[1]
|
Hou, K., Wu, Z.X., Chen, X.Y., Wang, J.Q., Zhang, D., Xiao, C., et al. (2022) Microbiota in Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 135. https://doi.org/10.1038/s41392-022-00974-4
|
[2]
|
Mhanna, A., Martini, N., Hmaydoosh, G., Hamwi, G., Jarjanazi, M., Zaifah, G., et al. (2024) The Correlation between Gut Microbiota and Both Neurotransmitters and Mental Disorders: A Narrative Review. Medicine, 103, e37114. https://doi.org/10.1097/md.0000000000037114
|
[3]
|
Fuhri Snethlage, C.M., Nieuwdorp, M. and Hanssen, N.M.J. (2021) Faecal Microbiota Transplantation in Endocrine Diseases and Obesity. Best Practice & Research Clinical Endocrinology & Metabolism, 35, Article ID: 101483. https://doi.org/10.1016/j.beem.2020.101483
|
[4]
|
Bicknell, B., Liebert, A., Borody, T., Herkes, G., McLachlan, C. and Kiat, H. (2023) Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. International Journal of Molecular Sciences, 24, Article 9577. https://doi.org/10.3390/ijms24119577
|
[5]
|
Nicco, C., Paule, A., Konturek, P. and Edeas, M. (2020) From Donor to Patient: Collection, Preparation and Cryopreservation of Fecal Samples for Fecal Microbiota Transplantation. Diseases, 8, Article 9. https://doi.org/10.3390/diseases8020009
|
[6]
|
Hou, S., Yu, J., Li, Y., Zhao, D. and Zhang, Z. (2025) Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. Advanced Science, 12, e2413197. https://doi.org/10.1002/advs.202413197
|
[7]
|
Kang, D.W., Adams, J.B., Coleman, D.M., Pollard, E.L., Maldonado, J., McDonough-Means, S., et al. (2019) Long-Term Benefit of Microbiota Transfer Therapy on Autism Symptoms and Gut Microbiota. Scientific Reports, 9, Article No. 5821. https://doi.org/10.1038/s41598-019-42183-0
|
[8]
|
Liu, H., Li, J., Yuan, J., Huang, J. and Xu, Y. (2023) Fecal Microbiota Transplantation as a Therapy for Treating Ulcerative Colitis: An Overview of Systematic Reviews. BMC Microbiology, 23, Article No. 371. https://doi.org/10.1186/s12866-023-03107-1
|
[9]
|
Zecheng, L., Donghai, L., Runchuan, G., Yuan, Q., Qi, J., Yijia, Z., et al. (2023) Fecal Microbiota Transplantation in Obesity Metabolism: A Meta Analysis and Systematic Review. Diabetes Research and Clinical Practice, 202, Article ID: 110803. https://doi.org/10.1016/j.diabres.2023.110803
|
[10]
|
Yang, R., Chen, Z. and Cai, J. (2023) Fecal Microbiota Transplantation: Emerging Applications in Autoimmune Diseases. Journal of Autoimmunity, 141, Article ID: 103038. https://doi.org/10.1016/j.jaut.2023.103038
|
[11]
|
Mehra, A., Arora, G., Sahni, G., Kaur, M., Singh, H., Singh, B., et al. (2023) Gut Microbiota and Autism Spectrum Disorder: From Pathogenesis to Potential Therapeutic Perspectives. Journal of Traditional and Complementary Medicine, 13, 135-149. https://doi.org/10.1016/j.jtcme.2022.03.001
|
[12]
|
Biazzo, M. and Deidda, G. (2022) Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. Journal of Clinical Medicine, 11, Article 4119. https://doi.org/10.3390/jcm11144119
|
[13]
|
Lin, D.J., Hu, D.X., Wu, Q.T., Huang, L.G., Lin, Z.H., Xu, J.T., et al. (2025) Analysis of Influencing Factors of Washed Microbiota Transplantation in Treating Patients with Metabolic Syndrome. Frontiers in Nutrition, 12, Article 1508381. https://doi.org/10.3389/fnut.2025.1508381
|
[14]
|
Wang, Y., Zhang, S., Borody, T.J. and Zhang, F. (2022) Encyclopedia of Fecal Microbiota Transplantation: A Review of Effectiveness in the Treatment of 85 Diseases. Chinese Medical Journal, 135, 1927-1939. https://doi.org/10.1097/cm9.0000000000002339
|
[15]
|
Zhang, X., Ishikawa, D., Nomura, K., Fukuda, N., Haraikawa, M., Haga, K., et al. (2022) Donor Screening Revisions of Fecal Microbiota Transplantation in Patients with Ulcerative Colitis. Journal of Clinical Medicine, 11, Article 1055. https://doi.org/10.3390/jcm11041055
|
[16]
|
Bénard, M.V., de Bruijn, C.M.A., Fenneman, A.C., Wortelboer, K., Zeevenhoven, J., Rethans, B., et al. (2022) Challenges and Costs of Donor Screening for Fecal Microbiota Transplantations. PLOS ONE, 17, e0276323. https://doi.org/10.1371/journal.pone.0276323
|
[17]
|
Ding, X., Zhou, J., Chai, Y., Yan, Z., Liu, X., Dong, Y., et al. (2022) A Metagenomic Study of the Gut Microbiome in PTB’s Disease. Microbes and Infection, 24, Article ID: 104893. https://doi.org/10.1016/j.micinf.2021.104893
|
[18]
|
Mousa, W.K., Chehadeh, F. and Husband, S. (2022) Recent Advances in Understanding the Structure and Function of the Human Microbiome. Frontiers in Microbiology, 13, Article 825338. https://doi.org/10.3389/fmicb.2022.825338
|
[19]
|
Puig-Castellví, F., Pacheco-Tapia, R., Deslande, M., Jia, M., Andrikopoulos, P., Chechi, K., et al. (2023) Advances in the Integration of Metabolomics and Metagenomics for Human Gut Microbiome and Their Clinical Applications. TrAC Trends in Analytical Chemistry, 167, Article ID: 117248. https://doi.org/10.1016/j.trac.2023.117248
|
[20]
|
Liu, T., Sun, Z., Yang, Z. and Qiao, X. (2023) Microbiota-Derived Short-Chain Fatty Acids and Modulation of Host-Derived Peptides Formation: Focused on Host Defense Peptides. Biomedicine & Pharmacotherapy, 162, Article ID: 114586. https://doi.org/10.1016/j.biopha.2023.114586
|
[21]
|
Wang, J.W., Kuo, C.H., Kuo, F.C., Wang, Y.K., Hsu, W.H., Yu, F.J., et al. (2019) Fecal Microbiota Transplantation: Review and Update. Journal of the Formosan Medical Association, 118, S23-S31. https://doi.org/10.1016/j.jfma.2018.08.011
|
[22]
|
Silen, E. and Kauvar, B. (1958) Fecal Enema as an Adjunct in the Treatment of Pseudomembranous. Surgery, 44, 854-859.
|
[23]
|
Tian, H., Wang, X., Fang, Z., Li, L., Wu, C., Bi, D., et al. (2024) Fecal Microbiota Transplantation in Clinical Practice: Present Controversies and Future Prospects. hLife, 2, 269-283. https://doi.org/10.1016/j.hlife.2024.01.006
|
[24]
|
Hoh, J.M. and Dhanashree, B. (2017) Antifungal Effect of Cow’s Urine Distillate on Candida Species. Journal of Ayurveda and Integrative Medicine, 8, 233-237. https://doi.org/10.1016/j.jaim.2017.04.009
|
[25]
|
Brown, K.A., Khanafer, N., Daneman, N. and Fisman, D.N. (2013) Meta-Analysis of Antibiotics and the Risk of Community-Associated Clostridium Difficile Infection. Antimicrobial Agents and Chemotherapy, 57, 2326-2332. https://doi.org/10.1128/aac.02176-12
|
[26]
|
Borody, T.J., George, L., Andrews, P., Brandl, S., Noonan, S., Cole, P., et al. (1989) Bowel-Flora Alteration: A Potential Cure for Inflammatory Bowel Disease and Irritable Bowel Syndrome? Medical Journal of Australia, 150, 604-604. https://doi.org/10.5694/j.1326-5377.1989.tb136704.x
|
[27]
|
Chen, C.C. and Chiu, C.H. (2022) Current and Future Applications of Fecal Microbiota Transplantation for Children. Biomedical Journal, 45, 11-18. https://doi.org/10.1016/j.bj.2021.11.004
|
[28]
|
Boicean, A., Birlutiu, V., Ichim, C., Anderco, P. and Birsan, S. (2023) Fecal Microbiota Transplantation in Inflammatory Bowel Disease. Biomedicines, 11, Article 1016. https://doi.org/10.3390/biomedicines11041016
|
[29]
|
Sekirov, I., Russell, S.L., Antunes, L.C.M. and Finlay, B.B. (2010) Gut Microbiota in Health and Disease. Physiological Reviews, 90, 859-904. https://doi.org/10.1152/physrev.00045.2009
|
[30]
|
Pargin, E., Roach, M.J., Skye, A., Papudeshi, B., Inglis, L.K., Mallawaarachchi, V., et al. (2023) The Human Gut Virome: Composition, Colonization, Interactions, and Impacts on Human Health. Frontiers in Microbiology, 14, Article 963173. https://doi.org/10.3389/fmicb.2023.963173
|
[31]
|
Emencheta, S.C., Olovo, C.V., Eze, O.C., Kalu, C.F., Berebon, D.P., Onuigbo, E.B., et al. (2023) The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics, 15, Article 2416. https://doi.org/10.3390/pharmaceutics15102416
|
[32]
|
Nayfach, S., Roux, S., Seshadri, R., Udwary, D., Varghese, N., Schulz, F., et al. (2021) A Genomic Catalog of Earth’s Microbiomes. Nature Biotechnology, 39, 499-509. https://doi.org/10.1038/s41587-020-0718-6
|
[33]
|
Średnicka, P., Roszko, M.Ł., Popowski, D., Kowalczyk, M., Wójcicki, M., Emanowicz, P., et al. (2023) Effect of in Vitro Cultivation on Human Gut Microbiota Composition Using 16S rDNA Amplicon Sequencing and Metabolomics Approach. Scientific Reports, 13, Article No. 3026. https://doi.org/10.1038/s41598-023-29637-2
|
[34]
|
Winston, J.A., Suchodolski, J.S., Gaschen, F., Busch, K., Marsilio, S., Costa, M.C., et al. (2024) Clinical Guidelines for Fecal Microbiota Transplantation in Companion Animals. Advances in Small Animal Care, 5, 79-107. https://doi.org/10.1016/j.yasa.2024.06.006
|
[35]
|
Zain, N.M.M., ter Linden, D., Lilley, A.K., Royall, P.G., Tsoka, S., Bruce, K.D., et al. (2022) Design and Manufacture of a Lyophilised Faecal Microbiota Capsule Formulation to GMP Standards. Journal of Controlled Release, 350, 324-331. https://doi.org/10.1016/j.jconrel.2022.08.012
|
[36]
|
Wang, X., Zhao, D., Bi, D., Li, L., Tian, H., Yin, F., et al. (2025) Fecal Microbiota Transplantation: Transitioning from Chaos and Controversial Realm to Scientific Precision Era. Science Bulletin, 70, 970-985. https://doi.org/10.1016/j.scib.2025.01.029
|
[37]
|
Novelle, M.G., Naranjo-Martínez, B., López-Cánovas, J.L. and Díaz-Ruiz, A. (2025) Fecal Microbiota Transplantation, a Tool to Transfer Healthy Longevity. Ageing Research Reviews, 103, Article 102585. https://doi.org/10.1016/j.arr.2024.102585
|
[38]
|
Papanicolas, L.E., Wang, Y., Choo, J.M., Gordon, D.L., Wesselingh, S.L. and Rogers, G.B. (2019) Optimisation of a Propidium Monoazide Based Method to Determine the Viability of Microbes in Faecal Slurries for Transplantation. Journal of Microbiological Methods, 156, 40-45. https://doi.org/10.1016/j.mimet.2018.12.001
|
[39]
|
Pittayanon, R., Lau, J.T., Leontiadis, G.I., Tse, F., Yuan, Y., Surette, M., et al. (2020) Differences in Gut Microbiota in Patients with vs without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology, 158, 930-946.e1. https://doi.org/10.1053/j.gastro.2019.11.294
|
[40]
|
Rees, N.P., Shaheen, W., Quince, C., Tselepis, C., Horniblow, R.D., Sharma, N., et al. (2022) Systematic Review of Donor and Recipient Predictive Biomarkers of Response to Faecal Microbiota Transplantation in Patients with Ulcerative Colitis. EBioMedicine, 81, Article ID: 104088. https://doi.org/10.1016/j.ebiom.2022.104088
|
[41]
|
Moayyedi, P., Surette, M.G., Kim, P.T., Libertucci, J., Wolfe, M., Onischi, C., et al. (2015) Fecal Microbiota Transplantation Induces Remission in Patients with Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology, 149, 102-109.e6. https://doi.org/10.1053/j.gastro.2015.04.001
|
[42]
|
Rossen, N.G., Fuentes, S., van der Spek, M.J., Tijssen, J.G., Hartman, J.H.A., Duflou, A., et al. (2015) Findings from a Randomized Controlled Trial of Fecal Transplantation for Patients with Ulcerative Colitis. Gastroenterology, 149, 110-118.e4. https://doi.org/10.1053/j.gastro.2015.03.045
|
[43]
|
Paramsothy, S., Kamm, M.A., Kaakoush, N.O., Walsh, A.J., van den Bogaerde, J., Samuel, D., et al. (2017) Multidonor Intensive Faecal Microbiota Transplantation for Active Ulcerative Colitis: A Randomised Placebo-Controlled Trial. The Lancet, 389, 1218-1228. https://doi.org/10.1016/s0140-6736(17)30182-4
|
[44]
|
Sood, A., Mahajan, R., Singh, A., Midha, V., Mehta, V., Narang, V., et al. (2019) Role of Faecal Microbiota Transplantation for Maintenance of Remission in Patients with Ulcerative Colitis: A Pilot Study. Journal of Crohn’s and Colitis, 13, 1311-1317. https://doi.org/10.1093/ecco-jcc/jjz060
|
[45]
|
Sokol, H., Landman, C., Seksik, P., Berard, L., Montil, M., Nion-Larmurier, I., et al. (2020) Fecal Microbiota Transplantation to Maintain Remission in Crohn’s Disease: A Pilot Randomized Controlled Study. Microbiome, 8, Article No. 12. https://doi.org/10.1186/s40168-020-0792-5
|
[46]
|
Pai, N., Popov, J., Hill, L., Hartung, E., Grzywacz, K., Moayyedi, P., et al. (2021) Results of the First Pilot Randomized Controlled Trial of Fecal Microbiota Transplant in Pediatric Ulcerative Colitis: Lessons, Limitations, and Future Prospects. Gastroenterology, 161, 388-393.e3. https://doi.org/10.1053/j.gastro.2021.04.067
|
[47]
|
Kong, L., Lloyd-Price, J., Vatanen, T., Seksik, P., Beaugerie, L., Simon, T., et al. (2021) Linking Strain Engraftment in Fecal Microbiota Transplantation with Maintenance of Remission in Crohn’s Disease. Gastroenterology, 159, 2193-2202.e5. https://doi.org/10.1053/j.gastro.2020.08.045
|
[48]
|
Paramsothy, S., Nielsen, S., Kamm, M.A., Deshpande, N.P., Faith, J.J., Clemente, J.C., et al. (2019) Specific Bacteria and Metabolites Associated with Response to Fecal Microbiota Transplantation in Patients with Ulcerative Colitis. Gastroenterology, 156, 1440-1454.e2. https://doi.org/10.1053/j.gastro.2018.12.001
|
[49]
|
Jangi, S., Gandhi, R., Cox, L.M., Li, N., von Glehn, F., Yan, R., et al. (2016) Alterations of the Human Gut Microbiome in Multiple Sclerosis. Nature Communications, 7, Article No. 12015. https://doi.org/10.1038/ncomms12015
|
[50]
|
Ghezzi, L., Cantoni, C., Pinget, G.V., Zhou, Y. and Piccio, L. (2021) Targeting the Gut to Treat Multiple Sclerosis. Journal of Clinical Investigation, 131, 1-13. https://doi.org/10.1172/jci143774
|
[51]
|
Engen, P.A., Zaferiou, A., Rasmussen, H., Naqib, A., Green, S.J., Fogg, L.F., et al. (2020) Single-Arm, Non-Randomized, Time Series, Single-Subject Study of Fecal Microbiota Transplantation in Multiple Sclerosis. Frontiers in Neurology, 11, Article 978. https://doi.org/10.3389/fneur.2020.00978
|
[52]
|
Smolen, J.S., Aletaha, D. and McInnes, I.B. (2016) Rheumatoid Arthritis. The Lancet, 388, 2023-2038. https://doi.org/10.1016/s0140-6736(16)30173-8
|
[53]
|
Alpizar-Rodriguez, D., Lesker, T.R., Gronow, A., Gilbert, B., Raemy, E., Lamacchia, C., et al. (2019) Prevotella Copri in Individuals at Risk for Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 78, 590-593. https://doi.org/10.1136/annrheumdis-2018-214514
|
[54]
|
Zeng, J., Peng, L., Zheng, W., Huang, F., Zhang, N., Wu, D., et al. (2021) Fecal Microbiota Transplantation for Rheumatoid Arthritis: A Case Report. Clinical Case Reports, 9, 906-909. https://doi.org/10.1002/ccr3.3677
|
[55]
|
Durcan, L., O’Dwyer, T. and Petri, M. (2019) Management Strategies and Future Directions for Systemic Lupus Erythematosus in Adults. The Lancet, 393, 2332-2343. https://doi.org/10.1016/s0140-6736(19)30237-5
|
[56]
|
Tomofuji, Y., Maeda, Y., Oguro-Igashira, E., Kishikawa, T., Yamamoto, K., Sonehara, K., et al. (2021) Metagenome-Wide Association Study Revealed Disease-Specific Landscape of the Gut Microbiome of Systemic Lupus Erythematosus in Japanese. Annals of the Rheumatic Diseases, 80, 1575-1583. https://doi.org/10.1136/annrheumdis-2021-220687
|
[57]
|
Zhang, Y., Liu, Q., Yu, Y., Wang, M., Wen, C. and He, Z. (2020) Early and Short-Term Interventions in the Gut Microbiota Affects Lupus Severity, Progression, and Treatment in MRL/lpr Mice. Frontiers in Microbiology, 11, Article 628. https://doi.org/10.3389/fmicb.2020.00628
|
[58]
|
Quattrin, T., Haller, M.J., Steck, A.K., Felner, E.I., Li, Y., Xia, Y., et al. (2020) Golimumab and Beta-Cell Function in Youth with New-Onset Type 1 Diabetes. New England Journal of Medicine, 383, 2007-2017. https://doi.org/10.1056/nejmoa2006136
|
[59]
|
de Groot, P., Nikolic, T., Pellegrini, S., Sordi, V., Imangaliyev, S., Rampanelli, E., et al. (2021) Faecal Microbiota Transplantation Halts Progression of Human New-Onset Type 1 Diabetes in a Randomised Controlled Trial. Gut, 70, 92-105. https://doi.org/10.1136/gutjnl-2020-322630
|
[60]
|
Kragsnaes, M.S., Sødergren, S.T., Kjeldsen, J., Horn, H.C., Munk, H.L., Pedersen, J.K., et al. (2021) Experiences and Perceptions of Patients with Psoriatic Arthritis Participating in a Trial of Faecal Microbiota Transplantation: A Nested Qualitative Study. BMJ Open, 11, e039471. https://doi.org/10.1136/bmjopen-2020-039471
|
[61]
|
Fredrik, B. (2015) Insights into the Role of the Microbiome in Obesity and Type 2 Diabetes. Diabetes Care, 38, 159-165.
|
[62]
|
Charach, G., Rabinovich, A., Argov, O., Weintraub, M. and Rabinovich, P. (2012) The Role of Bile Acid Excretion in Atherosclerotic Coronary Artery Disease. International Journal of Vascular Medicine, 2012, 1-3. https://doi.org/10.1155/2012/949672
|
[63]
|
Lempainen, J., Laine, A., Hammais, A., Toppari, J., Simell, O., Veijola, R., et al. (2015) Non-HLA Gene Effects on the Disease Process of Type 1 Diabetes: From HLA Susceptibility to Overt Disease. Journal of Autoimmunity, 61, 45-53. https://doi.org/10.1016/j.jaut.2015.05.005
|
[64]
|
de Clercq, N.C., Frissen, M.N., Davids, M., Groen, A.K. and Nieuwdorp, M. (2019) Weight Gain after Fecal Microbiota Transplantation in a Patient with Recurrent Underweight Following Clinical Recovery from Anorexia Nervosa. Psychotherapy and Psychosomatics, 88, 58-60. https://doi.org/10.1159/000495044
|
[65]
|
Tilg, H. and Kaser, A. (2011) Gut Microbiome, Obesity, and Metabolic Dysfunction. Journal of Clinical Investigation, 121, 2126-2132. https://doi.org/10.1172/jci58109
|
[66]
|
van Elburg, R.M., Uil, J.J., Kokke, F.T.M., Mulder, A.M., van de Broek, W.G.M., Mulder, C.J.J., et al. (1995) Repeatability of the Sugar-Absorption Test, Using Lactulose and Mannitol, for Measuring Intestinal Permeability for Sugars. Journal of Pediatric Gastroenterology and Nutrition, 20, 184-188. https://doi.org/10.1002/j.1536-4801.1995.tb11532.x
|
[67]
|
Aron-Wisnewsky, J., Clément, K. and Nieuwdorp, M. (2019) Fecal Microbiota Transplantation: A Future Therapeutic Option for Obesity/Diabetes? Current Diabetes Reports, 19, Article No. 51. https://doi.org/10.1007/s11892-019-1180-z
|
[68]
|
Kootte, R.S., Levin, E., Stroes, E.S.G., Groen, A.K., Nieuwdorp, M., Smits, L.P., et al. (2017) Clinical and Translational Report Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metabolism, 26, 611-619.
|
[69]
|
Witjes, J.J., Smits, L.P., Pekmez, C.T., Prodan, A., Meijnikman, A.S., Troelstra, M.A., et al. (2020) Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals with Steatohepatitis. Hepatology Communications, 4, 1578-1590. https://doi.org/10.1002/hep4.1601
|
[70]
|
Singh, R., Nieuwdorp, M., ten Berge, I.J.M., Bemelman, F.J. and Geerlings, S.E. (2014) The Potential Beneficial Role of Faecal Microbiota Transplantation in Diseases Other than Clostridium Difficile Infection. Clinical Microbiology and Infection, 20, 1119-1125. https://doi.org/10.1111/1469-0691.12799
|
[71]
|
Rinott, E., Youngster, I., Yaskolka Meir, A., Tsaban, G., Zelicha, H., Kaplan, A., et al. (2021) Effects of Diet-Modulated Autologous Fecal Microbiota Transplantation on Weight Regain. Gastroenterology, 160, 158-173.e10. https://doi.org/10.1053/j.gastro.2020.08.041
|
[72]
|
de Groot, P., Scheithauer, T., Bakker, G.J., Prodan, A., Levin, E., Khan, M.T., et al. (2020) Donor Metabolic Characteristics Drive Effects of Faecal Microbiota Transplantation on Recipient Insulin Sensitivity, Energy Expenditure and Intestinal Transit Time. Gut, 69, 502-512. https://doi.org/10.1136/gutjnl-2019-318320
|
[73]
|
Vrieze, A., Out, C., Fuentes, S., Jonker, L., Reuling, I., Kootte, R.S., et al. (2013) Vancomycin Decreases Insulin Sensitivity and Is Associated with Alterations in Intestinal Microbiota and Bile Acid Composition in Obese Subjects with Metabolic Syndrome. Journal of Hepatology, 60, 824-831.
|
[74]
|
Vrieze, A., Nood, E.V., Holleman, F., Salojärvi, J., et al. (2012) Transfer of Intestinal Microbiota from Lean Donors Increases Insulin Sensitivity in Individuals with Metabolic Syndrome. Gastroenterology, 143, 913-916.
|
[75]
|
Yu, E.W., Gao, L., Stastka, P., et al. (2020) Fecal Microbiota Transplantation for the Improvement of Metabolism in Obesity: The FMT-TRIM Double-Blind Placebo-Controlled Pilot Trial. PLOS Medicine, 17, e1003051.
|
[76]
|
Wu, M., Chen, X., Lu, Q. and Yao, X. (2024) Fecal Microbiota Transplantation for the Treatment of Chronic Inflammatory Skin Diseases. Heliyon, 10, e37432.
|
[77]
|
Mahmud, M.R., Akter, S., Tamanna, S.K., Mazumder, L., Esti, I.Z., Banerjee, S., et al. (2022) Impact of Gut Microbiome on Skin Health: Gut-Skin Axis Observed through the Lenses of Therapeutics and Skin Diseases. Gut Microbes, 14, Article ID: 2096995. https://doi.org/10.1080/19490976.2022.2096995
|
[78]
|
Marrs, T., Jo, J., Perkin, M.R., Rivett, D.W., Witney, A.A., Bruce, K.D., et al. (2021) Gut Microbiota Development during Infancy: Impact of Introducing Allergenic Foods. Journal of Allergy and Clinical Immunology, 147, 613-621.e9. https://doi.org/10.1016/j.jaci.2020.09.042
|
[79]
|
Melli, L.C.F.L., Carmo-Rodrigues, M.S.D., Araújo-Filho, H.B., Mello, C.S., Tahan, S., Pignatari, A.C.C., et al. (2020) Gut Microbiota of Children with Atopic Dermatitis: Controlled Study in the Metropolitan Region of São Paulo, Brazil. Allergologia et Immunopathologia, 48, 107-115. https://doi.org/10.1016/j.aller.2019.08.004
|
[80]
|
Jiang, X., Liu, Z., Ma, Y., Miao, L., Zhao, K., Wang, D., et al. (2023) Fecal Microbiota Transplantation Affects the Recovery of Ad-Skin Lesions and Enhances Gut Microbiota Homeostasis. International Immunopharmacology, 118, Article ID: 110005. https://doi.org/10.1016/j.intimp.2023.110005.
|
[81]
|
Xiao, S., Zhang, G., Jiang, C., Liu, X., Wang, X., Li, Y., et al. (2021) Deciphering Gut Microbiota Dysbiosis and Corresponding Genetic and Metabolic Dysregulation in Psoriasis Patients Using Metagenomics Sequencing. Frontiers in Cellular and Infection Microbiology, 11, Article 605825. https://doi.org/10.3389/fcimb.2021.605825
|
[82]
|
Sikora, M., Stec, A., Chrabaszcz, M., Knot, A., Waskiel-Burnat, A., Rakowska, A., et al. (2020) Gut Microbiome in Psoriasis: An Updated Review. Pathogens, 9, Article 463. https://doi.org/10.3390/pathogens9060463
|
[83]
|
Zákostelská, Z., Málková, J., Klimešová, K., Rossmann, P., Hornová, M., Novosádová, I., et al. (2016) Intestinal Microbiota Promotes Psoriasis-Like Skin Inflammation by Enhancing Th17 Response. PLOS ONE, 11, e0159539. https://doi.org/10.1371/journal.pone.0159539
|
[84]
|
Zanvit, P., Konkel, J.E., Jiao, X., Kasagi, S., Zhang, D., Wu, R., et al. (2015) Antibiotics in Neonatal Life Increase Murine Susceptibility to Experimental Psoriasis. Nature Communications, 6, Article No. 8424. https://doi.org/10.1038/ncomms9424
|
[85]
|
Moreno-Arrones, O.M., Serrano-Villar, S., Perez-Brocal, V., Saceda-Corralo, D., Morales-Raya, C., Rodrigues-Barata, R., et al. (2019) Analysis of the Gut Microbiota in Alopecia Areata: Identification of Bacterial Biomarkers. Journal of the European Academy of Dermatology and Venereology, 34, 400-405. https://doi.org/10.1111/jdv.15885
|
[86]
|
Moon, J., Yoon, C.H., Choi, S.H. and Kim, M.K. (2020) Can Gut Microbiota Affect Dry Eye Syndrome? International Journal of Molecular Sciences, 21, Article 8443. https://doi.org/10.3390/ijms21228443
|
[87]
|
Schaefer, L., Trujillo-Vargas, C.M., Midani, F.S., Pflugfelder, S.C., Britton, R.A. and de Paiva, C.S. (2022) Gut Microbiota from Sjögren Syndrome Patients Causes Decreased T Regulatory Cells in the Lymphoid Organs and Desiccation-Induced Corneal Barrier Disruption in Mice. Frontiers in Medicine, 9, Article 852918. https://doi.org/10.3389/fmed.2022.852918
|
[88]
|
de Paiva, C.S., Jones, D.B., Stern, M.E., Bian, F., Moore, Q.L., Corbiere, S., et al. (2016) Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome. Scientific Reports, 6, Article No. 23561. https://doi.org/10.1038/srep23561
|
[89]
|
Mendez, R., Watane, A., Farhangi, M., Cavuoto, K.M., Leith, T., Budree, S., et al. (2020) Gut Microbial Dysbiosis in Individuals with Sjögren’s Syndrome. Microbial Cell Factories, 19, Article No. 90. https://doi.org/10.1186/s12934-020-01348-7
|
[90]
|
Mandl, T., Marsal, J., Olsson, P., Ohlsson, B. and Andréasson, K. (2017) Severe Intestinal Dysbiosis Is Prevalent in Primary Sjögren’s Syndrome and Is Associated with Systemic Disease Activity. Arthritis Research & Therapy, 19, Article No. 237. https://doi.org/10.1186/s13075-017-1446-2
|
[91]
|
Watane, A., Cavuoto, K.M., Rojas, M., Dermer, H., Day, J.O., Banerjee, S., et al. (2022) Fecal Microbial Transplant in Individuals with Immune-Mediated Dry Eye. American Journal of Ophthalmology, 233, 90-100. https://doi.org/10.1016/j.ajo.2021.06.022
|
[92]
|
Consolandi, C., Turroni, S., Emmi, G., Severgnini, M., Fiori, J., Peano, C., et al. (2015) Behçet’s Syndrome Patients Exhibit Specific Microbiome Signature. Autoimmunity Reviews, 14, 269-276. https://doi.org/10.1016/j.autrev.2014.11.009
|
[93]
|
Shimizu, J., Kubota, T., Takada, E., Takai, K., Fujiwara, N., Arimitsu, N., et al. (2016) Bifidobacteria Abundance-Featured Gut Microbiota Compositional Change in Patients with Behcet’s Disease. PLOS ONE, 11, e0153746. https://doi.org/10.1371/journal.pone.0153746
|
[94]
|
Oezguen, N., Yalcinkaya, N., Kücükali, C.I., Dahdouli, M., Hollister, E.B., Luna, R.A., et al. (2019) Microbiota Stratification Identifies Disease-Specific Alterations in Neuro-Behçet’s Disease and Multiple Sclerosis. Clinical and Experimental Rheumatology, 37, 58-66.
|
[95]
|
van der Houwen, T.B., van Laar, J.A.M., Kappen, J.H., van Hagen, P.M., de Zoete, M.R., van Muijlwijk, G.H., et al. (2020) Behçet’s Disease under Microbiotic Surveillance? A Combined Analysis of Two Cohorts of Behçet’s Disease Patients. Frontiers in Immunology, 11, Article 1192. https://doi.org/10.3389/fimmu.2020.01192
|
[96]
|
Tecer, D., Gogus, F., Kalkanci, A., Erdogan, M., Hasanreisoglu, M., Ergin, Ç., et al. (2020) Succinivibrionaceae Is Dominant Family in Fecal Microbiota of Behçet’s Syndrome Patients with Uveitis. PLOS ONE, 15, e0241691. https://doi.org/10.1371/journal.pone.0241691
|
[97]
|
Ebrahimi, R., Farsi, Y. and Nejadghaderi, S.A. (2024) Fecal Microbiota Transplantation for Glaucoma; A Potential Emerging Treatment Strategy. Current Research in Microbial Sciences, 7, Article ID: 100314. https://doi.org/10.1016/j.crmicr.2024.100314
|
[98]
|
Kim, J.M., Kim, S.H., Park, K.H., Han, S.Y. and Shim, H.S. (2011) Investigation of the Association Betweenhelicobacter Pyloriinfection and Normal Tension Glaucoma. Investigative Opthalmology & Visual Science, 52, 665-668. https://doi.org/10.1167/iovs.10-6096
|
[99]
|
Gong, H., Zhang, S., Li, Q., Zuo, C., Gao, X., Zheng, B., et al. (2020) Gut Microbiota Compositional Profile and Serum Metabolic Phenotype in Patients with Primary Open-Angle Glaucoma. Experimental Eye Research, 191, Article ID: 107921. https://doi.org/10.1016/j.exer.2020.107921
|
[100]
|
Chang, C.J., Somohano, K., Zemsky, C., Uhlemann, A., Liebmann, J., Cioffi, G.A., et al. (2022) Topical Glaucoma Therapy Is Associated with Alterations of the Ocular Surface Microbiome. Investigative Opthalmology & Visual Science, 63, Article 32. https://doi.org/10.1167/iovs.63.9.32
|
[101]
|
Shin, J.H., Lee, J., Lim, S., Yoon, B.W., Lee, Y. and Seo, J.H. (2022) The Microbiomes of the Eyelid and Buccal Area of Patients with Uveitic Glaucoma. BMC Ophthalmology, 22, Article No. 170. https://doi.org/10.1186/s12886-022-02395-x
|
[102]
|
Lee, J.W., Lim, S.H., Shin, J.H., Lee, Y. and Seo, J.H. (2022) Differences in the Eyelid and Buccal Microbiome between Open‐Angle Glaucoma and Uveitic Glaucoma. Acta Ophthalmologica, 100, e770-e778. https://doi.org/10.1111/aos.14967
|
[103]
|
Deng, Y., Ge, X., Li, Y., Zou, B., Wen, X., Chen, W., et al. (2021) Identification of an Intraocular Microbiota. Cell Discovery, 7, Article No. 13. https://doi.org/10.1038/s41421-021-00245-6
|
[104]
|
Yoon, B.W., Lim, S.H., Shin, J.H., Lee, J.W., Lee, Y. and Seo, J.H. (2021) Analysis of Oral Microbiome in Glaucoma Patients Using Machine Learning Prediction Models. Journal of Oral Microbiology, 13, Article 1962125. https://doi.org/10.1080/20002297.2021.1962125
|
[105]
|
Pasquale, L.R., Hyman, L., Wiggs, J.L., Rosner, B.A., Joshipura, K., McEvoy, M., et al. (2016) Prospective Study of Oral Health and Risk of Primary Open-Angle Glaucoma in Men. Ophthalmology, 123, 2318-2327. https://doi.org/10.1016/j.ophtha.2016.07.014
|
[106]
|
Baim, A.D., Movahedan, A., Farooq, A.V. and Skondra, D. (2018) The Microbiome and Ophthalmic Disease. Experimental Biology and Medicine, 244, 419-429. https://doi.org/10.1177/1535370218813616
|
[107]
|
Andary, C.M., Al, K.F., Chmiel, J.A., Gibbons, S., Daisley, B.A., Parvathy, S.N., et al. (2024) Dissecting Mechanisms of Fecal Microbiota Transplantation Efficacy in Disease. Trends in Molecular Medicine, 30, 209-222. https://doi.org/10.1016/j.molmed.2023.12.005
|
[108]
|
Zhang, X., Luo, X., Tian, L., Yue, P., Li, M., Liu, K., et al. (2023) The Gut Microbiome Dysbiosis and Regulation by Fecal Microbiota Transplantation: Umbrella Review. Frontiers in Microbiology, 14, Article 1286429. https://doi.org/10.3389/fmicb.2023.1286429
|
[109]
|
Spindelboeck, W., Halwachs, B., Bayer, N., Huber-Krassnitzer, B., et al. (2018) Antibiotic Use and Ileocolonic Immune Cells in Patients Receiving Fecal Microbiota Transplantation for Refractory Intestinal GvHD: A Prospective Cohort Study. Therapeutic Advances in Vaccines and Immunotherapy, 9, 259-261.
|
[110]
|
Dahiya, M., Jovel, J., Monaghan, T., Wong, K., Elhenawy, W., Chui, L., et al. (2023) In Silico Analysis of Changes in Predicted Metabolic Capabilities of Intestinal Microbiota after Fecal Microbial Transplantation for Treatment of Recurrent Clostridioides Difficile Infection. Microorganisms, 11, Article 1078. https://doi.org/10.3390/microorganisms11041078
|
[111]
|
Zysset-Burri, D.C., Morandi, S., Herzog, E.L., Berger, L.E. and Zinkernagel, M.S. (2023) The Role of the Gut Microbiome in Eye Diseases. Progress in Retinal and Eye Research, 92, Article ID: 101117. https://doi.org/10.1016/j.preteyeres.2022.101117
|
[112]
|
Chen, S., Wang, Y., Liu, Y., Li, F., Chen, Y., Fang, X., et al. (2022) Dysbiosis of Gut Microbiome Contributes to Glaucoma Pathogenesis. MedComm—Future Medicine, 1, e28. https://doi.org/10.1002/mef2.28
|
[113]
|
Zmora, N., Suez, J. and Elinav, E. (2018) You Are What You Eat: Diet, Health and the Gut Microbiota. Nature Reviews Gastroenterology & Hepatology, 16, 35-56. https://doi.org/10.1038/s41575-018-0061-2
|
[114]
|
Zhang, F., Luo, W., Shi, Y., Fan, Z. and Ji, G. (2012) Should We Standardize the 1700-Year-Old Fecal Microbiota Transplantation? American Journal of Gastroenterology, 107, 1755. https://doi.org/10.1038/ajg.2012.251
|
[115]
|
Luczynski, P., McVey Neufeld, K., Oriach, C.S., Clarke, G., Dinan, T.G. and Cryan, J.F. (2016) Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 19, pyw020. https://doi.org/10.1093/ijnp/pyw020
|
[116]
|
Cryan, J.F., Riordan, K.J.O., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., et al. (2019) The Microbiota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013.
|
[117]
|
Allen, A.P., Hutch, W., Borre, Y.E., Kennedy, P.J., Temko, A., Boylan, G., et al. (2016) Bifidobacterium Longum 1714 as a Translational Psychobiotic: Modulation of Stress, Electrophysiology and Neurocognition in Healthy Volunteers. Translational Psychiatry, 6, e939. https://doi.org/10.1038/tp.2016.191
|
[118]
|
Desbonnet, L., Clarke, G., O’Sullivan, O., Cotter, P.D., Dinan, T.G. and Cryan, J.F. (2015) Re: Gut Microbiota Depletion from Early Adolescence in Mice: Implications for Brain and Behaviour. Brain, Behavior, and Immunity, 50, 335-336. https://doi.org/10.1016/j.bbi.2015.07.011
|
[119]
|
Haba, R., Shintani, N., Onaka, Y., Wang, H., Takenaga, R., Hayata, A., et al. (2012) Lipopolysaccharide Affects Exploratory Behaviors toward Novel Objects by Impairing Cognition and/or Motivation in Mice: Possible Role of Activation of the Central Amygdala. Behavioural Brain Research, 228, 423-431. https://doi.org/10.1016/j.bbr.2011.12.027
|
[120]
|
Kastin, J. and Pan, W. (2010) Concepts for Biologically Active Peptides. Current Pharmaceutical Design, 16, 3390-3400. https://doi.org/10.2174/138161210793563491
|
[121]
|
Fiorentino, M., Sapone, A., Senger, S., Camhi, S.S., Kadzielski, S.M., Buie, T.M., et al. (2016) Blood-Brain Barrier and Intestinal Epithelial Barrier Alterations in Autism Spectrum Disorders. Molecular Autism, 7, Article No. 49. https://doi.org/10.1186/s13229-016-0110-z
|
[122]
|
Liu, F., Li, J., Wu, F., Zheng, H., Peng, Q. and Zhou, H. (2019) Altered Composition and Function of Intestinal Microbiota in Autism Spectrum Disorders: A Systematic Review. Translational Psychiatry, 9, Article No. 43. https://doi.org/10.1038/s41398-019-0389-6
|
[123]
|
Shin, N., Whon, T.W. and Bae, J. (2015) Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends in Biotechnology, 33, 496-503. https://doi.org/10.1016/j.tibtech.2015.06.011
|
[124]
|
Xu, M., Xu, X., Li, J. and Li, F. (2019) Association between Gut Microbiota and Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Frontiers in Psychiatry, 10, Article 473. https://doi.org/10.3389/fpsyt.2019.00473
|
[125]
|
Wang, L., Christophersen, C.T., Sorich, M.J., Gerber, J.P., Angley, M.T. and Conlon, M.A. (2013) Increased Abundance of Sutterella spp. and Ruminococcus torques in Feces of Children with Autism Spectrum Disorder. Molecular Autism, 4, Article No. 42. https://doi.org/10.1186/2040-2392-4-42
|
[126]
|
Iglesias-Vázquez, L., Van Ginkel Riba, G., Arija, V. and Canals, J. (2020) Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients, 12, Article 792. https://doi.org/10.3390/nu12030792
|
[127]
|
Finegold, S.M., Dowd, S.E., Gontcharova, V., Liu, C., Henley, K.E., Wolcott, R.D., et al. (2010) Pyrosequencing Study of Fecal Microflora of Autistic and Control Children. Anaerobe, 16, 444-453. https://doi.org/10.1016/j.anaerobe.2010.06.008
|
[128]
|
Golubeva, A.V., Joyce, S.A., Moloney, G., Burokas, A., Sherwin, E., Arboleya, S., et al. (2017) Microbiota-Related Changes in Bile Acid & Tryptophan Metabolism Are Associated with Gastrointestinal Dysfunction in a Mouse Model of Autism. EBioMedicine, 24, 166-178. https://doi.org/10.1016/j.ebiom.2017.09.020
|
[129]
|
Kang, D.W., Park, J.G., Ilhan, Z.E., Wallstrom, G., LaBaer, J., Adams, J.B., et al. (2013) Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLOS ONE, 8, e68322. https://doi.org/10.1371/journal.pone.0068322
|
[130]
|
Shimmura, C., Suda, S., Tsuchiya, K.J., Hashimoto, K., Ohno, K., Matsuzaki, H., et al. (2011) Alteration of Plasma Glutamate and Glutamine Levels in Children with High-Functioning Autism. PLOS ONE, 6, e25340. https://doi.org/10.1371/journal.pone.0025340
|
[131]
|
MacFabe, D.F. (2012) Short-Chain Fatty Acid Fermentation Products of the Gut Microbiome: Implications in Autism Spectrum Disorders. Microbial Ecology in Health & Disease, 23, 1-24. https://doi.org/10.3402/mehd.v23i0.19260
|
[132]
|
Kang, D., Adams, J.B., Coleman, D.M., Pollard, E.L., Maldonado, J., McDonough-Means, S., et al. (2019) Long-Term Benefit of Microbiota Transfer Therapy on Autism Symptoms and Gut Microbiota. Scientific Reports, 9, Article No. 5821. https://doi.org/10.1038/s41598-019-42183-0
|
[133]
|
Frye, R.E., Slattery, J., MacFabe, D.F., Allen-Vercoe, E., Parker, W., Rodakis, J., et al. (2015) Approaches to Studying and Manipulating the Enteric Microbiome to Improve Autism Symptoms. Microbial Ecology in Health & Disease, 26, 1-14. https://doi.org/10.3402/mehd.v26.26878
|
[134]
|
Cammarota, G., Ianiro, G., Tilg, H., Rajilić-Stojanović, M., Kump, P., Satokari, R., et al. (2017) European Consensus Conference on Faecal Microbiota Transplantation in Clinical Practice. Gut, 66, 569-580. https://doi.org/10.1136/gutjnl-2016-313017
|
[135]
|
Bénard, M.V., de Bruijn, C.M.A., Fenneman, A.C., Wortelboer, K., Zeevenhoven, J., Rethans, B., et al. (2022) Challenges and Costs of Donor Screening for Fecal Microbiota Transplantations. PLOS ONE, 17, e0276323. https://doi.org/10.1371/journal.pone.0276323
|
[136]
|
Wang, B., Yao, M., Lv, L., Ling, Z. and Li, L. (2017) The Human Microbiota in Health and Disease. Engineering, 3, 71-82. https://doi.org/10.1016/j.eng.2017.01.008
|
[137]
|
Metselaar, S. and Widdershoven, G. (2017) Ethical Issues in Fecal Microbiota Transplantion: Taking into Account Identity and Family Relations. The American Journal of Bioethics, 17, 53-55. https://doi.org/10.1080/15265161.2017.1299245
|
[138]
|
Rutering, J., Ilmer, M., Recio, A., Coleman, M., Vykoukal, J., Alt, E., et al. (2014) Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory T Cell Generation. Frontiers in Neuroendocrinology, 35, 320-330.
|