 2294-2303.[CrossRef] [PubMed]
|
|
[120]
|
Syn, N.L., Wong, A.L., Lee, S., Teoh, H., Yip, J.W.L., Seet, R.C., et al. (2018) Genotype-Guided versus Traditional Clinical Dosing of Warfarin in Patients of Asian Ancestry: A Randomized Controlled Trial. BMC Medicine, 16, Article No. 104.[CrossRef] [PubMed]
|
|
[121]
|
Li, Q., Wang, J., Tao, H., Zhou, Q., Chen, J., Fu, B., et al. (2019) The Prediction Model of Warfarin Individual Maintenance Dose for Patients Undergoing Heart Valve Replacement, Based on the Back Propagation Neural Network. Clinical Drug Investigation, 40, 41-53.[CrossRef] [PubMed]
|
|
[122]
|
Shah, S.J., Katz, D.H., Selvaraj, S., Burke, M.A., Yancy, C.W., Gheorghiade, M., et al. (2015) Phenomapping for Novel Classification of Heart Failure with Preserved Ejection Fraction. Circulation, 131, 269-279.[CrossRef] [PubMed]
|
|
[123]
|
Shah, S.J. (2017) Precision Medicine for Heart Failure with Preserved Ejection Fraction: An Overview. Journal of Cardiovascular Translational Research, 10, 233-244.[CrossRef] [PubMed]
|
|
[124]
|
Przewlocka-Kosmala, M., Marwick, T.H., Dabrowski, A. and Kosmala, W. (2019) Contribution of Cardiovascular Reserve to Prognostic Categories of Heart Failure with Preserved Ejection Fraction: A Classification Based on Machine Learning. Journal of the American Society of Echocardiography, 32, 604-615.e6.[CrossRef] [PubMed]
|
|
[125]
|
Khan, M.R., Haider, Z.M., Hussain, J., Malik, F.H., Talib, I. and Abdullah, S. (2024) Comprehensive Analysis of Cardiovascular Diseases: Symptoms, Diagnosis, and AI Innovations. Bioengineering, 11, Article 1239.[CrossRef] [PubMed]
|