[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Singal, A.G., Llovet, J.M., Yarchoan, M., Mehta, N., Heimbach, J.K., Dawson, L.A., et al. (2023) AASLD Practice Guidance on Prevention, Diagnosis, and Treatment of Hepatocellular Carcinoma. Hepatology, 78, 1922-1965. https://doi.org/10.1097/hep.0000000000000466
|
[3]
|
National Health Commission of the People’s Republic of China, Department of Medical Administration (2024) Guidelines for the Diagnosis and Treatment of Primary Liver Cancer (2024 Edition). Chinese Journal of Hepatology, 32, 581-630. https://doi.org/10.3760/cma.j.cn501113-20240611-00290
|
[4]
|
Mohkam, K., Dumont, P., Manichon, A., Jouvet, J., Boussel, L., Merle, P., et al. (2018) No-Touch Multibipolar Radiofrequency Ablation vs. Surgical Resection for Solitary Hepatocellular Carcinoma Ranging from 2 to 5 cm. Journal of Hepatology, 68, 1172-1180. https://doi.org/10.1016/j.jhep.2018.01.014
|
[5]
|
Cucchetti, A., Piscaglia, F., Cescon, M., Colecchia, A., Ercolani, G., Bolondi, L., et al. (2013) Cost-Effectiveness of Hepatic Resection versus Percutaneous Radiofrequency Ablation for Early Hepatocellular Carcinoma. Journal of Hepatology, 59, 300-307. https://doi.org/10.1016/j.jhep.2013.04.009
|
[6]
|
Huang, H.W. (2013) Influence of Blood Vessel on the Thermal Lesion Formation during Radiofrequency Ablation for Liver Tumors. Medical Physics, 40, Article ID: 073303. https://doi.org/10.1118/1.4811135
|
[7]
|
Yang, Z., Gao, D., Zhao, J., Yang, G., Guo, M., Wang, Y., et al. (2023) Thermal Immuno-Nanomedicine in Cancer. Nature Reviews Clinical Oncology, 20, 116-134. https://doi.org/10.1038/s41571-022-00717-y
|
[8]
|
Tang, B., Xu, W., Fang, S., Zhu, J., Qiu, R., Shen, L., et al. (2025) MELK Prevents Radiofrequency Ablation-Induced Immunogenic Cell Death and Antitumor Immune Response by Stabilizing FABP5 in Hepatocellular Malignancies. Military Medical Research, 12, Article No. 5. https://doi.org/10.1186/s40779-024-00588-7
|
[9]
|
Ali, M.Y., Grimm, C.F., Ritter, M., Mohr, L., Allgaier, H.-P., Weth, R., et al. (2005) Activation of Dendritic Cells by Local Ablation of Hepatocellular Carcinoma. Journal of Hepatology, 43, 817-822. https://doi.org/10.1016/j.jhep.2005.04.016
|
[10]
|
Wang, H.Y., Cui, X.W., Zhang, Y.H., Chen, Y., Lu, N.N., Sheng, S.P., et al. (2023) Comparison of NK Cell Subsets, Receptors and Functions Induced by Radiofrequency Ablation and Microwave Ablation in HBV-Associated Primary Hepatocellular Carcinoma. Frontiers in Oncology, 13, Article ID: 1048049. https://doi.org/10.3389/fonc.2023.1048049
|
[11]
|
Zerbini, A., Pilli, M., Laccabue, D., Pelosi, G., Molinari, A., Negri, E., et al. (2010) Radiofrequency Thermal Ablation for Hepatocellular Carcinoma Stimulates Autologous NK-Cell Response. Gastroenterology, 138, 1931-1942.e2. https://doi.org/10.1053/j.gastro.2009.12.051
|
[12]
|
Mo, Z., Lu, H., Mo, S., Fu, X., Chang, S. and Yue, J. (2018) Ultrasound-Guided Radiofrequency Ablation Enhances Natural Killer-Mediated Antitumor Immunity against Liver Cancer. Oncology Letters, 15, 7014-7020. https://doi.org/10.3892/ol.2018.8231
|
[13]
|
Mizukoshi, E., Yamashita, T., Arai, K., Sunagozaka, H., Ueda, T., Arihara, F., et al. (2013) Enhancement of Tumor-Associated Antigen-Specific T Cell Responses by Radiofrequency Ablation of Hepatocellular Carcinoma. Hepatology, 57, 1448-1457. https://doi.org/10.1002/hep.26153
|
[14]
|
Hansler, J., Wissniowski, T.T., Schuppan, D., Witte, A., Bernatik, T., Hahn, E.-G., et al. (2006) Activation and Dramatically Increased Cytolytic Activity of Tumor Specific T Lymphocytes after Radio-Frequency Ablation in Patients with Hepatocellular Carcinoma and Colorectal Liver Metastases. World Journal of Gastroenterology, 12, 3716-3721. https://doi.org/10.3748/wjg.v12.i23.3716
|
[15]
|
Faraoni, E.Y., O’Brien, B.J., Strickland, L.N., Osborn, B.K., Mota, V., Chaney, J., et al. (2022) Radiofrequency Ablation Remodels the Tumor Microenvironment and Promotes Neutrophil-Mediated Abscopal Immunomodulation in Pancreatic Cancer. Cancer Immunology Research, 11, 4-12. https://doi.org/10.1158/2326-6066.cir-22-0379
|
[16]
|
Zhao, Y., Yang, T., Ouyang, Y., Rao, W., Liu, K., Zheng, J., et al. (2024) Radiofrequency Ablation Plays Double Role in Immunosuppression and Activation of PBMCs in Recurrent Hepatocellular Carcinoma. Frontiers in Immunology, 15, Article ID: 1339213. https://doi.org/10.3389/fimmu.2024.1339213
|
[17]
|
Zeng, X., Liao, G., Li, S., Liu, H., Zhao, X., Li, S., et al. (2022) Eliminating METTL1-Mediated Accumulation of PMN-MDSCs Prevents Hepatocellular Carcinoma Recurrence after Radiofrequency Ablation. Hepatology, 77, 1122-1138. https://doi.org/10.1002/hep.32585
|
[18]
|
Liang, J., Ma, M., Feng, W., Xu, Q., Chen, D., Lai, J., et al. (2024) Anti-PD-L1 Blockade Facilitates Antitumor Effects of Radiofrequency Ablation by Improving Tumor Immune Microenvironment in Hepatocellular Carcinoma. Apoptosis, 30, 55-68. https://doi.org/10.1007/s10495-024-02019-3
|
[19]
|
Shi, L., Wang, J., Ding, N., Zhang, Y., Zhu, Y., Dong, S., et al. (2019) Inflammation Induced by Incomplete Radiofrequency Ablation Accelerates Tumor Progression and Hinders PD-1 Immunotherapy. Nature Communications, 10, Article No. 5421. https://doi.org/10.1038/s41467-019-13204-3
|
[20]
|
Takaki, H., Cornelis, F., Kako, Y., Kobayashi, K., Kamikonya, N. and Yamakado, K. (2017) Thermal Ablation and Immunomodulation: From Preclinical Experiments to Clinical Trials. Diagnostic and Interventional Imaging, 98, 651-659. https://doi.org/10.1016/j.diii.2017.04.008
|
[21]
|
Song, X., Li, N., Liu, Y., Wang, Z., Wang, T., Tan, S., et al. (2022) CD169-Positive Macrophages Enhance Abscopal Effect of Radiofrequency Ablation Therapy in Liver Cancer. Translational Oncology, 15, Article ID: 101306. https://doi.org/10.1016/j.tranon.2021.101306
|
[22]
|
Chen, S., Huang, C., Liao, G., Sun, H., Xie, Y., Liao, C., et al. (2023) Distinct Single-Cell Immune Ecosystems Distinguish True and De Novo HBV-Related Hepatocellular Carcinoma Recurrences. Gut, 72, 1196-1210. https://doi.org/10.1136/gutjnl-2022-328428
|
[23]
|
Zou, W. and Chen, L. (2008) Inhibitory B7-Family Molecules in the Tumour Microenvironment. Nature Reviews Immunology, 8, 467-477. https://doi.org/10.1038/nri2326
|
[24]
|
Yu, J., Green, M.D., Li, S., Sun, Y., Journey, S.N., Choi, J.E., et al. (2021) Liver Metastasis Restrains Immunotherapy Efficacy via Macrophage-Mediated T Cell Elimination. Nature Medicine, 27, 152-164. https://doi.org/10.1038/s41591-020-1131-x
|
[25]
|
Ribas, A. and Wolchok, J.D. (2018) Cancer Immunotherapy Using Checkpoint Blockade. Science, 359, 1350-1355. https://doi.org/10.1126/science.aar4060
|
[26]
|
Finn, R.S., Qin, S., Ikeda, M., Galle, P.R., Ducreux, M., Kim, T., et al. (2020) Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. New England Journal of Medicine, 382, 1894-1905. https://doi.org/10.1056/nejmoa1915745
|
[27]
|
Qin, S., Chen, M., Cheng, A., Kaseb, A.O., Kudo, M., Lee, H.C., et al. (2023) Atezolizumab plus Bevacizumab versus Active Surveillance in Patients with Resected or Ablated High-Risk Hepatocellular Carcinoma (IMbrave050): A Randomised, Open-Label, Multicentre, Phase 3 Trial. The Lancet, 402, 1835-1847. https://doi.org/10.1016/s0140-6736(23)01796-8
|
[28]
|
Wen, Z., Wang, J., Tu, B., Liu, Y., Yang, Y., Hou, L., et al. (2023) Radiofrequency Ablation Combined with Toripalimab for Recurrent Hepatocellular Carcinoma: A Prospective Controlled Trial. Cancer Medicine, 12, 20311-20320. https://doi.org/10.1002/cam4.6602
|
[29]
|
Wang, X., Liu, G., Chen, S., Bi, H., Xia, F., Feng, K., et al. (2021) Combination Therapy with PD-1 Blockade and Radiofrequency Ablation for Recurrent Hepatocellular Carcinoma: A Propensity Score Matching Analysis. International Journal of Hyperthermia, 38, 1519-1528. https://doi.org/10.1080/02656736.2021.1991011
|
[30]
|
Zhou, C., Li, Y., Li, J., Song, B., Li, H., Liang, B., et al. (2023) A Phase 1/2 Multicenter Randomized Trial of Local Ablation plus Toripalimab versus Toripalimab Alone for Previously Treated Unresectable Hepatocellular Carcinoma. Clinical Cancer Research, 29, 2816-2825. https://doi.org/10.1158/1078-0432.ccr-23-0410
|
[31]
|
Lyu, N., Kong, Y., Li, X., Mu, L., Deng, H., Chen, H., et al. (2020) Ablation Reboots the Response in Advanced Hepatocellular Carcinoma with Stable or Atypical Response during PD-1 Therapy: A Proof-of-Concept Study. Frontiers in Oncology, 10, Article ID: 580241. https://doi.org/10.3389/fonc.2020.580241
|
[32]
|
(2018) A Study of Nivolumab in Participants with Hepatocellular Carcinoma Who Are at High Risk of Recurrence after Curative Hepatic Resection or Ablation (CheckMate 9DX). ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT03383458
|
[33]
|
(2019) Safety and Efficacy of Pembrolizumab (MK-3475) versus Placebo as Adjuvant Therapy in Participants with Hepatocellular Carcinoma (HCC) and Complete Radiological Response After Surgical Resection or Local Ablation (MK-3475-937/KEYNOTE-937). ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT03867084
|
[34]
|
(2019) Assess Efficacy and Safety of Durvalumab Alone or Combined with Bevacizumab in High Risk of Recurrence HCC Patients After Curative Treatment (EM-ERALD-2). ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT03847428
|
[35]
|
Marangoni, F., Zhakyp, A., Corsini, M., Geels, S.N., Carrizosa, E., Thelen, M., et al. (2021) Expansion of Tumor-Associated Treg Cells upon Disruption of a CTLA-4-Dependent Feedback Loop. Cell, 184, 3998-4015.e19. https://doi.org/10.1016/j.cell.2021.05.027
|
[36]
|
Sangro, B., Gomez-Martin, C., de la Mata, M., Iñarrairaegui, M., Garralda, E., Barrera, P., et al. (2013) A Clinical Trial of CTLA-4 Blockade with Tremelimumab in Patients with Hepatocellular Carcinoma and Chronic Hepatitis C. Journal of Hepatology, 59, 81-88. https://doi.org/10.1016/j.jhep.2013.02.022
|
[37]
|
Duffy, A.G., Ulahannan, S.V., Makorova-Rusher, O., Rahma, O., Wedemeyer, H., Pratt, D., et al. (2017) Tremelimumab in Combination with Ablation in Patients with Advanced Hepatocellular Carcinoma. Journal of Hepatology, 66, 545-551. https://doi.org/10.1016/j.jhep.2016.10.029
|
[38]
|
Agdashian, D., ElGindi, M., Xie, C., Sandhu, M., Pratt, D., Kleiner, D.E., et al. (2019) The Effect of Anti-CTLA4 Treatment on Peripheral and Intra-Tumoral T Cells in Patients with Hepatocellular Carcinoma. Cancer Immunology, Immunotherapy, 68, 599-608. https://doi.org/10.1007/s00262-019-02299-8
|
[39]
|
Bertrand, A., Kostine, M., Barnetche, T., Truchetet, M. and Schaeverbeke, T. (2015) Immune Related Adverse Events Associated with Anti-CTLA-4 Antibodies: Systematic Review and Meta-analysis. BMC Medicine, 13, Article No. 211. https://doi.org/10.1186/s12916-015-0455-8
|
[40]
|
Kitahara, M., Mizukoshi, E., Terashima, T., Nakagawa, H., Horii, R., Iida, N., et al. (2020) Safety and Long-Term Outcome of Intratumoral Injection of OK432-Stimulated Dendritic Cells for Hepatocellular Carcinomas after Radiofrequency Ablation. Translational Oncology, 13, Article ID: 100777. https://doi.org/10.1016/j.tranon.2020.100777
|
[41]
|
Peng, S., Chen, S., Hu, W., Mei, J., Zeng, X., Su, T., et al. (2022) Combination Neoantigen-Based Dendritic Cell Vaccination and Adoptive T-Cell Transfer Induces Antitumor Responses against Recurrence of Hepatocellular Carcinoma. Cancer Immunology Research, 10, 728-744. https://doi.org/10.1158/2326-6066.cir-21-0931
|
[42]
|
Lee, J.H., Tak, W.Y., Lee, Y., Heo, M.K., Song, J.S., Kim, H.Y., et al. (2017) Adjuvant Immunotherapy with Autologous Dendritic Cells for Hepatocellular Carcinoma, Randomized Phase II Study. OncoImmunology, 6, e1328335. https://doi.org/10.1080/2162402x.2017.1328335
|
[43]
|
Lee, J.H., Lee, J.H., Lim, Y.S., Yeon, J.E., Song, T.J., Yu, S.J., et al. (2015) Adjuvant Immunotherapy with Autologous Cytokine-Induced Killer Cells for Hepatocellular Carcinoma. Gastroenterology, 148, 1383-1391.e6. https://doi.org/10.1053/j.gastro.2015.02.055
|
[44]
|
Yoon, J.S., Song, B.G., Lee, J., Lee, H.Y., Kim, S.W., Chang, Y., et al. (2019) Adjuvant Cytokine-Induced Killer Cell Immunotherapy for Hepatocellular Carcinoma: A Propensity Score-Matched Analysis of Real-World Data. BMC Cancer, 19, Article No. 523. https://doi.org/10.1186/s12885-019-5740-z
|
[45]
|
Ji, Q., Fu, Y., Zhu, X., Wang, L. and Ling, C. (2021) Effect of RFA and TACE Combined with Postoperative Cytokine-Induced Killer Cell Immunotherapy in Primary Hepatocellular Carcinoma. Journal of the Balkan Union of Oncology, 26, 235-242. https://jbuon.com/archive/26-1-235.pdf
|
[46]
|
Dai, H., Tong, C., Shi, D., Chen, M., Guo, Y., Chen, D., et al. (2020) Efficacy and Biomarker Analysis of CD133-Directed CAR T Cells in Advanced Hepatocellular Carcinoma: A Single-Arm, Open-Label, Phase II Trial. OncoImmunology, 9, e1846926. https://doi.org/10.1080/2162402x.2020.1846926
|
[47]
|
Goyal, L., Frigault, M., Meyer, T., Feun, L.G., Bruix, J., El-Khoueiry, A., et al. (2019) Abstract 3183: Initial Safety of AFP SPEAR T-Cells in Patients with Advanced Hepatocellular Carcinoma. Cancer Research, 79, Article No. 3183. https://doi.org/10.1158/1538-7445.am2019-3183
|
[48]
|
Shi, D., Shi, Y., Kaseb, A.O., Qi, X., Zhang, Y., Chi, J., et al. (2020) Chimeric Antigen Receptor-Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma: Results of Phase I Trials. Clinical Cancer Research, 26, 3979-3989. https://doi.org/10.1158/1078-0432.ccr-19-3259
|
[49]
|
Nobuoka, D., Motomura, Y., Shirakawa, H., Yoshikawa, T., Kuronuma, T., Takahashi, M., et al. (2012) Radiofrequency Ablation for Hepatocellular Carcinoma Induces Glypican-3 Peptide-Specific Cytotoxic T Lymphocytes. International Journal of Oncology, 40, 63-70.
|
[50]
|
Taniguchi, M., Mizuno, S., Yoshikawa, T., Fujinami, N., Sugimoto, M., Kobayashi, S., et al. (2020) Peptide Vaccine as an Adjuvant Therapy for Glypican-3-Positive Hepatocellular Carcinoma Induces Peptide-Specific CTLs and Improves Long Prognosis. Cancer Science, 111, 2747-2759. https://doi.org/10.1111/cas.14497
|
[51]
|
Sawada, Y., Yoshikawa, T., Ofuji, K., Yoshimura, M., Tsuchiya, N., Takahashi, M., et al. (2016) Phase II Study of the GPC3-Derived Peptide Vaccine as an Adjuvant Therapy for Hepatocellular Carcinoma Patients. OncoImmunology, 5, e1129483. https://doi.org/10.1080/2162402x.2015.1129483
|
[52]
|
Sawada, Y., Yoshikawa, T., Nobuoka, D., Shirakawa, H., Kuronuma, T., Motomura, Y., et al. (2012) Phase I Trial of a Glypican-3-Derived Peptide Vaccine for Advanced Hepatocellular Carcinoma: Immunologic Evidence and Potential for Improving Overall Survival. Clinical Cancer Research, 18, 3686-3696. https://doi.org/10.1158/1078-0432.ccr-11-3044
|
[53]
|
Löffler, M.W., Gori, S., Izzo, F., Mayer-Mokler, A., Ascierto, P.A., Königsrainer, A., et al. (2022) Phase I/II Multicenter Trial of a Novel Therapeutic Cancer Vaccine, HepaVac-101, for Hepatocellular Carcinoma. Clinical Cancer Research, 28, 2555-2566. https://doi.org/10.1158/1078-0432.ccr-21-4424
|
[54]
|
Zhang, B., Moser, M.A.J., Zhang, E.M., Luo, Y., Liu, C. and Zhang, W. (2016) A Review of Radiofrequency Ablation: Large Target Tissue Necrosis and Mathematical Modelling. Physica Medica, 32, 961-971. https://doi.org/10.1016/j.ejmp.2016.07.092
|
[55]
|
Shao, Y.L., Arjun, B., Leo, H.L. and Chua, K.J. (2017) A Computational Theoretical Model for Radiofrequency Ablation of Tumor with Complex Vascularization. Computers in Biology and Medicine, 89, 282-292. https://doi.org/10.1016/j.compbiomed.2017.08.025
|
[56]
|
Zhang, R., Yao, R.R., Li, J.H., Dong, G., Ma, M., Zheng, Q.D., et al. (2017) Activated Hepatic Stellate Cells Secrete Periostin to Induce Stem Cell-Like Phenotype of Residual Hepatocellular Carcinoma Cells after Heat Treatment. Scientific Reports, 7, Article No. 2164. https://doi.org/10.1038/s41598-017-01177-6
|
[57]
|
Dong, S., Kong, J., Kong, F., Kong, J., Gao, J., Ke, S., et al. (2013) Insufficient Radiofrequency Ablation Promotes Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma Cells through Akt and ERK Signaling Pathways. Journal of Translational Medicine, 11, Article No. 273. https://doi.org/10.1186/1479-5876-11-273
|
[58]
|
Cheng, J., Li, M. and Lv, Y. (2014) Sublethal Heat Treatment Promotes Epithelial-Mesenchymal Transition and Enhances the Malignant Potential of Hepatocellular Carcinoma. Hepatology, 59, Article No. 1650. https://doi.org/10.1002/hep.26630
|
[59]
|
Zhang, S., Huang, Y., Pi, S., Chen, H., Ye, F., Wu, C., et al. (2023) Autophagy-Amplifying Nanoparticles Evoke Immunogenic Cell Death Combined with Anti-PD-1/PD-L1 for Residual Tumors Immunotherapy after RFA. Journal of Nanobiotechnology, 21, Article No. 360. https://doi.org/10.1186/s12951-023-02067-y
|
[60]
|
Mocan, T., Stiufiuc, R., Popa, C., Nenu, I., Pestean, C., Nagy, A.L., et al. (2021) Percutaneous Ultrasound Guided PEG-Coated Gold Nanoparticles Enhanced Radiofrequency Ablation in Liver. Scientific Reports, 11, Article No. 1316. https://doi.org/10.1038/s41598-020-79917-4
|
[61]
|
Zhang, Y.J., Chen, J., Zhou, Z., Hu, D., Wang, J., Pan, Y., et al. (2025) Transarterial Chemoembolization with Radiofrequency Ablation versus Surgical Resection for Small Late-Recurrence Hepatocellular Carcinoma. Radiology, 314, e241096. https://doi.org/10.1148/radiol.241096
|
[62]
|
Chen, Q.W., Ying, H.F., Gao, S., Shen, Y.H., Meng, Z.Q., Chen, H., et al. (2016) Radiofrequency Ablation plus Chemoembolization versus Radiofrequency Ablation Alone for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Clinics and Research in Hepatology and Gastroenterology, 40, 309-314. https://doi.org/10.1016/j.clinre.2015.07.008
|
[63]
|
Campani, C., Pallas, D., Sidali, S., Giouleme, O., Blaise, L., Grando, V., et al. (2024) Heterogeneity in Adverse Events Related to Atezolizumab-Bevacizumab for Hepatocellular Carcinoma Reported in Real-World Studies. JHEP Reports, 6, Article ID: 101190. https://doi.org/10.1016/j.jhepr.2024.101190
|
[64]
|
Gudd, C.L.C. and Possamai, L.A. (2022) The Role of Myeloid Cells in Hepatotoxicity Related to Cancer Immunotherapy. Cancers, 14, Article No. 1913. https://doi.org/10.3390/cancers14081913
|
[65]
|
Schneider, B.J., Naidoo, J., Santomasso, B.D., Lacchetti, C., Adkins, S., Anadkat, M., et al. (2021) Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. Journal of Clinical Oncology, 39, 4073-4126. https://doi.org/10.1200/jco.21.01440
|
[66]
|
Vietti Violi, N., Duran, R., Guiu, B., Cercueil, J.-P., Aubé, C., Digklia, A., et al. (2018) Efficacy of Microwave Ablation versus Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma in Patients with Chronic Liver Disease: A Randomised Controlled Phase 2 Trial. The Lancet Gastroenterology & Hepatology, 3, 317-325. https://doi.org/10.1016/s2468-1253(18)30029-3
|
[67]
|
Leuchte, K., Staib, E., Thelen, M., Gödel, P., Lechner, A., Zentis, P., et al. (2020) Microwave Ablation Enhances Tumor-Specific Immune Response in Patients with Hepatocellular Carcinoma. Cancer Immunology, Immunotherapy, 70, 893-907. https://doi.org/10.1007/s00262-020-02734-1
|
[68]
|
Wang, L., Li, X., Dong, X.-J., Yu, X.-L., Zhang, J., Cheng, Z.-G., et al. (2024) Dendritic Cell-Cytokine Killer Combined with Microwave Ablation Reduced Recurrence for Hepatocellular Carcinoma Compared to Ablation Alone. Technology and Health Care, 32, 1819-1834. https://doi.org/10.3233/thc-230871
|
[69]
|
Li, X., Zhang, Q., Lu, Q., Cheng, Z., Liu, F., Han, Z., et al. (2022) Microwave Ablation Combined with Apatinib and Camrelizumab in Patients with Advanced Hepatocellular Carcinoma: A Single-Arm, Preliminary Study. Frontiers in Immunology, 13, Article ID: 1023983. https://doi.org/10.3389/fimmu.2022.1023983
|
[70]
|
Aarts, B.M., Klompenhouwer, E.G., Rice, S.L., Imani, F., Baetens, T., Bex, A., et al. (2019) Cryoablation and Immunotherapy: An Overview of Evidence on Its Synergy. Insights into Imaging, 10, Article No. 53. https://doi.org/10.1186/s13244-019-0727-5
|
[71]
|
Shao, Q., O’Flanagan, S., Lam, T., Roy, P., Pelaez, F., Burbach, B.J., et al. (2019) Engineering T Cell Response to Cancer Antigens by Choice of Focal Therapeutic Conditions. International Journal of Hyperthermia, 36, 130-138. https://doi.org/10.1080/02656736.2018.1539253
|
[72]
|
Eranki, A., Srinivasan, P., Ries, M., Kim, A., Lazarski, C.A., Rossi, C.T., et al. (2020) High-Intensity Focused Ultrasound (HIFU) Triggers Immune Sensitization of Refractory Murine Neuroblastoma to Checkpoint Inhibitor Therapy. Clinical Cancer Research, 26, 1152-1161. https://doi.org/10.1158/1078-0432.ccr-19-1604
|
[73]
|
Cao, R., Le, N., Nabi, G. and Huang, Z. (2017) Full Acoustic and Thermal Characterization of HIFU Field in the Presence of a Ribcage Model. AIP Conference Proceedings, 1816, Article ID: 020002. https://doi.org/10.1063/1.4976592
|
[74]
|
Bertacchini, C., Margotti, P.M., Bergamini, E., Lodi, A., Ronchetti, M. and Cadossi, R. (2007) Design of an Irreversible Electroporation System for Clinical Use. Technology in Cancer Research & Treatment, 6, 313-320. https://doi.org/10.1177/153303460700600408
|
[75]
|
Bulvik, B.E., Rozenblum, N., Gourevich, S., Ahmed, M., Andriyanov, A.V., Galun, E., et al. (2016) Irreversible Electroporation versus Radiofrequency Ablation: A Comparison of Local and Systemic Effects in a Small-Animal Model. Radiology, 280, 413-424. https://doi.org/10.1148/radiol.2015151166
|
[76]
|
Yang, Y., Chen, D., Zhao, B., Ren, L., Huang, R., Feng, B., et al. (2023) The Predictive Value of PD-L1 Expression in Patients with Advanced Hepatocellular Carcinoma Treated with PD-1/PD-L1 Inhibitors: A Systematic Review and Meta-Analysis. Cancer Medicine, 12, 9282-9292. https://doi.org/10.1002/cam4.5676
|
[77]
|
Gabbia, D. and De Martin, S. (2023) Tumor Mutational Burden for Predicting Prognosis and Therapy Outcome of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 24, Article No. 3441. https://doi.org/10.3390/ijms24043441
|
[78]
|
Mukai, S., Kanzaki, H., Ogasawara, S., Ishino, T., Ogawa, K., Nakagawa, M., et al. (2021) Exploring Microsatellite Instability in Patients with Advanced Hepatocellular Carcinoma and Its Tumor Microenvironment. JGH Open, 5, 1266-1274. https://doi.org/10.1002/jgh3.12660
|
[79]
|
Kopystecka, A., Patryn, R., Leśniewska, M., Budzyńska, J. and Kozioł, I. (2023) The Use of ctDNA in the Diagnosis and Monitoring of Hepatocellular Carcinoma—Literature Review. International Journal of Molecular Sciences, 24, Article No. 9342. https://doi.org/10.3390/ijms24119342
|
[80]
|
Qin, R., Jin, T. and Xu, F. (2023) Biomarkers Predicting the Efficacy of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Frontiers in Immunology, 14, Article ID: 1326097. https://doi.org/10.3389/fimmu.2023.1326097
|
[81]
|
Temraz, S., Nassar, F., Kreidieh, F., Mukherji, D., Shamseddine, A. and Nasr, R. (2021) Hepatocellular Carcinoma Immunotherapy and the Potential Influence of Gut Microbiome. International Journal of Molecular Sciences, 22, Article No. 7800. https://doi.org/10.3390/ijms22157800
|
[82]
|
Zhao, Z., Cui, T., Wei, F., Zhou, Z., Sun, Y., Gao, C., et al. (2024) Wnt/β-Catenin Signaling Pathway in Hepatocellular Carcinoma: Pathogenic Role and Therapeutic Target. Frontiers in Oncology, 14, Article ID: 1367364. https://doi.org/10.3389/fonc.2024.1367364
|