[1]
|
Ribeiro da Cunha, B., Fonseca, L.P. and Calado, C.R.C. (2019) Antibiotic Discovery: Where Have We Come From, Where Do We Go? Antibiotics, 8, Article 45. https://doi.org/10.3390/antibiotics8020045
|
[2]
|
Miethke, M., Pieroni, M., Weber, T., Brönstrup, M., Hammann, P., Halby, L., et al. (2021) Towards the Sustainable Discovery and Development of New Antibiotics. Nature Reviews Chemistry, 5, 726-749. https://doi.org/10.1038/s41570-021-00313-1
|
[3]
|
Hutchings, M.I., Truman, A.W. and Wilkinson, B. (2019) Antibiotics: Past, Present and Future. Current Opinion in Microbiology, 51, 72-80. https://doi.org/10.1016/j.mib.2019.10.008
|
[4]
|
Cook, M.A. and Wright, G.D. (2022) The Past, Present, and Future of Antibiotics. Science Translational Medicine, 14, eabo7793. https://doi.org/10.1126/scitranslmed.abo7793
|
[5]
|
D’Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W.L., Schwarz, C., et al. (2011) Antibiotic Resistance Is Ancient. Nature, 477, 457-461. https://doi.org/10.1038/nature10388
|
[6]
|
Ferri, M., Ranucci, E., Romagnoli, P. and Giaccone, V. (2015) Antimicrobial Resistance: A Global Emerging Threat to Public Health Systems. Critical Reviews in Food Science and Nutrition, 57, 2857-2876. https://doi.org/10.1080/10408398.2015.1077192
|
[7]
|
MacGowan, A. and Macnaughton, E. (2017) Antibiotic Resistance. Medicine, 45, 622-628. https://doi.org/10.1016/j.mpmed.2017.07.006
|
[8]
|
Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., et al. (2015) The Global Threat of Antimicrobial Resistance: Science for Intervention. New Microbes and New Infections, 6, 22-29. https://doi.org/10.1016/j.nmni.2015.02.007
|
[9]
|
Goossens, H. and Lipsitch, M. (2022) Global Burden of Antimicrobial Resistance. Journal of Paediatrics and Child Health, 58, 735-736. https://doi.org/10.1111/jpc.15931
|
[10]
|
Yamba, K., Chizimu, J.Y., Chanda, R., Mpundu, M., Samutela, M.T., Chanda, D., et al. (2025) Antibiotic Resistance Profiles in Gram-Negative Bacteria Causing Bloodstream and Urinary Tract Infections in Paediatric and Adult Patients in Ndola District, Zambia, 2020-2021. Infection Prevention in Practice, 7, Article ID: 100462. https://doi.org/10.1016/j.infpip.2025.100462
|
[11]
|
Nundwe, M., Chizimu, J.Y., Mwaba, J., Shawa, M., Katete, R.S., Mutengo, M.M., et al. (2025) Antimicrobial Resistance Patterns and Serological Diversity of Shigella Species from Patient Isolates at University Teaching Hospital in Lusaka, Zambia. Bacteria, 4, Article 18. https://doi.org/10.3390/bacteria4020018
|
[12]
|
Davies, J. and Davies, D. (2010) Origins and Evolution of Antibiotic Resistance. Microbiology and Molecular Biology Reviews, 74, 417-433. https://doi.org/10.1128/mmbr.00016-10
|
[13]
|
Davies, J. (1995) Vicious Circles: Looking Back on Resistance Plasmids. Genetics, 139, 1465-1468. https://doi.org/10.1093/genetics/139.4.1465
|
[14]
|
World Health Organization (2015) Global Action Plan on Antimicrobial Resistance. World Health Organization. https://apps.who.int/iris/handle/10665/193736
|
[15]
|
Prestinaci, F., Pezzotti, P. and Pantosti, A. (2015) Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathogens and Global Health, 109, 309-318. https://doi.org/10.1179/2047773215y.0000000030
|
[16]
|
Ventola, C.L. (2015) The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacology & Therapeutics, 40, 277-283.
|
[17]
|
Gajic, I., Tomic, N., Lukovic, B., Jovicevic, M., Kekic, D., Petrovic, M., et al. (2025) A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges. Antibiotics, 14, Article 221. https://doi.org/10.3390/antibiotics14030221
|
[18]
|
Pepi, M. and Focardi, S. (2021) Antibiotic-resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. International Journal of Environmental Research and Public Health, 18, Article 5723. https://doi.org/10.3390/ijerph18115723
|
[19]
|
Palit, K., Rath, S., Chatterjee, S. and Das, S. (2022) Microbial Diversity and Ecological Interactions of Microorganisms in the Mangrove Ecosystem: Threats, Vulnerability, and Adaptations. Environmental Science and Pollution Research, 29, 32467-32512. https://doi.org/10.1007/s11356-022-19048-7
|
[20]
|
Topp, E., Larsson, D.G.J., Miller, D.N., Van den Eede, C. and Virta, M.P.J. (2017) Antimicrobial Resistance and the Environment: Assessment of Advances, Gaps and Recommendations for Agriculture, Aquaculture and Pharmaceutical Manufacturing. FEMS Microbiology Ecology, 94, fix185. https://doi.org/10.1093/femsec/fix185
|
[21]
|
Philippot, L., Griffiths, B.S. and Langenheder, S. (2021) Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiology and Molecular Biology Reviews, 85, e00026-20. https://doi.org/10.1128/mmbr.00026-20
|
[22]
|
Murray, C.J., Ikuta, K.S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., et al. (2022) Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet, 399, 629-655. http://www.thelancet.com/article/S0140673621027240/fulltext
|
[23]
|
de Kraker, M.E.A., Stewardson, A.J. and Harbarth, S. (2016) Will 10 Million People Die a Year Due to Antimicrobial Resistance by 2050? PLOS Medicine, 13, e1002184. https://doi.org/10.1371/journal.pmed.1002184
|
[24]
|
Merker, M., Tueffers, L., Vallier, M., Groth, E.E., Sonnenkalb, L., Unterweger, D., et al. (2020) Evolutionary Approaches to Combat Antibiotic Resistance: Opportunities and Challenges for Precision Medicine. Frontiers in Immunology, 11, Article 1938. https://doi.org/10.3389/fimmu.2020.01938
|
[25]
|
Institute for Health Metrics and Evaluation (2024) The Lancet: More than 39 Million Deaths from Antibiotic-Resistant Infections Estimated between Now and 2050, Sug-gests First Global Analysis. IHME. https://www.healthdata.org/news-events/newsroom/news-releases/lancet-more-39-million-deaths-antibiotic-resistant-infections
|
[26]
|
Naddaf, M. (2024) 40 Million Deaths by 2050: Toll of Drug-Resistant Infections to Rise by 70%. Nature, 633, 747-748. https://doi.org/10.1038/d41586-024-03033-w
|
[27]
|
Hofer, U. (2018) The Cost of Antimicrobial Resistance. Nature Reviews Microbiology, 17, 3. https://doi.org/10.1038/s41579-018-0125-x
|
[28]
|
Dadgostar, P. (2019) Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12, 3903-3910. https://doi.org/10.2147/idr.s234610
|
[29]
|
Jonas, O.B., Irwin, A., Berthe, F.C.J. and Le Gall, F.G. (2017) DRUG-RESISTANT INFECTIONS: A Threat to Our Economic Future. The World Bank.
|
[30]
|
Mancuso, G., Midiri, A., Gerace, E. and Biondo, C. (2021) Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10, Article 1310. https://doi.org/10.3390/pathogens10101310
|
[31]
|
Gashaw, M., Berhane, M., Bekele, S., Kibru, G., Teshager, L., Yilma, Y., et al. (2018) Emergence of High Drug Resistant Bacterial Isolates from Patients with Health Care Associated Infections at Jimma University Medical Center: A Cross Sectional Study. Antimicrobial Resistance & Infection Control, 7, Article No. 138. https://doi.org/10.1186/s13756-018-0431-0
|
[32]
|
Frieri, M., Kumar, K. and Boutin, A. (2017) Antibiotic resistance. Journal of Infection and Public Health, 10, 369-378. https://doi.org/10.1016/j.jiph.2016.08.007
|
[33]
|
Friedman, N.D., Temkin, E. and Carmeli, Y. (2016) The Negative Impact of Antibiotic Resistance. Clinical Microbiology and Infection, 22, 416-422. https://doi.org/10.1016/j.cmi.2015.12.002
|
[34]
|
van Hecke, O., Wang, K., Lee, J.J., Roberts, N.W. and Butler, C.C. (2017) Implications of Antibiotic Resistance for Patients’ Recovery from Common Infections in the Community: A Systematic Review and Meta-analysis. Clinical Infectious Diseases, 65, 371-382. https://doi.org/10.1093/cid/cix233
|
[35]
|
Singh, K., Sahoo, G.C. and Sharma, S. (2025) Climate Change and Antimicrobial Resistance. In: Pandey, P., Dheeman, S. and Maheshwari, D.K., Eds., Microorganisms for Sustainability, Springer, 349-361. https://doi.org/10.1007/978-981-96-3748-5_14
|
[36]
|
Lin, L., Sun, R., Yao, T., Zhou, X. and Harbarth, S. (2020) Factors Influencing Inappropriate Use of Antibiotics in Outpatient and Community Settings in China: A Mixed-Methods Systematic Review. BMJ Global Health, 5, e003599. https://doi.org/10.1136/bmjgh-2020-003599
|
[37]
|
El-Maradny, Y.A., Nortey, M.A., Hakayuwa, C.M., Anyamene, E.L., Mary, J.J.F., Engmann, S.T., et al. (2025) The Impact of Socioeconomic Disparities Climate Factors and Antimicrobial Stewardship on Antimicrobial Resistance in Africa. Discover Public Health, 22, Article No. 247. https://doi.org/10.1186/s12982-025-00631-5
|
[38]
|
Singer, A.C., Shaw, H., Rhodes, V. and Hart, A. (2016) Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Frontiers in Microbiology, 7, Article 1728. https://doi.org/10.3389/fmicb.2016.01728
|
[39]
|
Otaigbe, I.I. and Elikwu, C.J. (2023) Drivers of Inappropriate Antibiotic Use in Low-and Middle-Income Countries. JAC-Antimicrobial Resistance, 5, dlad062. https://doi.org/10.1093/jacamr/dlad062
|
[40]
|
Samreen, Ahmad, I., Malak, H.A. and Abulreesh, H.H. (2021) Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health. Journal of Global Antimicrobial Resistance, 27, 101-111. https://doi.org/10.1016/j.jgar.2021.08.001
|
[41]
|
Irfan, M., Almotiri, A. and AlZeyadi, Z.A. (2022) Antimicrobial Resistance and Its Drivers—A Review. Antibiotics, 11, Article 1362. https://doi.org/10.3390/antibiotics11101362
|
[42]
|
Kakooza, S., Tayebwa, D., Njalira, K.R., Kayaga, E., Asiimwe, I., Komugisha, M., et al. (2023) Reflections on Drivers for the Emergence and Spread of Antimicrobial Resistant Bacteria Detected from Chickens Reared on Commercial Layer Farms in Mukono District, Uganda. Veterinary Medicine: Research and Reports, 14, 209-219. https://doi.org/10.2147/vmrr.s418624
|
[43]
|
Zabala, G.A., Bellingham, K., Vidhamaly, V., Boupha, P., Boutsamay, K., Newton, P.N., et al. (2022) Substandard and Falsified Antibiotics: Neglected Drivers of Antimicrobial Resistance? BMJ Global Health, 7, e008587. https://doi.org/10.1136/bmjgh-2022-008587
|
[44]
|
Porretti, M., Arrigo, F., Di Bella, G. and Faggio, C. (2022) Impact of Pharmaceutical Products on Zebrafish: An Effective Tool to Assess Aquatic Pollution. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 261, Article ID: 109439. https://doi.org/10.1016/j.cbpc.2022.109439
|
[45]
|
Piscitelli, P. and Miani, A. (2024) Climate Change and Infectious Diseases: Navigating the Intersection through Innovation and Interdisciplinary Approaches. International Journal of Environmental Research and Public Health, 21, Article 314. https://doi.org/10.3390/ijerph21030314
|
[46]
|
Matheou, A., Abousetta, A., Pascoe, A.P., Papakostopoulos, D., Charalambous, L., Panagi, S., et al. (2025) Antibiotic Use in Livestock Farming: A Driver of Multidrug Resistance? Microorganisms, 13, Article 779. https://doi.org/10.3390/microorganisms13040779
|
[47]
|
Woldu, M.A. (2024) Antimicrobial Resistance in Ethiopia: Current Landscape, Challenges, and Strategic Interventions. Discover Medicine, 1, Article No. 68. https://doi.org/10.1007/s44337-024-00090-y
|
[48]
|
Mudenda, S., Bumbangi, F.N., Yamba, K., Munyeme, M., Malama, S., Mukosha, M., et al. (2023) Drivers of Antimicrobial Resistance in Layer Poultry Farming: Evidence from High Prevalence of Multidrug-Resistant Escherichia coli and Enterococci in Zambia. Veterinary World, 16, 1803-1814. https://doi.org/10.14202/vetworld.2023.1803-1814
|
[49]
|
Nahar, P., Unicomb, L., Lucas, P.J., Uddin, M.R., Islam, M.A., Nizame, F.A., et al. (2020) What Contributes to Inappropriate Antibiotic Dispensing among Qualified and Unqualified Healthcare Providers in Bangladesh? A Qualitative Study. BMC Health Services Research, 20, Article No. 656. https://doi.org/10.1186/s12913-020-05512-y
|
[50]
|
Booton, R.D., Meeyai, A., Alhusein, N., Buller, H., Feil, E., Lambert, H., et al. (2021) One Health Drivers of Antibacterial Resistance: Quantifying the Relative Impacts of Human, Animal and Environmental Use and Transmission. One Health, 12, Article ID: 100220. https://doi.org/10.1016/j.onehlt.2021.100220
|
[51]
|
Malijan, G.M., Howteerakul, N., Ali, N., Siri, S., Kengganpanich, M., Nascimento, R., et al. (2022) A Scoping Review of Antibiotic Use Practices and Drivers of Inappropriate Antibiotic Use in Animal Farms in WHO Southeast Asia Region. One Health, 15, Article ID: 100412. https://doi.org/10.1016/j.onehlt.2022.100412
|
[52]
|
Makiko, F., Kalungia, A.C., Kampamba, M., Mudenda, S., Schellack, N., Meyer, J.C., et al. (2025) Current Status and Future Direction of Antimicrobial Stewardship Programs and Antibiotic Prescribing in Primary Care Hospitals in Zambia. JAC-Antimicrobial Resistance, 7, dlaf085. https://doi.org/10.1093/jacamr/dlaf085
|
[53]
|
Chokshi, A., Sifri, Z., Cennimo, D. and Horng, H. (2019) Global Contributors to Antibiotic Resistance. Journal of Global Infectious Diseases, 11, 36-42. https://doi.org/10.4103/jgid.jgid_110_18
|
[54]
|
Mulchandani, R., Tiseo, K., Nandi, A., Klein, E., Gandra, S., Laxminarayan, R., et al. (2025) Global Trends in Inappropriate Use of Antibiotics, 2000-2021: Scoping Review and Prevalence Estimates. BMJ Public Health, 3, e002411. https://doi.org/10.1136/bmjph-2024-002411
|
[55]
|
Kanaan, M.H.G. (2024) Effect of Biofilm Formation in a Hostile Oxidative Stress Environment on the Survival of Campylobacter Jejuni Recovered from Poultry in Iraqi Markets. Veterinary World, 17, 136-142. https://doi.org/10.14202/vetworld.2024.136-142
|
[56]
|
Harbarth, S., Balkhy, H.H., Goossens, H., Jarlier, V., Kluytmans, J., Laxminarayan, R., et al. (2015) Antimicrobial Resistance: One World, One Fight! Antimicrobial Resistance and Infection Control, 4, Article No. 49. https://doi.org/10.1186/s13756-015-0091-2
|
[57]
|
Amann, S., Neef, K. and Kohl, S. (2019) Antimicrobial resistance (AMR). European Journal of Hospital Pharmacy, 26, 175-177. https://doi.org/10.1136/ejhpharm-2018-001820
|
[58]
|
Economou, V. and Gousia, P. (2015) Agriculture and Food Animals as a Source of Antimicrobial-Resistant Bacteria. Infection and Drug Resistance, 8, 49-61. https://doi.org/10.2147/idr.s55778
|
[59]
|
Alaboudi, A.R. (2017) Antimicrobial Residues in Table Eggs. In: Hester, P.Y., Ed., Egg Innovations and Strategies for Improvements, Elsevier, 447-456. https://doi.org/10.1016/b978-0-12-800879-9.00042-1
|
[60]
|
Marinho, C.M., Santos, T., Gonçalves, A., Poeta, P. and Igrejas, G. (2016) A Decade-Long Commitment to Antimicrobial Resistance Surveillance in Portugal. Frontiers in Microbiology, 7, Article 1650. https://doi.org/10.3389/fmicb.2016.01650
|
[61]
|
US Food and Drug Administration (2012) The Judicious Use of Medically Important Antimicrobial Drugs in Food-Producing Animals. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM216936.pdf
|
[62]
|
John Mathibe, L. and Perseverance Zwane, N. (2020) Unnecessary Antimicrobial Prescribing for Upper Respiratory Tract Infections in Children in Pietermaritzburg, South Africa. African Health Sciences, 20, 1133-1142. https://doi.org/10.4314/ahs.v20i3.15
|
[63]
|
Yevutsey, S.K., Buabeng, K.O., Aikins, M., Anto, B.P., Biritwum, R.B., Frimodt-Møller, N., et al. (2017) Situational Analysis of Antibiotic Use and Resistance in Ghana: Policy and Regulation. BMC Public Health, 17, Article No. 896. https://doi.org/10.1186/s12889-017-4910-7
|
[64]
|
Ayukekbong, J.A., Ntemgwa, M. and Atabe, A.N. (2017) The Threat of Antimicrobial Resistance in Developing Countries: Causes and Control Strategies. Antimicrobial Resistance & Infection Control, 6, Article No. 47. https://doi.org/10.1186/s13756-017-0208-x
|
[65]
|
Sono, T.M., Yeika, E., Cook, A., Kalungia, A., Opanga, S.A., Acolatse, J.E.E., et al. (2023) Current Rates of Purchasing of Antibiotics without a Prescription across Sub-Saharan Africa; Rationale and Potential Programmes to Reduce Inappropriate Dispensing and Resistance. Expert Review of Anti-Infective Therapy, 21, 1025-1055. https://doi.org/10.1080/14787210.2023.2259106
|
[66]
|
Mudenda, S., Mufwambi, W. and Mohamed, S. (2024) The Burden of Antimicrobial Resistance in Zambia, a Sub-Saharan African Country: A One Health Review of the Current Situation, Risk Factors, and Solutions. Pharmacology & Pharmacy, 15, 403-465. https://doi.org/10.4236/pp.2024.1512024
|
[67]
|
ASLM (2022) MAAP Report Zambia 2016-2018. https://aslm.org/flip-books/ZAMBIA/REPORT-ZAMBIA-PRINT.html
|
[68]
|
Mudenda, S., Simbaya, R., Moonga, G., Mwaba, F., Zulu, M., Tembo, R., et al. (2025) Surveillance of Antibiotic Use and Adherence to the WHO/INRUD Core Prescribing Indicators at a Primary Healthcare Hospital in Southern Zambia: Opportunities for Antimicrobial Stewardship Programs. Pharmacology & Pharmacy, 16, 1-19. https://doi.org/10.4236/pp.2025.161001
|
[69]
|
Yamba, K., Mudenda, S., Mpabalwani, E., Mainda, G., Mukuma, M., Samutela, M.T., et al. (2024) Antibiotic Prescribing Patterns and Carriage of Antibiotic-Resistant Escherichia coli and Enterococcus Species in Healthy Individuals from Selected Communities in Lusaka and Ndola Districts, Zambia. JAC-Antimicrobial Resistance, 6, dlae027. https://doi.org/10.1093/jacamr/dlae027
|
[70]
|
Chizimu, J.Y., Mudenda, S., Yamba, K., Lukwesa, C., Chanda, R., Nakazwe, R., et al. (2024) Antibiotic Use and Adherence to the WHO Aware Guidelines across 16 Hospitals in Zambia: A Point Prevalence Survey. JAC-Antimicrobial Resistance, 6, dlae170. https://doi.org/10.1093/jacamr/dlae170
|
[71]
|
Mudenda, S., Chilimboyi, R., Matafwali, S.K., Daka, V., Mfune, R.L., Kemgne, L.A.M., et al. (2023) Hospital Prescribing Patterns of Antibiotics in Zambia Using the WHO Prescribing Indicators Post-Covid-19 Pandemic: Findings and Implications. JAC-Antimicrobial Resistance, 6, dlae023. https://doi.org/10.1093/jacamr/dlae023
|
[72]
|
Atif, M., Sarwar, M.R., Azeem, M., Umer, D., Rauf, A., Rasool, A., et al. (2016) Assessment of WHO/INRUD Core Drug Use Indicators in Two Tertiary Care Hospitals of Bahawalpur, Punjab, Pakistan. Journal of Pharmaceutical Policy and Practice, 9, Article No. 27. https://doi.org/10.1186/s40545-016-0076-4
|
[73]
|
Mudenda, S., Lubanga, A., Jamshed, S., Biemba, B., Sakala, R., Chiyabi, M., et al. (2025) Point Prevalence Survey of Antibiotic Use in Level 1 Hospitals in Zambia: Future Prospects for Antimicrobial Stewardship Programs. Infection and Drug Resistance, 18, 887-902. https://doi.org/10.2147/idr.s509522
|
[74]
|
Oloso, N.O., Fagbo, S., Garbati, M., Olonitola, S.O., Awosanya, E.J., Aworh, M.K., et al. (2018) Antimicrobial Resistance in Food Animals and the Environment in Nigeria: A Review. International Journal of Environmental Research and Public Health, 15, Article 1284. https://doi.org/10.3390/ijerph15061284
|
[75]
|
Gulumbe, B.H., Haruna, U.A., Almazan, J., Ibrahim, I.H., Faggo, A.A. and Bazata, A.Y. (2022) Combating the Menace of Antimicrobial Resistance in Africa: A Review on Stewardship, Surveillance and Diagnostic Strategies. Biological Procedures Online, 24, Article No. 19. https://doi.org/10.1186/s12575-022-00182-y
|
[76]
|
Kariuki, S., Kering, K., Wairimu, C., Onsare, R. and Mbae, C. (2022) Antimicrobial Resistance Rates and Surveillance in Sub-Saharan Africa: Where Are We Now? Infection and Drug Resistance, 15, 3589-3609. https://doi.org/10.2147/idr.s342753
|
[77]
|
Kimera, Z.I., Mshana, S.E., Rweyemamu, M.M., Mboera, L.E.G. and Matee, M.I.N. (2020) Antimicrobial Use and Resistance in Food-Producing Animals and the Environment: An African Perspective. Antimicrobial Resistance & Infection Control, 9, Article No. 37. https://doi.org/10.1186/s13756-020-0697-x
|
[78]
|
Schar, D., Sommanustweechai, A., Laxminarayan, R. and Tangcharoensathien, V. (2018) Surveillance of Antimicrobial Consumption in Animal Production Sectors of Low-and Middle-Income Countries: Optimizing Use and Addressing Antimicrobial Resistance. PLOS Medicine, 15, e1002521. https://doi.org/10.1371/journal.pmed.1002521
|
[79]
|
Mudenda, S., Mukela, M., Matafwali, S., Banda, M., Mutati, R.K., Muungo, L.T., et al. (2022) Knowledge, Attitudes, and Practices Towards Antibiotic Use and Antimicrobial Resistance among Pharmacy Students at the University of Zambia: Implications for Antimicrobial Stewardship Programmes. Scholars Academic Journal of Pharmacy, 11, 117-124. https://doi.org/10.36347/sajp.2022.v11i08.002
|
[80]
|
Sefah, I.A., Chetty, S., Yamoah, P., Meyer, J.C., Chigome, A., Godman, B., et al. (2023) A Multicenter Cross-Sectional Survey of Knowledge, Attitude, and Practices of Healthcare Professionals Towards Antimicrobial Stewardship in Ghana: Findings and Implications. Antibiotics, 12, Article 1497. https://doi.org/10.3390/antibiotics12101497
|
[81]
|
Sefah, I.A., Akwaboah, E., Sarkodie, E., Godman, B. and Meyer, J.C. (2022) Evaluation of Healthcare Students’ Knowledge on Antibiotic Use, Antimicrobial Resistance and Antimicrobial Stewardship Programs and Associated Factors in a Tertiary University in Ghana: Findings and Implications. Antibiotics, 11, Article 1679. https://doi.org/10.3390/antibiotics11121679
|
[82]
|
Ogoina, D., Iliyasu, G., Kwaghe, V., Otu, A., Akase, I.E., Adekanmbi, O., et al. (2021) Predictors of Antibiotic Prescriptions: A Knowledge, Attitude and Practice Survey among Physicians in Tertiary Hospitals in Nigeria. Antimicrobial Resistance & Infection Control, 10, Article No. 73. https://doi.org/10.1186/s13756-021-00940-9
|
[83]
|
Nemr, N., Kishk, R.M., Elsaid, N.M.A.B., Louis, N., Fahmy, E. and Khattab, S. (2023) Knowledge, Attitude, and Practice (KAP) of Antimicrobial Prescription and Its Resistance among Health Care Providers in the COVID-19 Era: A Cross Sectional Study. PLOS ONE, 18, e0289711. https://doi.org/10.1371/journal.pone.0289711
|
[84]
|
Kalam, M.A., Rahman, M.S., Alim, M.A., Shano, S., Afrose, S., Jalal, F.A., et al. (2022) Knowledge, Attitudes, and Common Practices of Livestock and Poultry Veterinary Practitioners Regarding the AMU and AMR in Bangladesh. Antibiotics, 11, Article 80. https://doi.org/10.3390/antibiotics11010080
|
[85]
|
Assar, A., Abdelraoof, M.I., Abdel-Maboud, M., Shaker, K.H., Menshawy, A., Swelam, A.H., et al. (2020) Knowledge, Attitudes, and Practices of Egypt’s Future Physicians Towards Antimicrobial Resistance (KAP-AMR Study): A Multicenter Cross-Sectional Study. Environmental Science and Pollution Research, 27, 21292-21298. https://doi.org/10.1007/s11356-020-08534-5
|
[86]
|
Chapot, L., Sarker, M.S., Begum, R., Hossain, D., Akter, R., Hasan, M.M., et al. (2021) Knowledge, Attitudes and Practices Regarding Antibiotic Use and Resistance among Veterinary Students in Bangladesh. Antibiotics, 10, Article 332. https://doi.org/10.3390/antibiotics10030332
|
[87]
|
Fuller, W., Kapona, O., Aboderin, A.O., Adeyemo, A.T., Olatunbosun, O.I., Gahimbare, L., et al. (2023) Education and Awareness on Antimicrobial Resistance in the WHO African Region: A Systematic Review. Antibiotics, 12, Article 1613. https://doi.org/10.3390/antibiotics12111613
|
[88]
|
Mittal, N., Goel, P., Goel, K., Sharma, R., Nath, B., Singh, S., et al. (2023) Awareness Regarding Antimicrobial Resistance and Antibiotic Prescribing Behavior among Physicians: Results from a Nationwide Cross-Sectional Survey in India. Antibiotics, 12, Article 1496. https://doi.org/10.3390/antibiotics12101496
|
[89]
|
Essack, S.Y., Desta, A.T., Abotsi, R.E. and Agoba, E.E. (2016) Antimicrobial Resistance in the WHO African Region: Current Status and Roadmap for Action. Journal of Public Health, 39, 8-13. https://doi.org/10.1093/pubmed/fdw015
|
[90]
|
Moirongo, R.M., Aglanu, L.M., Lamshöft, M., Adero, B.O., Yator, S., Anyona, S., et al. (2022) Laboratory-based Surveillance of Antimicrobial Resistance in Regions of Kenya: An Assessment of Capacities, Practices, and Barriers by Means of Multi-Facility Survey. Frontiers in Public Health, 10, Article 1003178. https://doi.org/10.3389/fpubh.2022.1003178
|
[91]
|
Shempela, D.M., Mudenda, S., Kasanga, M., Daka, V., Kangongwe, M.H., Kamayani, M., et al. (2024) A Situation Analysis of the Capacity of Laboratories in Faith-Based Hospitals in Zambia to Conduct Surveillance of Antimicrobial Resistance: Opportunities to Improve Diagnostic Stewardship. Microorganisms, 12, Article 1697. https://doi.org/10.3390/microorganisms12081697
|
[92]
|
Yamba, K., Chizimu, J.Y., Mudenda, S., Lukwesa, C., Chanda, R., Nakazwe, R., et al. (2024) Assessment of Antimicrobial Resistance Laboratory-Based Surveillance Capacity of Hospitals in Zambia: Findings and Implications for System Strengthening. Journal of Hospital Infection, 148, 129-137. https://doi.org/10.1016/j.jhin.2024.03.014
|
[93]
|
Zongo, E., Dama, E., Yenyetou, D., Muhigwa, M., Nikiema, A., Dahourou, G.A., et al. (2024) On-site Evaluation as External Quality Assessment of Microbiology Laboratories Involved in Sentinel Laboratory-Based Antimicrobial Resistance Surveillance Network in Burkina Faso. Antimicrobial Resistance & Infection Control, 13, Article No. 3. https://doi.org/10.1186/s13756-023-01362-5
|
[94]
|
Yenyetou, D., Sanou, I., Madingar, P.D., Ouattara, C., Zongo, E., Zongo, Z., et al. (2022) Impact of Mentoring on the Implementation of the Quality Management System in Clinical Laboratories in Burkina Faso, West Africa. Accountability in Research, 31, 515-527. https://doi.org/10.1080/08989621.2022.2145957
|
[95]
|
Orelle, A., Nikiema, A., Zakaryan, A., Albetkova, A.A., Keita, M., Rayfield, M.A., et al. (2022) A Multilingual Tool for Standardized Laboratory Biosafety and Biosecurity Assessment and Monitoring. Health Security, 20, 488-496. https://doi.org/10.1089/hs.2022.0030
|
[96]
|
Dama, E., Orelle, A., Nikiema, A., Mandingar, P.D., Naby, A., Bationo, G.B., et al. (2022) Strengthening Biorisk Management Capacities in Burkina Faso: Contribution of the Global Health Security Agenda. Health Security, 20, 479-487. https://doi.org/10.1089/hs.2019.0069
|
[97]
|
Matee, M., Mshana, S.E., Mtebe, M., Komba, E.V., Moremi, N., Lutamwa, J., et al. (2023) Mapping and Gap Analysis on Antimicrobial Resistance Surveillance Systems in Kenya, Tanzania, Uganda and Zambia. Bulletin of the National Research Centre, 47, Article No. 12. https://doi.org/10.1186/s42269-023-00986-2
|
[98]
|
Melaku, T. and Assegid, L. (2025) Prescription in Peril: The Sociology of Antibiotics and Antimicrobial Resistance in Low Resource Settings. Discover Social Science and Health, 5, Article No. 71. https://doi.org/10.1007/s44155-025-00225-1
|
[99]
|
Kapatsa, T., Lubanga, A., Bwanali, A., Harawa, G., Mudenda, S., Chipewa, P., et al. (2025) Behavioral and Socio-Economic Determinants of Antimicrobial Resistance in Sub-Saharan Africa: A Systematic Review. Infection and Drug Resistance, 18, 855-873. https://doi.org/10.2147/idr.s503730
|
[100]
|
Shutt, A.E., Ashiru-Oredope, D., Price, J., Padoveze, M.C., Shafiq, N., Carter, E., et al. (2025) The Intersection of the Social Determinants of Health and Antimicrobial Resistance in Human Populations: A Systematic Review. BMJ Global Health, 10, e017389. https://doi.org/10.1136/bmjgh-2024-017389
|
[101]
|
Harada, K. and Asai, T. (2010) Role of Antimicrobial Selective Pressure and Secondary Factors on Antimicrobial Resistance Prevalence in Escherichia coli from Food-Producing Animals in Japan. Journal of Biomedicine and Biotechnology, 2010, Article ID: 180682. https://doi.org/10.1155/2010/180682
|
[102]
|
Skalet, A.H., Cevallos, V., Ayele, B., Gebre, T., Zhou, Z., Jorgensen, J.H., et al. (2010) Antibiotic Selection Pressure and Macrolide Resistance in Nasopharyngeal Streptococcus Pneumoniae: A Cluster-Randomized Clinical Trial. PLOS Medicine, 7, e1000377. https://doi.org/10.1371/journal.pmed.1000377
|
[103]
|
Keenan, J.D., Chin, S.A., Amza, A., Kadri, B., Nassirou, B., Cevallos, V., et al. (2018) The Effect of Antibiotic Selection Pressure on the Nasopharyngeal Macrolide Resistome: A Cluster-Randomized Trial. Clinical Infectious Diseases, 67, 1736-1742. https://doi.org/10.1093/cid/ciy339
|
[104]
|
Tello, A., Austin, B. and Telfer, T.C. (2012) Selective Pressure of Antibiotic Pollution on Bacteria of Importance to Public Health. Environmental Health Perspectives, 120, 1100-1106. https://doi.org/10.1289/ehp.1104650
|
[105]
|
Bizimana, T., Kagisha, V., Nyandwi, J.B., Nyirimigabo, A.K., Muganga, R., Mukanyangezi, M.F., et al. (2022) Investigation of the Quality of the 12 Most-Used Antibiotics Available in Retail Private Pharmacies in Rwanda. Antibiotics, 11, Article 329. https://doi.org/10.3390/antibiotics11030329
|
[106]
|
Jere, E., Munkombwe, D., Mukosha, M., Mudenda, S., Kalungia, A.C. and Chabalenge, B. (2024) Quality of Antiretroviral, Antimalarial and Antituberculosis Medicines in Zambia: Findings of Routine Post-Marketing Surveillance. The Journal of Medicine Access, 8, 1-11. https://doi.org/10.1177/27550834241266755
|
[107]
|
Bekoe, S.O., Ahiabu, M., Orman, E., Tersbøl, B.P., Adosraku, R.K., Hansen, M., et al. (2020) Exposure of Consumers to Substandard Antibiotics from Selected Authorised and Unauthorised Medicine Sales Outlets in Ghana. Tropical Medicine & International Health, 25, 962-975. https://doi.org/10.1111/tmi.13442
|
[108]
|
Osei-Safo, D., Egbo, H.A., Nettey, H., Konadu, D.Y. and Addae-Mensah, I. (2016) Evaluation of the Quality of Some Antibiotics Distributed in Accra and Lagos. International Journal of Pharmaceutical Sciences and Research, 7, 1991-2000.
|
[109]
|
Callister, L.C. (2019) Substandard and Falsified Medical Products. MCN: The American Journal of Maternal/Child Nursing, 44, 361-361. https://doi.org/10.1097/nmc.0000000000000579
|
[110]
|
Jit, M., Ng, D.H.L., Luangasanatip, N., Sandmann, F., Atkins, K.E., Robotham, J.V., et al. (2020) Quantifying the Economic Cost of Antibiotic Resistance and the Impact of Related Interventions: Rapid Methodological Review, Conceptual Framework and Recommendations for Future Studies. BMC Medicine, 18, Article No. 38. https://doi.org/10.1186/s12916-020-1507-2
|
[111]
|
Naylor, N.R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., et al. (2018) Estimating the Burden of Antimicrobial Resistance: A Systematic Literature Review. Antimicrobial Resistance & Infection Control, 7, Article No. 58. https://doi.org/10.1186/s13756-018-0336-y
|
[112]
|
Innes, G.K., Randad, P.R., Korinek, A., Davis, M.F., Price, L.B., So, A.D., et al. (2020) External Societal Costs of Antimicrobial Resistance in Humans Attributable to Antimicrobial Use in Livestock. Annual Review of Public Health, 41, 141-157. https://doi.org/10.1146/annurev-publhealth-040218-043954
|
[113]
|
Gandra, S., Barter, D.M. and Laxminarayan, R. (2014) Economic Burden of Antibiotic Resistance: How Much Do We Really Know? Clinical Microbiology and Infection, 20, 973-980. https://doi.org/10.1111/1469-0691.12798
|
[114]
|
Wozniak, T.M., Dyda, A., Merlo, G. and Hall, L. (2022) Disease Burden, Associated Mortality and Economic Impact of Antimicrobial Resistant Infections in Australia. The Lancet Regional Health—Western Pacific, 27, Article ID: 100521. https://doi.org/10.1016/j.lanwpc.2022.100521
|
[115]
|
Naghavi, M., Emil Vollset, S., Ikuta, K.S., Swetschinski, L.R., Gray, A.P., Wool, E.E., et al. (2024) Global Burden of Bacterial Antimicrobial Resistance 1990-2021: A Systematic Analysis with Forecasts to 2050. The Lancet, 404, 1199-1226. http://www.thelancet.com/article/S0140673624018671/fulltext
|
[116]
|
Ikuta, K.S., Swetschinski, L.R., Robles Aguilar, G., Sharara, F., Mestrovic, T., Gray, A.P., et al. (2022) Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, 400, 2221-2248. http://www.thelancet.com/article/S0140673622021857/fulltext
|
[117]
|
World Organization for Animal Health (2021) OIE Terrestrial Animal Health Code. OIE. https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/?id=169&L=0&htmfile=chapitre_antibio_harmonisation.htm
|
[118]
|
Food and Agriculture Organization of the United Nations (2019) Monitoring and Surveillance of Antimicrobial Resistance in Bacteria from Healthy Food Animals Intended for Consumption. Vol. 1, Regional Antimicrobial Resistance Monitoring and Surveillance Guidelines. 1-84. https://www.fao.org/documents/card/en/c/ca6897en/
|
[119]
|
Earnshaw, S., Mendez, A., Monnet, D.L., Hicks, L., Cruickshank, M., Weekes, L., et al. (2013) Global collaboration to encourage prudent antibiotic use. The Lancet Infectious Diseases, 13, 1003-1004. https://doi.org/10.1016/s1473-3099(13)70315-3
|
[120]
|
Mariappan, V., Vellasamy, K.M., Mohamad, N.A., Subramaniam, S. and Vadivelu, J. (2021) Onehealth Approaches Contribute Towards Antimicrobial Resistance: Malaysian Perspective. Frontiers in Microbiology, 12, Article 718774. https://doi.org/10.3389/fmicb.2021.718774
|
[121]
|
Lee, C., Cho, I., Jeong, B. and Lee, S. (2013) Strategies to Minimize Antibiotic Resistance. International Journal of Environmental Research and Public Health, 10, 4274-4305. https://doi.org/10.3390/ijerph10094274
|
[122]
|
Brudzynski, K., Abubaker, K., St-Martin, L. and Castle, A. (2011) Reexamining the Role of Hydrogen Peroxide in Bacteriostatic and Bactericidal Activities of Honey. Frontiers in Microbiology, 2, Article 213. https://doi.org/10.3389/fmicb.2011.00213
|
[123]
|
Piddock, L.J.V. (2019) The Global Antibiotic Research and Development Partnership (GARDP): Researching and Developing New Antibiotics to Meet Global Public Health Needs. MedChemComm, 10, 1227-1230. https://doi.org/10.1039/c9md90010a
|
[124]
|
Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., et al. (2018) Antibiotic Resistance: A Rundown of a Global Crisis. Infection and Drug Resistance, 11, 1645-1658. https://doi.org/10.2147/idr.s173867
|
[125]
|
Salam, M.A., Al-Amin, M.Y., Salam, M.T., Pawar, J.S., Akhter, N., Rabaan, A.A., et al. (2023) Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare, 11, Article 1946. https://doi.org/10.3390/healthcare11131946
|
[126]
|
Kumar, P., Kumar, D., Gautam, V., Singh, S. and Fadhil Pratama, M.R. (2024) Antimicrobial Resistance a Global Burden—Mechanisms, Current Insights, and Future Directions. Bulletin of Pharmaceutical Sciences Assiut University, 48, 1-23. https://doi.org/10.21608/bfsa.2024.310197.2228
|
[127]
|
Hussain, A., Najeeb, A. and Ali, S.A. (2024) Antimicrobial Resistance. In: Kannan, H., Rodriguez, R.V., Rajaraman, S. and Pise, A.A., Eds., AI-Driven Breakthroughs in Antimicrobial Resistance, IGI Global, 27-74. https://doi.org/10.4018/979-8-3693-7550-1.ch002
|
[128]
|
Collignon, P., Beggs, J.J., Walsh, T.R., Gandra, S. and Laxminarayan, R. (2018) Anthropological and Socioeconomic Factors Contributing to Global Antimicrobial Resistance: A Univariate and Multivariable Analysis. The Lancet Planetary Health, 2, e398-e405. https://doi.org/10.1016/s2542-5196(18)30186-4
|
[129]
|
Jasovský, D., Littmann, J., Zorzet, A. and Cars, O. (2016) Antimicrobial Resistance—A Threat to the World’s Sustainable Development. Upsala Journal of Medical Sciences, 121, 159-164. https://doi.org/10.1080/03009734.2016.1195900
|
[130]
|
Almagor, J., Temkin, E., Benenson, I., Fallach, N. and Carmeli, Y. (2018) The Impact of Antibiotic Use on Transmission of Resistant Bacteria in Hospitals: Insights from an Agent-Based Model. PLOS ONE, 13, e0197111. https://doi.org/10.1371/journal.pone.0197111
|
[131]
|
Versporten, A., Zarb, P., Caniaux, I., Gros, M.F., Drapier, N., Miller, M., et al. (2018) Antimicrobial Consumption and Resistance in Adult Hospital Inpatients in 53 Countries: Results of an Internet-Based global Point Prevalence Survey. The Lancet Global Health, 6, e619-e629. https://pubmed.ncbi.nlm.nih.gov/29681513/
|
[132]
|
IACG (2018) Surveillance and Monitoring for Antimicrobial Use and Resistance. https://www.who.int/docs/default-source/antimicrobial-resistance/amr-gcp-tjs/iacg-surveillance-and-monitoring-for-amu-and-amr-110618.pdf
|
[133]
|
Tang, K.L., Caffrey, N.P., Nóbrega, D.B., Cork, S.C., Ronksley, P.E., Barkema, H.W., et al. (2017) Restricting the Use of Antibiotics in Food-Producing Animals and Its Associations with Antibiotic Resistance in Food-Producing Animals and Human Beings: A Systematic Review and Meta-analysis. The Lancet Planetary Health, 1, e316-e327. https://doi.org/10.1016/s2542-5196(17)30141-9
|
[134]
|
Schwarz, S., Loeffler, A. and Kadlec, K. (2016) Bacterial Resistance to Antimicrobial Agents and Its Impact on Veterinary and Human Medicine. Veterinary Dermatology, 28, 82-e19. https://doi.org/10.1111/vde.12362
|
[135]
|
Aslam, B., Khurshid, M., Arshad, M.I., Muzammil, S., Rasool, M., Yasmeen, N., et al. (2021) Antibiotic Resistance: One Health One World Outlook. Frontiers in Cellular and Infection Microbiology, 11, Article 771510. https://doi.org/10.3389/fcimb.2021.771510
|
[136]
|
Bordier, M., Binot, A., Pauchard, Q., Nguyen, D.T., Trung, T.N., Fortané, N., et al. (2018) Antibiotic Resistance in Vietnam: Moving Towards a One Health Surveillance System. BMC Public Health, 18, Article No. 1136. https://doi.org/10.1186/s12889-018-6022-4
|
[137]
|
Queenan, K., Häsler, B. and Rushton, J. (2016) A One Health Approach to Antimicrobial Resistance Surveillance: Is There a Business Case for It? International Journal of Antimicrobial Agents, 48, 422-427. https://doi.org/10.1016/j.ijantimicag.2016.06.014
|
[138]
|
Pokharel, S., Shrestha, P. and Adhikari, B. (2020) Antimicrobial Use in Food Animals and Human Health: Time to Implement ‘One Health’ Approach. Antimicrobial Resistance & Infection Control, 9, Article No. 181. https://doi.org/10.1186/s13756-020-00847-x
|
[139]
|
CDC (2022) Combating Antimicrobial Resistance in People and Animals: A One Health Approach. Centers for Disease Control and Prevention, 18. https://www.preprints.org/manuscript/202201.0181/v1
|
[140]
|
White, A. and Hughes, J.M. (2019) Critical Importance of a One Health Approach to Antimicrobial Resistance. EcoHealth, 16, 404-409. https://doi.org/10.1007/s10393-019-01415-5
|
[141]
|
Guardabassi, L., Butaye, P., Dockrell, D.H., Fitzgerald, J.R. and Kuijper, E.J. (2020) One Health: A Multifaceted Concept Combining Diverse Approaches to Prevent and Control Antimicrobial Resistance. Clinical Microbiology and Infection, 26, 1604-1605. https://doi.org/10.1016/j.cmi.2020.07.012
|
[142]
|
Aidara-Kane, A., Angulo, F.J., Conly, J.M., Minato, Y., Silbergeld, E.K., McEwen, S.A., et al. (2018) World Health Organization (WHO) Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals. Antimicrobial Resistance & Infection Control, 7, Article No. 7. https://doi.org/10.1186/s13756-017-0294-9
|
[143]
|
Collignon, P.C., Conly, J.M., Andremont, A., McEwen, S.A. and Aidara-Kane, A. (2016) World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies to Control Antimicrobial Resistance from Food Animal Production. Clinical Infectious Diseases, 63, 1087-1093. https://doi.org/10.1093/cid/ciw475
|
[144]
|
Howard, S.J., Catchpole, M., Watson, J. and Davies, S.C. (2013) Antibiotic Resistance: Global Response Needed. The Lancet Infectious Diseases, 13, 1001-1003. https://doi.org/10.1016/s1473-3099(13)70195-6
|
[145]
|
Browne, A.J., Chipeta, M.G., Haines-Woodhouse, G., Kumaran, E.P.A., Hamadani, B.H.K., Zaraa, S., et al. (2021) Global Antibiotic Consumption and Usage in Humans, 2000-18: A Spatial Modelling Study. The Lancet Planetary Health, 5, e893-e904. https://doi.org/10.1016/s2542-5196(21)00280-1
|
[146]
|
Mudenda, S., Chabalenge, B., Daka, V., Mfune, R.L., Salachi, K.I., Mohamed, S., et al. (2023) Global Strategies to Combat Antimicrobial Resistance: A One Health Perspective. Pharmacology & Pharmacy, 14, 271-328. https://doi.org/10.4236/pp.2023.148020
|
[147]
|
Jonnalagadda, V.G. (2025) Anti-Microbial Resistance: The Problem Is Now or in the Future. Health Affairs Scholar, 3, qxaf027. https://doi.org/10.1093/haschl/qxaf027
|
[148]
|
Pokharel, S., Raut, S. and Adhikari, B. (2019) Tackling Antimicrobial Resistance in Low-Income and Middle-Income Countries. BMJ Global Health, 4, e002104. https://doi.org/10.1136/bmjgh-2019-002104
|
[149]
|
Rony, M.K.K., Sharmi, P.D. and Alamgir, H.M. (2023) Addressing Antimicrobial Resistance in Low and Middle-Income Countries: Overcoming Challenges and Implementing Effective Strategies. Environmental Science and Pollution Research, 30, 101896-101902. https://doi.org/10.1007/s11356-023-29434-4
|
[150]
|
Godman, B., Haque, M., McKimm, J., Abu Bakar, M., Sneddon, J., Wale, J., et al. (2019) Ongoing Strategies to Improve the Management of Upper Respiratory Tract Infections and Reduce Inappropriate Antibiotic Use Particularly among Lower and Middle-Income Countries: Findings and Implications for the Future. Current Medical Research and Opinion, 36, 301-327. https://doi.org/10.1080/03007995.2019.1700947
|
[151]
|
Godman, B., Egwuenu, A., Haque, M., Malande, O.O., Schellack, N., Kumar, S., et al. (2021) Strategies to Improve Antimicrobial Utilization with a Special Focus on Developing Countries. Life, 11, Article 528. https://doi.org/10.3390/life11060528
|
[152]
|
Spellberg, B., Gilbert, D.N., Baym, M., Bearman, G., Boyles, T., Casadevall, A., et al. (2025) Sustainable Solutions to the Continuous Threat of Antimicrobial Resistance. Health Affairs Scholar, 3, qxaf012. https://doi.org/10.1093/haschl/qxaf012
|
[153]
|
Azabo, R., Mshana, S., Matee, M. and Kimera, S.I. (2022) Antimicrobial Usage in Cattle and Poultry Production in Dar Es Salaam, Tanzania: Pattern and Quantity. BMC Veterinary Research, 18, Article No. 7. https://doi.org/10.1186/s12917-021-03056-9
|
[154]
|
Agyare, C., Etsiapa Boamah, V., Ngofi Zumbi, C. and Boateng Osei, F. (2019) Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. In: Kumar, Y., Ed., Antimicrobial Resistance—A Global Threat, IntechOpen, 33-51. https://doi.org/10.5772/intechopen.79371
|
[155]
|
Dávalos-Almeyda, M., Guerrero, A., Medina, G., Dávila-Barclay, A., Salvatierra, G., Calderón, M., et al. (2022) Antibiotic Use and Resistance Knowledge Assessment of Personnel on Chicken Farms with High Levels of Antimicrobial Resistance: A Cross-Sectional Survey in Ica, Peru. Antibiotics, 11, Article 190. https://doi.org/10.3390/antibiotics11020190
|
[156]
|
Plata, G., Baxter, N.T., Susanti, D., Volland-Munson, A., Gangaiah, D., Nagireddy, A., et al. (2022) Growth Promotion and Antibiotic Induced Metabolic Shifts in the Chicken Gut Microbiome. Communications Biology, 5, Article No. 293. https://doi.org/10.1038/s42003-022-03239-6
|
[157]
|
Kiambi, S., Mwanza, R., Sirma, A., Czerniak, C., Kimani, T., Kabali, E., et al. (2021) Understanding Antimicrobial Use Contexts in the Poultry Sector: Challenges for Small-Scale Layer Farms in Kenya. Antibiotics, 10, Article 106. https://doi.org/10.3390/antibiotics10020106
|
[158]
|
Zhou, Y., Li, Y., Zhang, L., Wu, Z., Huang, Y., Yan, H., et al. (2020) Antibiotic Administration Routes and Oral Exposure to Antibiotic Resistant Bacteria as Key Drivers for Gut Microbiota Disruption and Resistome in Poultry. Frontiers in Microbiology, 11, Article 1319. https://doi.org/10.3389/fmicb.2020.01319
|
[159]
|
Mudenda, S., Mulenga, K.M., Nyirongo, R., Chabalenge, B., Chileshe, C., Daka, V., et al. (2024) Non-prescription Sale and Dispensing of Antibiotics for Prophylaxis in Broiler Chickens in Lusaka District, Zambia: Findings and Implications on One Health. JAC-Antimicrobial Resistance, 6, dlae094. https://doi.org/10.1093/jacamr/dlae094
|
[160]
|
Khan, X., Rymer, C., Ray, P. and Lim, R. (2021) Quantification of Antimicrobial Use in Fijian Livestock Farms. One Health, 13, 100326. https://doi.org/10.1016/j.onehlt.2021.100326
|
[161]
|
Rubiola, S., Chiesa, F., Dalmasso, A., Di Ciccio, P. and Civera, T. (2020) Detection of Antimicrobial Resistance Genes in the Milk Production Environment: Impact of Host DNA and Sequencing Depth. Frontiers in Microbiology, 11, Article 1983. https://doi.org/10.3389/fmicb.2020.01983
|
[162]
|
Mainda, G., Bessell, P.R., Muma, J.B., McAteer, S.P., Chase-Topping, M.E., Gibbons, J., et al. (2015) Prevalence and Patterns of Antimicrobial Resistance among Escherichia coli Isolated from Zambian Dairy Cattle across Different Production Systems. Scientific Reports, 5, Article No. 12439. https://doi.org/10.1038/srep12439
|
[163]
|
Nhung, N., Cuong, N., Thwaites, G. and Carrique-Mas, J. (2016) Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review. Antibiotics, 5, Article 37. https://doi.org/10.3390/antibiotics5040037
|
[164]
|
Havelaar, A.H., Graveland, H., van de Kassteele, J., Zomer, T.P., Veldman, K. and Bouwknegt, M. (2017) A Summary Index for Antimicrobial Resistance in Food Animals in the Netherlands. BMC Veterinary Research, 13, Article No. 305. https://doi.org/10.1186/s12917-017-1216-z
|
[165]
|
Agunos, A., Léger, D.F., Carson, C.A., Gow, S.P., Bosman, A., Irwin, R.J., et al. (2017) Antimicrobial Use Surveillance in Broiler Chicken Flocks in Canada, 2013-2015. PLOS ONE, 12, e0179384. https://doi.org/10.1371/journal.pone.0179384
|
[166]
|
Inthavong, P., Chanthavong, S., Nammanininh, P., Phommachanh, P., Theppangna, W., Agunos, A., et al. (2022) Antimicrobial Resistance Surveillance of Pigs and Chickens in the Lao People’s Democratic Republic, 2018-2021. Antibiotics, 11, Article 177. https://doi.org/10.3390/antibiotics11020177
|
[167]
|
Murphy, C.P., Carson, C., Smith, B.A., Chapman, B., Marrotte, J., McCann, M., et al. (2018) Factors Potentially Linked with the Occurrence of Antimicrobial Resistance in Selected Bacteria from Cattle, Chickens and Pigs: A Scoping Review of Publications for Use in Modelling of Antimicrobial Resistance (IAM.AMR Project). Zoonoses and Public Health, 65, 957-971. https://doi.org/10.1111/zph.12515
|
[168]
|
Osena, G., Kapoor, G., Kalanxhi, E., Ouassa, T., Shumba, E., Brar, S., et al. (2025) Antimicrobial Resistance in Africa: A Retrospective Analysis of Data from 14 Countries, 2016-2019. PLOS Medicine, 22, e1004638. https://doi.org/10.1371/journal.pmed.1004638
|
[169]
|
Chilawa, S., Mudenda, S., Daka, V., Chileshe, M., Matafwali, S., Chabalenge, B., et al. (2023) Knowledge, Attitudes, and Practices of Poultry Farmers on Antimicrobial Use and Resistance in Kitwe, Zambia: Implications on Antimicrobial Stewardship. Open Journal of Animal Sciences, 13, 60-81. https://doi.org/10.4236/ojas.2023.131005
|
[170]
|
Mudenda, S., Mukosha, M., Godman, B., Fadare, J., Malama, S., Munyeme, M., et al. (2022) Knowledge, Attitudes, and Practices of Community Pharmacy Professionals on Poultry Antibiotic Dispensing, Use, and Bacterial Antimicrobial Resistance in Zambia: Implications on Antibiotic Stewardship and WHO Aware Classification of Antibiotics. Antibiotics, 11, Article 1210. https://doi.org/10.3390/antibiotics11091210
|
[171]
|
Ndukui, J.G., Gikunju, J.K., Aboge, G.O. and Mbaria, J.M. (2021) Antimicrobial Use in Commercial Poultry Production Systems in Kiambu County, Kenya: A Cross-Sectional Survey on Knowledge, Attitudes and Practices. Open Journal of Animal Sciences, 11, 658-681. https://doi.org/10.4236/ojas.2021.114045
|
[172]
|
Castillo, A.K., Espinoza, K., Chaves, A.F., Guibert, F., Ruiz, J. and Pons, M.J. (2022) Antibiotic Susceptibility among Non-Clinical Escherichia coli as a Marker of Antibiotic Pressure in Peru (2009-2019): One Health Approach. Heliyon, 8, e10573. https://doi.org/10.1016/j.heliyon.2022.e10573
|
[173]
|
Magiorakos, A., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., et al. (2012) Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clinical Microbiology and Infection, 18, 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
|
[174]
|
Sweeney, M.T., Lubbers, B.V., Schwarz, S. and Watts, J.L. (2018) Applying Definitions for Multidrug Resistance, Extensive Drug Resistance and Pandrug Resistance to Clinically Significant Livestock and Companion Animal Bacterial Pathogens. Journal of Antimicrobial Chemotherapy, 73, 1460-1463. https://doi.org/10.1093/jac/dky043
|
[175]
|
Guetiya Wadoum, R.E., Zambou, N.F., Anyangwe, F.F., Njimou, J.R., Coman, M.M., Verdenelli, M.C., et al. (2016) Abusive Use of Antibiotics in Poultry Farming in Cameroon and the Public Health Implications. British Poultry Science, 57, 483-493. https://doi.org/10.1080/00071668.2016.1180668
|
[176]
|
Ben Sallem, R., Ben Slama, K., Sáenz, Y., Rojo-Bezares, B., Estepa, V., Jouini, A., et al. (2012) Prevalence and Characterization of Extended-Spectrum β-Lactamase (ESBL)-and Cmy-2-Producing Escherichia coli Isolates from Healthy Food-Producing Animals in Tunisia. Foodborne Pathogens and Disease, 9, 1137-1142. https://doi.org/10.1089/fpd.2012.1267
|
[177]
|
Kasanga, M., Kwenda, G., Wu, J., Kasanga, M., Mwikisa, M.J., Chanda, R., et al. (2023) Antimicrobial Resistance Patterns and Risk Factors Associated with ESBL-Producing and MDR Escherichia coli in Hospital and Environmental Settings in Lusaka, Zambia: Implications for One Health, Antimicrobial Stewardship and Surveillance Systems. Microorganisms, 11, Article 1951. https://doi.org/10.3390/microorganisms11081951
|
[178]
|
Teklu, D.S., Negeri, A.A., Legese, M.H., Bedada, T.L., Woldemariam, H.K. and Tullu, K.D. (2019) Extended-Spectrum β-Lactamase Production and Multi-Drug Resistance among Enterobacteriaceae Isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance & Infection Control, 8, Article No. 39. https://doi.org/10.1186/s13756-019-0488-4
|
[179]
|
Beshah, D., Desta, A.F., Woldemichael, G.B., Belachew, E.B., Derese, S.G., Zelelie, T.Z., et al. (2023) High Burden of ESBL and Carbapenemase-Producing Gram-Negative Bacteria in Bloodstream Infection Patients at a Tertiary Care Hospital in Addis Ababa, Ethiopia. PLOS ONE, 18, e0287453. https://doi.org/10.1371/journal.pone.0287453
|
[180]
|
Alonso, C.A., Zarazaga, M., Ben Sallem, R., Jouini, A., Ben Slama, K. and Torres, C. (2017) Antibiotic Resistance in Escherichia coli in Husbandry Animals: The African Perspective. Letters in Applied Microbiology, 64, 318-334. https://doi.org/10.1111/lam.12724
|
[181]
|
Mudenda, S., Malama, S., Munyeme, M., Matafwali, S.K., Kapila, P., Katemangwe, P., et al. (2023) Antimicrobial Resistance Profiles of Escherichia coli Isolated from Laying Hens in Zambia: Implications and Significance on One Health. JAC-Antimicrobial Resistance, 5, dlad060. https://doi.org/10.1093/jacamr/dlad060
|
[182]
|
Chileshe, C., Shawa, M., Phiri, N., Ndebe, J., Khumalo, C.S., Nakajima, C., et al. (2024) Detection of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae from Diseased Broiler Chickens in Lusaka District, Zambia. Antibiotics, 13, Article 259. https://doi.org/10.3390/antibiotics13030259
|
[183]
|
Bernadether, T.R., Douglas, R.C., Gaspary, O.M., Murugan, S. and Joram, B. (2016) Comparison of the Prevalence of Antibiotic-Resistant Escherichia coli Isolates from Commercial-Layer and Free-Range Chickens in Arusha District, Tanzania. African Journal of Microbiology Research, 10, 1422-1429. https://doi.org/10.5897/ajmr2016.8251
|
[184]
|
Kalungia, A.C., Mwambula, H., Munkombwe, D., Marshall, S., Schellack, N., May, C., et al. (2019) Antimicrobial Stewardship Knowledge and Perception among Physicians and Pharmacists at Leading Tertiary Teaching Hospitals in Zambia: Implications for Future Policy and Practice. Journal of Chemotherapy, 31, 378-387. https://doi.org/10.1080/1120009x.2019.1622293
|
[185]
|
Chishimba, K., Hang’ombe, B.M., Muzandu, K., Mshana, S.E., Matee, M.I., Nakajima, C., et al. (2016) Detection of Extended-Spectrum β-Lactamase-Producing Escherichia coli in Market-Ready Chickens in Zambia. International Journal of Microbiology, 2016, Article ID: 5275724. https://doi.org/10.1155/2016/5275724
|
[186]
|
Dixon, J., Manyau, S., Kandiye, F., Kranzer, K. and Chandler, C.I.R. (2021) Antibiotics, Rational Drug Use and the Architecture of Global Health in Zimbabwe. Social Science & Medicine, 272, Article ID: 113594. https://doi.org/10.1016/j.socscimed.2020.113594
|
[187]
|
Masich, A.M., Vega, A.D., Callahan, P., Herbert, A., Fwoloshi, S., Zulu, P.M., et al. (2020) Antimicrobial Usage at a Large Teaching Hospital in Lusaka, Zambia. PLOS ONE, 15, e0228555. https://doi.org/10.1371/journal.pone.0228555
|
[188]
|
Abban, M.K., Ayerakwa, E.A., Mosi, L. and Isawumi, A. (2023) The Burden of Hospital Acquired Infections and Antimicrobial Resistance. Heliyon, 9, e20561. https://doi.org/10.1016/j.heliyon.2023.e20561
|
[189]
|
Machado, E., Costa, P. and Carvalho, A. (2022) Occurrence of Healthcare-Associated Infections (HAIS) by Escherichia coli and Klebsiella spp. Producing Extended-Spectrum β-Lactamases (ESBL) and/or Carbapenemases in Portuguese Long-Term Care Facilities. Pathogens, 11, Article 1019. https://doi.org/10.3390/pathogens11091019
|
[190]
|
Vincent, J. (2009) International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA, 302, 2323-2329. https://doi.org/10.1001/jama.2009.1754
|
[191]
|
Haque, M., Sartelli, M., McKimm, J. and Abu Bakar, M.B. (2018) Health Care-Associated Infections—An Overview. Infection and Drug Resistance, 11, 2321-2333. https://doi.org/10.2147/idr.s177247
|
[192]
|
Centers for Disease Control (2025) About Healthcare-Associated Infections (HAIs). https://www.cdc.gov/healthcare-associated-infections/about/index.html
|
[193]
|
Revelas, A. (2012) Healthcare—Associated Infections: A Public Health Problem. Nigerian Medical Journal, 53, 59-64. https://doi.org/10.4103/0300-1652.103543
|
[194]
|
Alamer, A., Alharbi, F., Aldhilan, A., Almushayti, Z., Alghofaily, K., Elbehiry, A., et al. (2022) Healthcare-Associated Infections (HAIs): Challenges and Measures Taken by the Radiology Department to Control Infection Transmission. Vaccines, 10, Article 2060. https://doi.org/10.3390/vaccines10122060
|
[195]
|
Ahmed, S.K., Hussein, S., Qurbani, K., Ibrahim, R.H., Fareeq, A., Mahmood, K.A., et al. (2024) Antimicrobial Resistance: Impacts, Challenges, and Future Prospects. Journal of Medicine, Surgery, and Public Health, 2, Article ID: 100081. https://doi.org/10.1016/j.glmedi.2024.100081
|
[196]
|
Friedman, N.D., Kaye, K.S., Stout, J.E., McGarry, S.A., Trivette, S.L., Briggs, J.P., et al. (2002) Health Care-Associated Bloodstream Infections in Adults: A Reason to Change the Accepted Definition of Community-Acquired Infections. Annals of Internal Medicine, 137, 791-797. https://doi.org/10.7326/0003-4819-137-10-200211190-00007
|
[197]
|
Magill, S.S., O’Leary, E., Janelle, S.J., Thompson, D.L., Dumyati, G., Nadle, J., et al. (2018) Changes in Prevalence of Health Care-Associated Infections in U.S. Hospitals. New England Journal of Medicine, 379, 1732-1744. https://doi.org/10.1056/nejmoa1801550
|
[198]
|
Kangongwe, M.H., Mwanza, W., Mwamba, M., Mwenya, J., Muzyamba, J., Mzyece, J., et al. (2024) Drug Resistance Profiles of Mycobacterium tuberculosis Clinical Isolates by Genotype MTBDRplus Line Probe Assay in Zambia: Findings and Implications. JAC-Antimicrobial Resistance, 6, dlae122. https://doi.org/10.1093/jacamr/dlae122
|
[199]
|
Monde, N., Zulu, M., Tembo, M., Handema, R., Munyeme, M. and Malama, S. (2021) Drug Resistant Tuberculosis in the Northern Region of Zambia: A Retrospective Study. Frontiers in Tropical Diseases, 2, Article 735028. https://doi.org/10.3389/fitd.2021.735028
|
[200]
|
Vidyaraj, C.K., Chitra, A., Smita, S., Muthuraj, M., Govindarajan, S., Usharani, B., et al. (2017) Prevalence of Rifampicin-Resistant Mycobacterium tuberculosis among Human-Immunodeficiency-Virus-Seropositive Patients and Their Treatment Outcomes. Journal of Epidemiology and Global Health, 7, 289-294. https://doi.org/10.1016/j.jegh.2017.09.002
|
[201]
|
Monde, N., Munyeme, M., Chongwe, G., Wensman, J.J., Zulu, M., Siziya, S., et al. (2023) First and Second-Line Anti-Tuberculosis Drug-Resistance Patterns in Pulmonary Tuberculosis Patients in Zambia. Antibiotics, 12, Article 166. https://doi.org/10.3390/antibiotics12010166
|
[202]
|
Kapata, N., Chanda‐Kapata, P., Bates, M., Mwaba, P., Cobelens, F., Grobusch, M.P., et al. (2013) Multidrug-Resistant tb in Zambia: Review of National Data from 2000 to 2011. Tropical Medicine & International Health, 18, 1386-1391. https://doi.org/10.1111/tmi.12183
|
[203]
|
Kapata, N., Mbulo, G., Cobelens, F., de Haas, P., Schaap, A., Mwamba, P., et al. (2015) The Second Zambian National Tuberculosis Drug Resistance Survey—A Comparison of Conventional and Molecular Methods. Tropical Medicine & International Health, 20, 1492-1500. https://doi.org/10.1111/tmi.12581
|
[204]
|
Chizimu, J.Y., Solo, E.S., Bwalya, P., Kapalamula, T.F., Akapelwa, M.L., Lungu, P., et al. (2022) Genetic Diversity and Transmission of Multidrug-Resistant Mycobacterium tuberculosis Strains in Lusaka, Zambia. International Journal of Infectious Diseases, 114, 142-150. https://doi.org/10.1016/j.ijid.2021.10.044
|
[205]
|
Chizimu, J.Y., Solo, E.S., Bwalya, P., Kapalamula, T.F., Mwale, K.K., Squarre, D., et al. (2023) Genomic Analysis of Mycobacterium tuberculosis Strains Resistant to Second-Line Anti-Tuberculosis Drugs in Lusaka, Zambia. Antibiotics, 12, Article 1126. https://doi.org/10.3390/antibiotics12071126
|
[206]
|
Masenga, S.K., Mubila, H. and Hamooya, B.M. (2017) Rifampicin Resistance in Mycobacterium tuberculosis Patients Using Genexpert at Livingstone Central Hospital for the Year 2015: A Cross Sectional Explorative Study. BMC Infectious Diseases, 17, Article No. 640. https://doi.org/10.1186/s12879-017-2750-9
|
[207]
|
Tembo, B.P. and Malangu, N.G. (2019) Prevalence and Factors Associated with Multidrug/Rifampicin Resistant Tuberculosis among Suspected Drug Resistant Tuberculosis Patients in Botswana. BMC Infectious Diseases, 19, Article No. 779. https://doi.org/10.1186/s12879-019-4375-7
|
[208]
|
Shivekar, S.S., Kaliaperumal, V., Brammacharry, U., Sakkaravarthy, A., Raj, C.K.V., Alagappan, C., et al. (2020) Prevalence and Factors Associated with Multidrug-Resistant Tuberculosis in South India. Scientific Reports, 10, Article No. 17552. https://doi.org/10.1038/s41598-020-74432-y
|
[209]
|
Asif, M., Alvi, I.A. and Rehman, S.U. (2018) Insight into Acinetobacter baumannii: Pathogenesis, Global Resistance, Mechanisms of Resistance, Treatment Options, and Alternative Modalities. Infection and Drug Resistance, 11, 1249-1260. https://doi.org/10.2147/idr.s166750
|
[210]
|
Yamba, K., Lukwesa-Musyani, C., Samutela, M.T., Kapesa, C., Hang’ombe, M.B., Mpabalwani, E., et al. (2023) Phenotypic and Genotypic Antibiotic Susceptibility Profiles of Gram-Negative Bacteria Isolated from Bloodstream Infections at a Referral Hospital, Lusaka, Zambia. PLOS Global Public Health, 3, e0001414. https://doi.org/10.1371/journal.pgph.0001414
|
[211]
|
Mwanamoonga, L., Muleya, W., Lukwesa, C., Mukubesa, A.N., Yamba, K., Mwenya, D., et al. (2023) Drug-Resistant Acinetobacter Species Isolated at the University Teaching Hospital, Lusaka, Zambia. Scientific African, 20, e01661. https://doi.org/10.1016/j.sciaf.2023.e01661
|
[212]
|
Kaluba, C.K., Samutela, M.T., Kapesa, C., Muma, J.B., Hang’ombe, B.M., Hachaambwa, L., et al. (2021) Carbapenem Resistance in Pseudomonas Aeruginosa and Acinetobacter Species at a Large Tertiary Referral Hospital in Lusaka, Zambia. Scientific African, 13, e00908. https://doi.org/10.1016/j.sciaf.2021.e00908
|
[213]
|
World Health Organization (2024) WHO Bacterial Priority Pathogens List 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1
|
[214]
|
Sati, H., Carrara, E., Savoldi, A., Hansen, P., Garlasco, J., Campagnaro, E., et al. (2025) The WHO Bacterial Priority Pathogens List 2024: A Prioritisation Study to Guide Research, Development, and Public Health Strategies against Antimicrobial Resistance. The Lancet Infectious Diseases. https://doi.org/10.1016/s1473-3099(25)00118-5
|
[215]
|
Kanaan, M.H.G. (2023) Prevalence and Antimicrobial Resistance of Salmonella Enterica Serovars Enteritidis and Typhimurium Isolated from Retail Chicken Meat in Wasit Markets, Iraq. Veterinary World, 16, 455-463. https://doi.org/10.14202/vetworld.2023.455-463
|
[216]
|
Moore, D.P. (2025) Battling Antimicrobial Resistance: New Guidance and Insights. The Lancet Infectious Diseases. https://doi.org/10.1016/s1473-3099(25)00150-1
|
[217]
|
Tacconelli, E,. Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., et al. (2018) Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. The Lancet Infectious Diseases, 18, 318-327. https://pubmed.ncbi.nlm.nih.gov/29276051/
|
[218]
|
Bertagnolio, S., Dobreva, Z., Centner, C.M., Olaru, I.D., Donà, D., Burzo, S., et al. (2024) WHO Global Research Priorities for Antimicrobial Resistance in Human Health. The Lancet Microbe, 5, Article ID: 100902. http://www.thelancet.com/article/S2666524724001344/fulltext
|
[219]
|
Zambia National Public Health Institute (2017) Multi-Sectoral National Action Plan on Antimicrobial Resistance. Zambia National Public Health Institute. https://www.afro.who.int/publications/multi-sectoral-national-action-plan-antimicrobial-resistance-2017-2027
|
[220]
|
Avello, P., Collins, L.M., Gómez, S.A., Luna, F., Fernández Miyakawa, M.E., West, H.M., et al. (2024) National Action Plans on Antimicrobial Resistance in Latin America: An Analysis via a Governance Framework. Health Policy and Planning, 39, 188-197. https://doi.org/10.1093/heapol/czad118
|
[221]
|
Charani, E., Mendelson, M., Pallett, S.J.C., Ahmad, R., Mpundu, M., Mbamalu, O., et al. (2023) An Analysis of Existing National Action Plans for Antimicrobial Resistance—Gaps and Opportunities in Strategies Optimising Antibiotic Use in Human Populations. The Lancet Global Health, 11, e466-e474. https://doi.org/10.1016/s2214-109x(23)00019-0
|
[222]
|
Willemsen, A., Reid, S. and Assefa, Y. (2022) A Review of National Action Plans on Antimicrobial Resistance: Strengths and Weaknesses. Antimicrobial Resistance & Infection Control, 11, Article No. 90. https://doi.org/10.1186/s13756-022-01130-x
|
[223]
|
Lota, M.M.M., Chua, A.Q., Azupardo, K., Lumangaya, C., Reyes, K.A.V., Villanueva, S.Y.A.M., et al. (2022) A Qualitative Study on the Design and Implementation of the National Action Plan on Antimicrobial Resistance in the Philippines. Antibiotics, 11, Article 820. https://doi.org/10.3390/antibiotics11060820
|
[224]
|
Chua, A.Q., Verma, M., Hsu, L.Y. and Legido-Quigley, H. (2021) An Analysis of National Action Plans on Antimicrobial Resistance in Southeast Asia Using a Governance Framework Approach. The Lancet Regional Health—Western Pacific, 7, Article ID: 100084. https://doi.org/10.1016/j.lanwpc.2020.100084
|
[225]
|
Cella, E., Giovanetti, M., Benedetti, F., Scarpa, F., Johnston, C., Borsetti, A., et al. (2023) Joining Forces against Antibiotic Resistance: The One Health Solution. Pathogens, 12, Article 1074. https://doi.org/10.3390/pathogens12091074
|
[226]
|
Ogyu, A., Chan, O., Littmann, J., Pang, H.H., Lining, X., Liu, P., et al. (2020) National Action to Combat AMR: A One-Health Approach to Assess Policy Priorities in Action Plans. BMJ Global Health, 5, e002427. https://doi.org/10.1136/bmjgh-2020-002427
|
[227]
|
Nashwan, A.J., Barakat, M., Niaz, F., Tariq, S. and Ahmed, S.K. (2024) Antimicrobial Resistance: Stewardship and One Health in the Eastern Mediterranean Region. Cureus, 16, e58478. https://doi.org/10.7759/cureus.58478
|
[228]
|
Ruckert, A., Harris, F., Aenishaenslin, C., Aguiar, R., Boudreau-LeBlanc, A., Pedro Carmo, L., et al. (2024) One Health Governance Principles for AMR Surveillance: A Scoping Review and Conceptual Framework. Research Directions: One Health, 2, e4. https://www.cambridge.org/core/journals/research-directions-one-health/article/one-health-governance-principles-for-amr-surveillance-a-scoping-review-and-conceptual-framework/46F865AC0F9F6FB68DB5BAF8E08D1446
|
[229]
|
Hamilton, K.W. and Fishman, N.O. (2014) Antimicrobial Stewardship Interventions: Thinking Inside and Outside the Box. Infectious Disease Clinics of North America, 28, 301-313. https://doi.org/10.1016/j.idc.2014.01.003
|
[230]
|
Barlam, T.F., Cosgrove, S.E., Abbo, L.M., MacDougall, C., Schuetz, A.N., Septimus, E.J., et al. (2016) Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clinical Infectious Diseases, 62, e51-e77. https://doi.org/10.1093/cid/ciw118
|
[231]
|
Dellit, T.H., Owens, R.C., McGowan, J.E., Gerding, D.N., Weinstein, R.A., Burke, J.P., et al. (2007) Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clinical Infectious Diseases, 44, 159-177. https://doi.org/10.1086/510393
|
[232]
|
Chizimu, J.Y., Mudenda, S., Yamba, K., Lukwesa, C., Chanda, R., Nakazwe, R., et al. (2024) Antimicrobial Stewardship Situation Analysis in Selected Hospitals in Zambia: Findings and Implications from a National Survey. Frontiers in Public Health, 12, Article 1367703. https://doi.org/10.3389/fpubh.2024.1367703
|
[233]
|
Wesangula, E., Chizimu, J.Y., Mapunjo, S., Mudenda, S., Seni, J., Mitambo, C., et al. (2025) A Regional Approach to Strengthening the Implementation of Sustainable Antimicrobial Stewardship Programs in Five Countries in East, Central, and Southern Africa. Antibiotics, 14, Article 266. https://doi.org/10.3390/antibiotics14030266
|
[234]
|
Popoola, O.O. (2023) Implementing Antimicrobial Stewardship in Various Healthcare Settings. In: Mustafa, G., Ed., Antimicrobial Stewardship, IntechOpen, 1-22. https://www.intechopen.com/online-first/87852
|
[235]
|
Hibbard, R., Mendelson, M., Page, S.W., Ferreira, J.P., Pulcini, C., Paul, M.C., et al. (2024) Antimicrobial Stewardship: A Definition with a One Health Perspective. npj Antimicrobials and Resistance, 2, Article No. 15. https://doi.org/10.1038/s44259-024-00031-w
|
[236]
|
O’Neill, J. (2016) Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/160518_Final paper_with cover.pdf
|
[237]
|
Espinosa-Gongora, C., Jessen, L., Dyar, O., Bousquet-Melou, A., González-Zorn, B., Pulcini, C., et al. (2021) Towards a Better and Harmonized Education in Antimicrobial Stewardship in European Veterinary Curricula. Antibiotics, 10, Article 364. https://doi.org/10.3390/antibiotics10040364
|
[238]
|
Ashiru-Oredope, D., Nabiryo, M., Zengeni, L., Kamere, N., Makotose, A., Olaoye, O., et al. (2023) Tackling Antimicrobial Resistance: Developing and Implementing Antimicrobial Stewardship Interventions in Four African Commonwealth Countries through a Health Partnership Model. Journal of Public Health in Africa, 14, Article 2335. https://doi.org/10.4081/jphia.2023.2335
|
[239]
|
Kiggundu, R., Waswa, J.P., Konduri, N., Kasujja, H., Murungi, M., Vudriko, P., et al. (2024) A One Health Approach to Fight Antimicrobial Resistance in Uganda: Implementation Experience, Results, and Lessons Learned. Biosafety and Health, 6, 125-132. https://doi.org/10.1016/j.bsheal.2024.01.003
|
[240]
|
Pinto Ferreira, J., Battaglia, D., Dorado García, A., Tempelman, K., Bullon, C., Motriuc, N., et al. (2022) Achieving Antimicrobial Stewardship on the Global Scale: Challenges and Opportunities. Microorganisms, 10, Article 1599. https://doi.org/10.3390/microorganisms10081599
|
[241]
|
Mahmoudi, L., Sepasian, A., Firouzabadi, D. and Akbari, A. (2020) The Impact of an Antibiotic Stewardship Program on the Consumption of Specific Antimicrobials and Their Cost Burden: A Hospital-Wide Intervention. Risk Management and Healthcare Policy, 13, 1701-1709. https://doi.org/10.2147/rmhp.s265407
|
[242]
|
Mudenda, S., Kapolowe, K., Chirwa, U., Chanda, M., Chanda, R., Kalaba, R., et al. (2025) Antimicrobial Stewardship Impact on Antibiotic Use in Three Tertiary Hospitals in Zambia: A Comparative Point Prevalence Survey. Antibiotics, 14, Article 284. https://doi.org/10.3390/antibiotics14030284
|
[243]
|
Lim, L., Kassym, L., Kussainova, A., Aubakirova, B. and Semenova, Y. (2025) Optimizing Antibiotic Stewardship and Reducing Antimicrobial Resistance in Central Asia: A Study Protocol for Evidence-Based Practice and Policy. PLOS ONE, 20, e0307784. https://doi.org/10.1371/journal.pone.0307784
|
[244]
|
Cooper, D., Stevens, C., Jamieson, C., Lee, M.X., Riley, R., Patel, B., et al. (2025) Implementation of a National Antimicrobial Stewardship Training Programme for General Practice: A Case Study. Antibiotics, 14, Article 148. https://doi.org/10.3390/antibiotics14020148
|
[245]
|
Dyar, O.J., Huttner, B., Schouten, J. and Pulcini, C. (2017) What Is Antimicrobial Stewardship? Clinical Microbiology and Infection, 23, 793-798. https://doi.org/10.1016/j.cmi.2017.08.026
|
[246]
|
Mendelson, M., Morris, A.M., Thursky, K. and Pulcini, C. (2020) How to Start an Antimicrobial Stewardship Programme in a Hospital. Clinical Microbiology and Infection, 26, 447-453. https://doi.org/10.1016/j.cmi.2019.08.007
|
[247]
|
Gnimavo, M.S., Boya, B., Mudenda, S. and Allabi, A.C. (2024) Antibiotic Use at the Centre Hospitalier Universitaire de Zone d’Abomey Calavi/Sô-Ava (CHUZ/AS) in Benin: A Point Prevalence Survey. JAC-Antimicrobial Resistance, 7, dlae220. https://doi.org/10.1093/jacamr/dlae220
|
[248]
|
Majumder, M.A.A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., et al. (2020) Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infection and Drug Resistance, 13, 4713-4738. https://doi.org/10.2147/idr.s290835
|
[249]
|
Mudenda, S., Daka, V. and Matafwali, S.K. (2023) World Health Organization Aware Framework for Antibiotic Stewardship: Where Are We Now and Where Do We Need to Go? An Expert Viewpoint. Antimicrobial Stewardship & Healthcare Epidemiology, 3, e84. https://doi.org/10.1017/ash.2023.164
|
[250]
|
Mudenda, S., Nsofu, E., Chisha, P., Daka, V., Chabalenge, B., Mufwambi, W., et al. (2023) Prescribing Patterns of Antibiotics According to the WHO Aware Classification during the COVID-19 Pandemic at a Teaching Hospital in Lusaka, Zambia: Implications for Strengthening of Antimicrobial Stewardship Programmes. Pharmacoepidemiology, 2, 42-53. https://doi.org/10.3390/pharma2010005
|
[251]
|
World Health Organization (2023) 2021 AWaRe Classification. https://www.who.int/publications/i/item/2021-aware-classification
|
[252]
|
Mudenda, S., Wataya, M.D., Mufwambi, W. and Chizimu, J.Y. (2024) The World Health Organization Access, Watch, and Reserve Classification of Antibiotics: An Awareness Survey among Pharmacy Professionals in a Sub-Saharan Country, Zambia. Antimicrobial Stewardship & Healthcare Epidemiology, 4, e212. https://doi.org/10.1017/ash.2024.403
|
[253]
|
Moja, L., Zanichelli, V., Mertz, D., Gandra, S., Cappello, B., Cooke, G.S., et al. (2024) Who’s Essential Medicines and Aware: Recommendations on First-and Second-Choice Antibiotics for Empiric Treatment of Clinical Infections. Clinical Microbiology and Infection, 30, S1-S51. https://doi.org/10.1016/j.cmi.2024.02.003
|
[254]
|
Islam, M.A., Akhtar, Z., Hassan, M.Z., Chowdhury, S., Rashid, M.M., Aleem, M.A., et al. (2022) Pattern of Antibiotic Dispensing at Pharmacies According to the WHO Access, Watch, Reserve (Aware) Classification in Bangladesh. Antibiotics, 11, Article 247. https://doi.org/10.3390/antibiotics11020247
|
[255]
|
Hsia, Y., Lee, B.R., Versporten, A., Yang, Y., Bielicki, J., Jackson, C., et al. (2019) Use of the WHO Access, Watch, and Reserve Classification to Define Patterns of Hospital Antibiotic Use (AWaRe): An Analysis of Paediatric Survey Data from 56 Countries. The Lancet Global Health, 7, e861-e871. https://www.global-pps.com
|
[256]
|
Sharland, M., Zanichelli, V., Ombajo, L.A., Bazira, J., Cappello, B., Chitatanga, R., et al. (2022) The WHO Essential Medicines List Aware Book: From a List to a Quality Improvement System. Clinical Microbiology and Infection, 28, 1533-1535. https://doi.org/10.1016/j.cmi.2022.08.009
|
[257]
|
Zanichelli, V., Sharland, M., Cappello, B., Moja, L., Getahun, H., Pessoa-Silva, C., et al. (2023) The Who Aware (Access, Watch, Reserve) Antibiotic Book and Prevention of Antimicrobial Resistance. Bulletin of the World Health Organization, 101, 290-296. https://doi.org/10.2471/blt.22.288614
|
[258]
|
Nasehi, M.M., Effatpanah, M., Gholamnezhad, M., Karami, H., Ghamkhar, M., Armand, N., et al. (2024) Antibiotic Prescription Prevalence in Iranian Outpatients: A Focus on Defined Daily Doses and the Aware Classification System. American Journal of Infection Control, 52, 1359-1365. https://doi.org/10.1016/j.ajic.2024.07.007
|
[259]
|
Sharland, M., Gandra, S., Huttner, B., Moja, L., Pulcini, C., Zeng, M., et al. (2019) Encouraging Aware-Ness and Discouraging Inappropriate Antibiotic Use—The New 2019 Essential Medicines List Becomes a Global Antibiotic Stewardship Tool. The Lancet Infectious Diseases, 19, 1278-1280. https://doi.org/10.1016/s1473-3099(19)30532-8
|
[260]
|
Klein, E.Y., Milkowska-Shibata, M., Tseng, K.K., Sharland, M., Gandra, S., Pulcini, C., et al. (2021) Assessment of WHO Antibiotic Consumption and Access Targets in 76 Countries, 2000-15: An Analysis of Pharmaceutical Sales Data. The Lancet Infectious Diseases, 21, 107-115. https://doi.org/10.1016/s1473-3099(20)30332-7
|
[261]
|
Abdelsalam Elshenawy, R., Umaru, N. and Aslanpour, Z. (2023) WHO Aware Classification for Antibiotic Stewardship: Tackling Antimicrobial Resistance—A Descriptive Study from an English NHS Foundation Trust Prior to and during the COVID-19 Pandemic. Frontiers in Microbiology, 14, Article 1298858. https://doi.org/10.3389/fmicb.2023.1298858
|
[262]
|
World Health Organization (2019) Health Workers’ Education and Training on Antimicrobial Resistance: Curricula Guide. https://apps.who.int/iris/handle/10665/329380
|
[263]
|
Maraolo, A.E., Ong, D.S.Y., Cimen, C., Howard, P., Kofteridis, D.P., Schouten, J., et al. (2019) Organization and Training at National Level of Antimicrobial Stewardship and Infection Control Activities in Europe: An ESCMID Cross-Sectional Survey. European Journal of Clinical Microbiology & Infectious Diseases, 38, 2061-2068. https://doi.org/10.1007/s10096-019-03648-2
|
[264]
|
Tahoon, M.A., Khalil, M.M., Hammad, E., Morad, W.S., awad, S.M. and Ezzat, S. (2020) The Effect of Educational Intervention on Healthcare Providers’ Knowledge, Attitude, & Practice Towards Antimicrobial Stewardship Program At, National Liver Institute, Egypt. Egyptian Liver Journal, 10, Article No. 5. https://doi.org/10.1186/s43066-019-0016-5
|
[265]
|
Weier, N., Nathwani, D., Thursky, K., Tängdén, T., Vlahović-Palčevski, V., Dyar, O., et al. (2021) An International Inventory of Antimicrobial Stewardship (AMS) Training Programmes for AMS Teams. Journal of Antimicrobial Chemotherapy, 76, 1633-1640. https://doi.org/10.1093/jac/dkab053
|
[266]
|
Lubanga, A.F., Bwanali, A.N., Kondowe, S., Nzima, E., Masi, A., Njikho, Y., et al. (2025) Strengthening Antimicrobial Stewardship in Public Health Facilities in Malawi through a Participatory Epidemiology Approach. JAC-Antimicrobial Resistance, 7, dlaf103. https://doi.org/10.1093/jacamr/dlaf103
|
[267]
|
Atalay, Y.A. and Abebe Gelaw, K. (2024) Prevalence of Knowledge, Attitudes, and Practices Regarding Antimicrobial Resistance in Africa: A Systematic Review and Meta-Analysis. Frontiers in Microbiology, 15, Article 1345145. https://doi.org/10.3389/fmicb.2024.1345145
|
[268]
|
Mudenda, S., Daka, V., Kamayani, M., Mohamed, S., Kasanga, M. and Mufwambi, W. (2025) The Effect of Educational Intervention on Healthcare Workers’ Awareness and Knowledge of Antimicrobial Resistance, Stewardship, and Surveillance: Opportunities for Antimicrobial and Diagnostic Stewardship. Pharmacology & Pharmacy, 16, 125-149. https://doi.org/10.4236/pp.2025.165009
|
[269]
|
Mudenda, S., Chabalenge, B., Daka, V., Jere, E., Sefah, I.A., Wesangula, E., et al. (2024) Knowledge, Awareness and Practices of Healthcare Workers Regarding Antimicrobial Use, Resistance and Stewardship in Zambia: A Multi-Facility Cross-Sectional Study. JAC-Antimicrobial Resistance, 6, dlae076. https://doi.org/10.1093/jacamr/dlae076
|
[270]
|
Cheoun, M., Heo, J. and Kim, W. (2021) Antimicrobial Resistance: KAP of Healthcare Professionals at a Tertiary-Level Hospital in Nepal. International Journal of Environmental Research and Public Health, 18, Article 10062. https://doi.org/10.3390/ijerph181910062
|
[271]
|
Baraka, M.A., Alsultan, H., Alsalman, T., Alaithan, H., Islam, M.A. and Alasseri, A.A. (2019) Health Care Providers’ Perceptions Regarding Antimicrobial Stewardship Programs (AMS) Implementation—Facilitators and Challenges: A Cross-Sectional Study in the Eastern Province of Saudi Arabia. Annals of Clinical Microbiology and Antimicrobials, 18, Article No. 26. https://doi.org/10.1186/s12941-019-0325-x
|
[272]
|
Saleh, D., Abu Farha, R. and Alefishat, E. (2021) Impact of Educational Intervention to Promote Jordanian Community Pharmacists’ Knowledge and Perception Towards Antimicrobial Stewardship: Pre-Post Interventional Study. Infection and Drug Resistance, 14, 3019-3027. https://doi.org/10.2147/idr.s324865
|
[273]
|
Mudenda, S., Hankombo, M., Saleem, Z., Sadiq, M.J., Banda, M., Munkombwe, D., et al. (2021) Knowledge, Attitude, and Practices of Community Pharmacists on Antibiotic Resistance and Antimicrobial Stewardship in Lusaka, Zambia. Journal of Biomedical Research & Environmental Sciences, 2, 1005-1014. https://doi.org/10.37871/jbres1343
|
[274]
|
Haseeb, A., Essam Elrggal, M., Saeed Bawazir, M., Omar Bawazir, M., Ur Rehman, I., Saleh Faidah, H., et al. (2022) Knowledge, Attitude, and Perception of Community Pharmacists Towards Antimicrobial Stewardship in Saudi Arabia: A Descriptive Cross-Sectional Study. Saudi Pharmaceutical Journal, 30, 1659-1664. https://doi.org/10.1016/j.jsps.2022.09.010
|
[275]
|
Chukwu, E.E., Oladele, D.A., Enwuru, C.A., Gogwan, P.L., Abuh, D., Audu, R.A., et al. (2021) Antimicrobial Resistance Awareness and Antibiotic Prescribing Behavior among Healthcare Workers in Nigeria: A National Survey. BMC Infectious Diseases, 21, Article No. 22. https://doi.org/10.1186/s12879-020-05689-x
|
[276]
|
Kemp, S.A., Pinchbeck, G.L., Fèvre, E.M. and Williams, N.J. (2021) A Cross-Sectional Survey of the Knowledge, Attitudes, and Practices of Antimicrobial Users and Providers in an Area of High-Density Livestock-Human Population in Western Kenya. Frontiers in Veterinary Science, 8, Article 727365. https://doi.org/10.3389/fvets.2021.727365
|
[277]
|
Vijay, D., Bedi, J.S., Dhaka, P., Singh, R., Singh, J., Arora, A.K., et al. (2021) Knowledge, Attitude, and Practices (KAP) Survey among Veterinarians, and Risk Factors Relating to Antimicrobial Use and Treatment Failure in Dairy Herds of India. Antibiotics, 10, Article 216. https://doi.org/10.3390/antibiotics10020216
|
[278]
|
Kainga, H., Phonera, M.C., Chikowe, I., Chatanga, E., Nyirongo, H., Luwe, M., et al. (2023) Determinants of Knowledge, Attitude, and Practices of Veterinary Drug Dispensers toward Antimicrobial Use and Resistance in Main Cities of Malawi: A Concern on Antibiotic Stewardship. Antibiotics, 12, Article 149. https://doi.org/10.3390/antibiotics12010149
|
[279]
|
Kanaan, M.H.G. (2024) Knowledge, Attitudes, and Practices Regarding Antibiotic Use and Resistance among Veterinarians and Animal Health Professionals in Wasit Governorate, Iraq. International Journal of One Health, 10, 230-241. https://doi.org/10.14202/ijoh.2024.230-241
|
[280]
|
Alzuheir, I.M., Fayyad, A. and Thabet, A. (2025) Antimicrobial Prescription Practices and Opinions Regarding Antimicrobial Resistance among Veterinarians in Palestine 2024. BMC Veterinary Research, 21, Article No. 356. https://doi.org/10.1186/s12917-025-04826-5
|
[281]
|
Carmo, L.P., Nielsen, L.R., Alban, L., da Costa, P.M., Schüpbach-Regula, G. and Magouras, I. (2018) Veterinary Expert Opinion on Potential Drivers and Opportunities for Changing Antimicrobial Usage Practices in Livestock in Denmark, Portugal, and Switzerland. Frontiers in Veterinary Science, 5, Article 29. https://doi.org/10.3389/fvets.2018.00029
|
[282]
|
Adekanye, U.O., Ekiri, A.B., Galipó, E., Muhammad, A.B., Mateus, A., La Ragione, R.M., et al. (2020) Knowledge, Attitudes and Practices of Veterinarians Towards Antimicrobial Resistance and Stewardship in Nigeria. Antibiotics, 9, Article 453. https://doi.org/10.3390/antibiotics9080453
|
[283]
|
Hassan, M.M., Kalam, M.A., Alim, M.A., Shano, S., Nayem, M.R.K., Badsha, M.R., et al. (2021) Knowledge, Attitude, and Practices on Antimicrobial Use and Antimicrobial Resistance among Commercial Poultry Farmers in Bangladesh. Antibiotics, 10, Article 784. https://doi.org/10.3390/antibiotics10070784
|
[284]
|
Mudenda, S., Malama, S., Munyeme, M., Hang’ombe, B.M., Mainda, G., Kapona, O., et al. (2022) Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs. Antibiotics, 11, Article 383. https://doi.org/10.3390/antibiotics11030383
|
[285]
|
Shahi, M.K., Gompo, T.R., Sharma, S., Pokhrel, B., Manandhar, S. and Jeamsripong, S. (2023) Situational Analysis and Knowledge, Attitudes, and Practices of Antimicrobial Use and Resistance among Broiler Poultry Farmers in Nepal. Animals, 13, Article 3135. https://doi.org/10.3390/ani13193135
|
[286]
|
Tadesse, T., Nura, D., Asrat, M., Khan, J. and Gizaw, O. (2025) Assessment of Knowledge, Attitudes, and Practices of Livestock Farmers Regarding Antimicrobial Use, Resistance, and Residues in Selected Zones of Oromia Region, Ethiopia. Discover Food, 5, Article No. 60. https://doi.org/10.1007/s44187-025-00344-3
|
[287]
|
Hirwa, E.M., Mujawamariya, G., Shimelash, N. and Shyaka, A. (2024) Evaluation of Cattle Farmers’ Knowledge, Attitudes, and Practices Regarding Antimicrobial Use and Antimicrobial Resistance in Rwanda. PLOS ONE, 19, e0300742. https://doi.org/10.1371/journal.pone.0300742
|
[288]
|
Bulcha, B., Motuma, B., Tamiru, Y. and Gurmessa, W. (2024) Assessment of Knowledge, Attitude and Practice (KAP) Regarding Antimicrobial Usage and Resistance among Animal Health Professionals of East Wallaga Zone, Oromiya, Ethiopia. Veterinary Medicine: Research and Reports, 15, 57-70. https://doi.org/10.2147/VMRR.S443043
|
[289]
|
Sadiq, M.B., Syed-Hussain, S.S., Ramanoon, S.Z., Saharee, A.A., Ahmad, N.I., Mohd Zin, N., et al. (2018) Knowledge, Attitude and Perception Regarding Antimicrobial Resistance and Usage among Ruminant Farmers in Selangor, Malaysia. Preventive Veterinary Medicine, 156, 76-83. https://doi.org/10.1016/j.prevetmed.2018.04.013
|
[290]
|
Moffo, F., Mouliom Mouiche, M.M., Kochivi, F.L., Dongmo, J.B., Djomgang, H.K., Tombe, P., et al. (2020) Knowledge, Attitudes, Practices and Risk Perception of Rural Poultry Farmers in Cameroon to Antimicrobial Use and Resistance. Preventive Veterinary Medicine, 182, Article ID: 105087. https://doi.org/10.1016/j.prevetmed.2020.105087
|
[291]
|
Habiba, U.E., Khan, A., Mmbaga, E.J., Green, I.R. and Asaduzzaman, M. (2023) Use of Antibiotics in Poultry and Poultry Farmers—A Cross-Sectional Survey in Pakistan. Frontiers in Public Health, 11, Article 1154668. https://doi.org/10.3389/fpubh.2023.1154668
|
[292]
|
Haque, M., Ara, T., Haq, M.A., Lugova, H., Dutta, S., Samad, N., et al. (2022) Antimicrobial Prescribing Confidence and Knowledge Regarding Drug Resistance: Perception of Medical Students in Malaysia and the Implications. Antibiotics, 11, Article 540. https://doi.org/10.3390/antibiotics11050540
|
[293]
|
Mudenda, S., Chisha, P., Chabalenge, B., Daka, V., Mfune, R.L., Kasanga, M., et al. (2023) Antimicrobial Stewardship: Knowledge, Attitudes and Practices Regarding Antimicrobial Use and Resistance among Non-Healthcare Students at the University of Zambia. JAC-Antimicrobial Resistance, 5, dlad116. https://doi.org/10.1093/jacamr/dlad116
|
[294]
|
Zulu, A., Matafwali, S.K., Banda, M. and Mudenda, S. (2020) Assessment of Knowledge, Attitude and Practices on Antibiotic Resistance among Undergraduate Medical Students in the School of Medicine at the University of Zambia. International Journal of Basic & Clinical Pharmacology, 9, 263-270. https://doi.org/10.18203/2319-2003.ijbcp20200174
|
[295]
|
Akande-Sholabi, W. and Ajamu, A.T. (2021) Antimicrobial Stewardship: Assessment of Knowledge, Awareness of Antimicrobial Resistance and Appropriate Antibiotic Use among Healthcare Students in a Nigerian University. BMC Medical Education, 21, Article No. 488. https://doi.org/10.1186/s12909-021-02912-4
|
[296]
|
Bawazir, A., Bohairi, A., Badughaysh, O., Alhussain, A., Abuobaid, M., Abuobaid, M., et al. (2025) Knowledge, Attitude, and Practice Towards Antibiotic Use and Resistance among Non-Medical University Students, Riyadh, Saudi Arabia. International Journal of Environmental Research and Public Health, 22, Article 868. https://doi.org/10.3390/ijerph22060868
|
[297]
|
Jairoun, A., Hassan, N., Ali, A., Jairoun, O., Shahwan, M. and Hassali, M. (2019) University Students’ Knowledge, Attitudes, and Practice Regarding Antibiotic Use and Associated Factors: A Cross-Sectional Study in the United Arab Emirates. International Journal of General Medicine, 12, 235-246. https://doi.org/10.2147/ijgm.s200641
|
[298]
|
Alex, I.O. (2019) Knowledge of Antibiotic Use and Resistance among Students of a Medical School in Nigeria. Malawi Medical Journal, 31, 133-137. https://doi.org/10.4314/mmj.v31i2.5
|
[299]
|
Ngoma, M.T., Sitali, D., Mudenda, S., Mukuma, M., Bumbangi, F.N., Bunuma, E., et al. (2024) Community Antibiotic Consumption and Associated Factors in Lusaka District of Zambia: Findings and Implications for Antimicrobial Resistance and Stewardship. JAC-Antimicrobial Resistance, 6, dlae034. https://doi.org/10.1093/jacamr/dlae034
|
[300]
|
Mudenda, S., Simukoko, N. and Mohamed, S. (2024) Knowledge, Attitude and Practices Regarding Antimicrobial Use and Resistance among Community Members of Mtendere Township in Lusaka, Zambia: Findings and Implications on Antimicrobial Stewardship. International Journal of Basic & Clinical Pharmacology, 13, 315-321. https://doi.org/10.18203/2319-2003.ijbcp20240985
|
[301]
|
Miyano, S., Htoon, T.T., Nozaki, I., Pe, E.H. and Tin, H.H. (2022) Public Knowledge, Practices, and Awareness of Antibiotics and Antibiotic Resistance in Myanmar: The First National Mobile Phone Panel Survey. PLOS ONE, 17, e0273380. https://doi.org/10.1371/journal.pone.0273380
|
[302]
|
Ghaffoori Kanaan, M.H., Tarek, A.M. and Abdullah, S.S. (2021) Knowledge and Attitude among Samples from Community Members, Pharmacists and Health Care Providers about Antibiotic Resistance in Al-Suwaria City/Wassit Province/Iraq. IOP Conference Series: Earth and Environmental Science, 790, Article ID: 012059. https://doi.org/10.1088/1755-1315/790/1/012059
|
[303]
|
Chanvatik, S., Kosiyaporn, H., Lekagul, A., Kaewkhankhaeng, W., Vongmongkol, V., Thunyahan, A., et al. (2019) Knowledge and Use of Antibiotics in Thailand: A 2017 National Household Survey. PLOS ONE, 14, e0220990. https://doi.org/10.1371/journal.pone.0220990
|
[304]
|
Tangcharoensathien, V., Chanvatik, S. and Sommanustweechai, A. (2018) Complex Determinants of Inappropriate Use of Antibiotics. Bulletin of the World Health Organization, 96, 141-144. https://doi.org/10.2471/blt.17.199687
|
[305]
|
Tangcharoensathien, V., Chanvatik, S., Kosiyaporn, H., Kirivan, S., Kaewkhankhaeng, W., Thunyahan, A., et al. (2021) Population Knowledge and Awareness of Antibiotic Use and Antimicrobial Resistance: Results from National Household Survey 2019 and Changes from 2017. BMC Public Health, 21, Article No. 2188. https://doi.org/10.1186/s12889-021-12237-y
|
[306]
|
Mudenda, S. (2024) Global Burden of Fungal Infections and Antifungal Resistance from 1961 to 2024: Findings and Future Implications. Pharmacology & Pharmacy, 15, 81-112. https://doi.org/10.4236/pp.2024.154007
|
[307]
|
Mudenda, S., Chabalenge, B., Kasanga, M., Mufwambi, W., Mfune, R.L., Daka, V., et al. (2023) Antifungal Resistance and Stewardship: A Call to Action in Zambia. Pan African Medical Journal, 45, Article 152. https://doi.org/10.11604/pamj.2023.45.152.41232
|
[308]
|
Mudenda, S., Matafwali, S.K., Mukosha, M., Daka, V., Chabalenge, B., Chizimu, J., et al. (2023) Antifungal Resistance and Stewardship: A Knowledge, Attitudes and Practices Survey among Pharmacy Students at the University of Zambia; Findings and Implications. JAC-Antimicrobial Resistance, 5, dlad141. https://doi.org/10.1093/jacamr/dlad141
|
[309]
|
Apisarnthanarak, A., Yatrasert, A. and Mundy, L.M. (2010) Impact of Education and an Antifungal Stewardship Program for Candidiasis at a Thai Tertiary Care Center. Infection Control & Hospital Epidemiology, 31, 722-727. https://doi.org/10.1086/653616
|
[310]
|
Kara, E., Metan, G., Bayraktar-Ekincioglu, A., Gulmez, D., Arikan-Akdagli, S., Demirkazik, F., et al. (2021) Implementation of Pharmacist-Driven Antifungal Stewardship Program in a Tertiary Care Hospital. Antimicrobial Agents and Chemotherapy, 65, e00629-21. https://doi.org/10.1128/aac.00629-21
|
[311]
|
Ray, A., Das, A. and Panda, S. (2022) Antifungal Stewardship: What We Need to Know. Indian Journal of Dermatology, Venereology and Leprology, 89, 5-11. https://doi.org/10.25259/ijdvl_91_2022
|
[312]
|
Wiederhold, N. (2017) Antifungal Resistance: Current Trends and Future Strategies to Combat. Infection and Drug Resistance, 10, 249-259. https://doi.org/10.2147/idr.s124918
|
[313]
|
Valerio, M., Muñoz, P., Rodríguez, C.G., Caliz, B., Padilla, B., Fernández-Cruz, A., et al. (2015) Antifungal Stewardship in a Tertiary-Care Institution: A Bedside Intervention. Clinical Microbiology and Infection, 21, 492.e1-492.e9. https://doi.org/10.1016/j.cmi.2015.01.013
|
[314]
|
Micallef, C., Aliyu, S.H., Santos, R., Brown, N.M., Rosembert, D. and Enoch, D.A. (2015) Introduction of an Antifungal Stewardship Programme Targeting High-Cost Antifungals at a Tertiary Hospital in Cambridge, England. Journal of Antimicrobial Chemotherapy, 70, 1908-1911. https://doi.org/10.1093/jac/dkv040
|
[315]
|
Hamdy, R.F., Zaoutis, T.E. and Seo, S.K. (2016) Antifungal Stewardship Considerations for Adults and Pediatrics. Virulence, 8, 658-672. https://doi.org/10.1080/21505594.2016.1226721
|
[316]
|
Gilbert, G.L. and Kerridge, I. (2020) Hospital Infection Prevention and Control (IPC) and Antimicrobial Stewardship (AMS): Dual Strategies to Reduce Antibiotic Resistance (ABR) in Hospitals. In: Jamrozik, E. and Selgelid, M., Eds., Ethics and Drug Resistance: Collective Responsibility for Global Public Health, Springer, 89-108. https://doi.org/10.1007/978-3-030-27874-8_6
|
[317]
|
Ackers, L., Ackers-Johnson, G., Welsh, J., Kibombo, D. and Opio, S. (2020) Infection Prevention Control (IPC) and Antimicrobial Resistance (AMR). In: Ackers, L., Ackers-Johnson, G., Welsh, J., Kibombo, D. and Opio, S., Eds., Anti-Microbial Resistance in Global Perspective, Springer, 53-80. https://doi.org/10.1007/978-3-030-62662-4_4
|
[318]
|
da Costa, R.C., Serrano, I., Chambel, L. and Oliveira, M. (2024) The Importance of “One Health Approach” to the AMR Study and Surveillance in Angola and Other African Countries. One Health, 18, Article ID: 100691. https://doi.org/10.1016/j.onehlt.2024.100691
|
[319]
|
Satterfield, J., Miesner, A.R. and Percival, K.M. (2020) The Role of Education in Antimicrobial Stewardship. Journal of Hospital Infection, 105, 130-141. https://doi.org/10.1016/j.jhin.2020.03.028
|
[320]
|
Fuhrmeister, A.S. and Jones, R.N. (2019) The Importance of Antimicrobial Resistance Monitoring Worldwide and the Origins of SENTRY Antimicrobial Surveillance Program. Open Forum Infectious Diseases, 6, S1-S4. https://doi.org/10.1093/ofid/ofy346
|
[321]
|
Tacconelli, E., Sifakis, F., Harbarth, S., Schrijver, R., van Mourik, M., Voss, A., et al. (2018) Surveillance for Control of Antimicrobial Resistance. The Lancet Infectious Diseases, 18, e99-e106. https://doi.org/10.1016/s1473-3099(17)30485-1
|
[322]
|
Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., et al. (2015) Global Trends in Antimicrobial Use in Food Animals. Proceedings of the National Academy of Sciences of the United States of America, 112, 5649-5654. https://doi.org/10.1073/pnas.1503141112
|
[323]
|
Mulchandani, R., Wang, Y., Gilbert, M. and Van Boeckel, T.P. (2023) Global Trends in Antimicrobial Use in Food-Producing Animals: 2020 to 2030. PLOS Global Public Health, 3, e0001305. https://doi.org/10.1371/journal.pgph.0001305
|
[324]
|
World Health Organization (2021) Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2021. World Health Organization, 1-180. https://www.who.int/publications/i/item/9789240027336
|
[325]
|
World Health Organization (2022) Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. World Health Organization, 1-82. https://www.who.int/publications/i/item/9789240062702
|
[326]
|
Ajulo, S. and Awosile, B. (2024) Global Antimicrobial Resistance and Use Surveillance System (GLASS 2022): Investigating the Relationship between Antimicrobial Resistance and Antimicrobial Consumption Data across the Participating Countries. PLOS ONE, 19, e0297921. https://doi.org/10.1371/journal.pone.0297921
|
[327]
|
Nabadda, S., Kakooza, F., Kiggundu, R., Walwema, R., Bazira, J., Mayito, J., et al. (2021) Implementation of the World Health Organization Global Antimicrobial Resistance Surveillance System in Uganda, 2015-2020: Mixed-Methods Study Using National Surveillance Data. JMIR Public Health and Surveillance, 7, e29954. https://doi.org/10.2196/29954
|
[328]
|
Tornimbene, B., Eremin, S., Abednego, R., Abualas, E.O., Boutiba, I., Egwuenu, A., et al. (2022) Global Antimicrobial Resistance and Use Surveillance System on the African Continent: Early Implementation 2017-2019. African Journal of Laboratory Medicine, 11, a1594. https://doi.org/10.4102/ajlm.v11i1.1594
|
[329]
|
World Health Organization (2018) Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2017-2018. World Health Organization, 1-260. https://www.who.int/publications/i/item/9789241515061
|
[330]
|
Okolie, O.J., Igwe, U., Ismail, S.U., Ighodalo, U.L. and Adukwu, E.C. (2022) Systematic Review of Surveillance Systems for AMR in Africa. Journal of Antimicrobial Chemotherapy, 78, 31-51. https://doi.org/10.1093/jac/dkac342
|
[331]
|
Seale, A.C., Gordon, N.C., Islam, J., Peacock, S.J. and Scott, J.A.G. (2017) AMR Surveillance in Low and Middle-Income Settings—A Roadmap for Participation in the Global Antimicrobial Surveillance System (Glass). Wellcome Open Research, 2, Article 92. https://doi.org/10.12688/wellcomeopenres.12527.1
|
[332]
|
World Health Organization (2015) Global Antimicrobial Resistance Surveillance System. Manual for Early Implementation. https://www.who.int/publications/i/item/9789241549400
|
[333]
|
Bertagnolio, S., Suthar, A.B., Tosas, O. and Van Weezenbeek, K. (2023) Antimicrobial Resistance: Strengthening Surveillance for Public Health Action. PLOS Medicine, 20, e1004265. https://doi.org/10.1371/journal.pmed.1004265
|
[334]
|
Aboushady, A.T., Sujan, M.J., Pham, K., Clark, A., Marks, F., Holm, M., et al. (2023) Key Recommendations for Antimicrobial Resistance Surveillance: Takeaways from the CAPTURA Project. Clinical Infectious Diseases, 77, S581-S587. https://doi.org/10.1093/cid/ciad487
|
[335]
|
Ariyawansa, S., Gunawardana, K.N., Hapudeniya, M.M., Manelgamage, N.J., Karunarathne, C.R., Madalagama, R.P., et al. (2023) One Health Surveillance of Antimicrobial Use and Resistance: Challenges and Successes of Implementing Surveillance Programs in Sri Lanka. Antibiotics, 12, Article 446. https://doi.org/10.3390/antibiotics12030446
|
[336]
|
Painter, C., Limmathurotsakul, D., Roberts, T., van Doorn, H.R., Mayxay, M., Lubell, Y., et al. (2025) Sustainable Antimicrobial Resistance Surveillance: Time for a Global Funding Mechanism. The Lancet Infectious Diseases, 25, e99-e103. https://doi.org/10.1016/s1473-3099(24)00649-2
|
[337]
|
Musa, K., Okoliegbe, I., Abdalaziz, T., Aboushady, A.T., Stelling, J. and Gould, I.M. (2023) Laboratory Surveillance, Quality Management, and Its Role in Addressing Antimicrobial Resistance in Africa: A Narrative Review. Antibiotics, 12, Article 1313. https://doi.org/10.3390/antibiotics12081313
|
[338]
|
Holt, K.E., Carey, M.E., Chandler, C., Cross, J.H., Dyson, Z.A., Furnham, N., et al. (2025) Tools and Challenges in the Use of Routine Clinical Data for Antimicrobial Resistance Surveillance. npj Antimicrobials and Resistance, 3, Article No. 37. https://doi.org/10.1038/s44259-025-00105-3
|
[339]
|
Garlasco, J., D’Ambrosio, A., Vicentini, C., Quattrocolo, F. and Zotti, C.M. (2024) Impact of Hospital-Related Indicators on Healthcare-Associated Infections and Appropriateness of Antimicrobial Use According to a National Dataset. Scientific Reports, 14, Article No. 31259. https://doi.org/10.1038/s41598-024-82663-6
|
[340]
|
World Health Organization (2025) Infection Prevention and Control. IPC and Antimicrobial Resistance (AMR). https://www.who.int/teams/integrated-health-services/infection-prevention-control/ipc-and-antimicrobial-resistance
|
[341]
|
Denyer Willis, L. and Chandler, C. (2019) Quick Fix for Care, Productivity, Hygiene and Inequality: Reframing the Entrenched Problem of Antibiotic Overuse. BMJ Case Reports, 4, e001590. https://pubmed.ncbi.nlm.nih.gov/31497315/
|
[342]
|
Teus, J.K., Mithen, L., Green, H., Hutton, A. and Fernandez, R. (2024) Impact of Infection Prevention and Control Practices, Including Personal Protective Equipment, on the Prevalence of Hospital-Acquired Infections in Acute Care Hospitals during COVID-19: A Systematic Review and Meta-analysis. Journal of Hospital Infection, 147, 32-39. https://doi.org/10.1016/j.jhin.2024.02.010
|
[343]
|
Maina, M., Tosas-Auguet, O., McKnight, J., Zosi, M., Kimemia, G., Mwaniki, P., et al. (2019) Evaluating the Foundations That Help Avert Antimicrobial Resistance: Performance of Essential Water Sanitation and Hygiene Functions in Hospitals and Requirements for Action in Kenya. PLOS ONE, 14, e0222922. https://doi.org/10.1371/journal.pone.0222922
|
[344]
|
Kerr, F., Sefah, I.A., Essah, D.O., Cockburn, A., Afriyie, D., Mahungu, J., et al. (2021) Practical Pharmacist-Led Interventions to Improve Antimicrobial Stewardship in Ghana, Tanzania, Uganda and Zambia. Pharmacy, 9, Article 124. https://doi.org/10.3390/pharmacy9030124
|
[345]
|
Hill, B., Lamichhane, G. and Wamburu, A. (2024) Infection Prevention and Control: Critical Strategies for Nursing Practice. British Journal of Nursing, 33, 804-811. https://doi.org/10.12968/bjon.2024.0286
|
[346]
|
Moghnieh, R., Al-Maani, A.S., Berro, J., Ibrahim, N., Attieh, R., Abdallah, D., et al. (2023) Mapping of Infection Prevention and Control Education and Training in Some Countries of the World Health Organization’s Eastern Mediterranean Region: Current Situation and Future Needs. Antimicrobial Resistance & Infection Control, 12, Article No. 90. https://doi.org/10.1186/s13756-023-01299-9
|
[347]
|
World Health Organization (2018) Infection Prevention and Control Assessment Framework at the Facility Level. World Health Organization. https://www.who.int/publications/i/item/WHO-HIS-SDS-2018.9
|
[348]
|
Tsioutis, C., Birgand, G., Bathoorn, E., Deptula, A., ten Horn, L., Castro-Sánchez, E., et al. (2020) Education and Training Programmes for Infection Prevention and Control Professionals: Mapping the Current Opportunities and Local Needs in European Countries. Antimicrobial Resistance & Infection Control, 9, Article No. 183. https://doi.org/10.1186/s13756-020-00835-1
|
[349]
|
Adebowale, O., Makanjuola, M., Bankole, N., Olasoju, M., Alamu, A., Kperegbeyi, E., et al. (2022) Multi-Drug Resistant Escherichia coli, Biosecurity and Anti-Microbial Use in Live Bird Markets, Abeokuta, Nigeria. Antibiotics, 11, Article 253. https://doi.org/10.3390/antibiotics11020253
|
[350]
|
Laanen, M., Persoons, D., Ribbens, S., de Jong, E., Callens, B., Strubbe, M., et al. (2013) Relationship between Biosecurity and Production/Antimicrobial Treatment Characteristics in Pig Herds. The Veterinary Journal, 198, 508-512. https://doi.org/10.1016/j.tvjl.2013.08.029
|
[351]
|
Gray, P., Jenner, R., Norris, J., Page, S. and Browning, G. (2021) Antimicrobial Prescribing Guidelines for Poultry. Australian Veterinary Journal, 99, 181-235. https://doi.org/10.1111/avj.13034
|
[352]
|
Peng, H., Bilal, M. and Iqbal, H.M.N. (2018) Improved Biosafety and Biosecurity Measures And/or Strategies to Tackle Laboratory-Acquired Infections and Related Risks. International Journal of Environmental Research and Public Health, 15, Article 2697. https://doi.org/10.3390/ijerph15122697
|
[353]
|
Pinto Jimenez, C.E., Keestra, S.M., Tandon, P., Pickering, A.J., Moodley, A., Cumming, O., et al. (2023) One Health WASH: An Amr-Smart Integrative Approach to Preventing and Controlling Infection in Farming Communities. BMJ Global Health, 8, e011263. https://doi.org/10.1136/bmjgh-2022-011263
|
[354]
|
World Organization for Animal Health (2016) Forum: OIE Launches Its Strategy on Antimicrobial Resistance and the Prudent Use of Antimicrobials. Bulletin de l’OIE, 2016, 3-7. https://doi.org/10.20506/bull.2016.3.2557
|
[355]
|
Magnusson, A., Sternberg, S., Eklund, G. and Rozstalnyy, A. (2019) Prudent and Efficient Use of Antimicrobials in Pigs and Poultry. FAO Animal Production and Health/Manual 23. FAO.
|
[356]
|
World Organization for Animal Health (2022) Annual Report on Antimicrobial Agents Intended for Use in Animals. https://rr-americas.woah.org/en/news/new-annual-report-on-antimicrobial-agents-intended-for-use-in-animals/
|
[357]
|
Moje, N., Waktole, H., Kassahun, R., Megersa, B., Chomen, M.T., Leta, S., et al. (2023) Status of Animal Health Biosecurity Measures of Dairy Farms in Urban and Peri-Urban Areas of Central Ethiopia. Frontiers in Veterinary Science, 10, Article 1086702. https://doi.org/10.3389/fvets.2023.1086702
|
[358]
|
Skosana, P.P., Mudenda, S., Demana, P.H. and Witika, B.A. (2023) Exploring Nanotechnology as a Strategy to Circumvent Antimicrobial Resistance in Bone and Joint Infections. ACS Omega, 8, 15865-15882. https://doi.org/10.1021/acsomega.3c01225
|
[359]
|
Zhang, M., Ibrahim, M.I., Wu, S., Noor, S.S.M. and Wan Mohammad, W.M.Z. (2025) The Role of Nanomaterials in the Treatment of Multidrug-Resistant Bacteria: A Systematic Review. BioNanoScience, 15, Article No. 293. https://doi.org/10.1007/s12668-025-01907-5
|
[360]
|
Zhao, X., Tang, H. and Jiang, X. (2022) Deploying Gold Nanomaterials in Combating Multi-Drug-Resistant Bacteria. ACS Nano, 16, 10066-10087. https://doi.org/10.1021/acsnano.2c02269
|
[361]
|
Jia, B., Du, X., Wang, W., Qu, Y., Liu, X., Zhao, M., et al. (2022) Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. Advanced Science, 9, e2105252. https://doi.org/10.1002/advs.202105252
|
[362]
|
Zhang, W., Ye, G., Liao, D., Chen, X., Lu, C., Nezamzadeh-Ejhieh, A., et al. (2022) Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules, 27, Article 7166. https://doi.org/10.3390/molecules27217166
|
[363]
|
Mmbando, G.S., Ally, O. and Kitimu, S.R. (2025) The Current Use of Nanotechnology in the Fight against Antimicrobial Resistance: Promising Approaches to Global Health Challenge. Journal of Nanoparticle Research, 27, Article No. 100. https://doi.org/10.1007/s11051-025-06290-6
|
[364]
|
Gao, W., Thamphiwatana, S., Angsantikul, P. and Zhang, L. (2014) Nanoparticle Approaches against Bacterial Infections. WIREs Nanomedicine and Nanobiotechnology, 6, 532-547. https://doi.org/10.1002/wnan.1282
|
[365]
|
Yuan, P., Ding, X., Yang, Y.Y. and Xu, Q. (2018) Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection. Advanced Healthcare Materials, 7, e1701392. https://doi.org/10.1002/adhm.201701392
|
[366]
|
Man, J., Zhu, J., Weng, G., Li, J. and Zhao, J. (2024) Using Gold-Based Nanomaterials for Fighting Pathogenic Bacteria: From Detection to Therapy. Microchimica Acta, 191, Article No. 627. https://doi.org/10.1007/s00604-024-06713-6
|
[367]
|
Zhou, Y., Wang, Z., Peng, Y., Wang, F. and Deng, L. (2021) Gold Nanomaterials as a Promising Integrated Tool for Diagnosis and Treatment of Pathogenic Infections—A Review. Journal of Biomedical Nanotechnology, 17, 744-770. https://doi.org/10.1166/jbn.2021.3075
|
[368]
|
Ioannou, P., Baliou, S. and Samonis, G. (2024) Nanotechnology in the Diagnosis and Treatment of Antibiotic-Resistant Infections. Antibiotics, 13, Article 121. https://doi.org/10.3390/antibiotics13020121
|
[369]
|
Saxena, S., Punjabi, K., Ahamad, N., Singh, S., Bendale, P. and Banerjee, R. (2022) Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomaterials Science & Engineering, 8, 2232-2257. https://doi.org/10.1021/acsbiomaterials.1c01516
|
[370]
|
Branda, F. and Scarpa, F. (2024) Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare’s Future. Antibiotics, 13, Article 502. https://doi.org/10.3390/antibiotics13060502
|
[371]
|
Rabaan, A.A., Alhumaid, S., Mutair, A.A., Garout, M., Abulhamayel, Y., Halwani, M.A., et al. (2022) Application of Artificial Intelligence in Combating High Antimicrobial Resistance Rates. Antibiotics, 11, Article 784. https://doi.org/10.3390/antibiotics11060784
|
[372]
|
Pinto-de-Sá, R., Sousa-Pinto, B. and Costa-de-Oliveira, S. (2024) Brave New World of Artificial Intelligence: Its Use in Antimicrobial Stewardship—A Systematic Review. Antibiotics, 13, Article 307. https://doi.org/10.3390/antibiotics13040307
|
[373]
|
Bilal, H., Khan, M.N., Khan, S., Shafiq, M., Fang, W., Khan, R.U., et al. (2025) The Role of Artificial Intelligence and Machine Learning in Predicting and Combating Antimicrobial Resistance. Computational and Structural Biotechnology Journal, 27, 423-439. https://doi.org/10.1016/j.csbj.2025.01.006
|
[374]
|
Ivanenkov, Y.A., Zhavoronkov, A., Yamidanov, R.S., Osterman, I.A., Sergiev, P.V., Aladinskiy, V.A., et al. (2019) Identification of Novel Antibacterials Using Machine Learning Techniques. Frontiers in Pharmacology, 10, Article 913. https://doi.org/10.3389/fphar.2019.00913
|
[375]
|
Massele, A., Rogers, A.M., Gabriel, D., Mayanda, A., Magoma, S., Cook, A., et al. (2023) A Narrative Review of Recent Antibiotic Prescribing Practices in Ambulatory Care in Tanzania: Findings and Implications. Medicina, 59, Article 2195. https://doi.org/10.3390/medicina59122195
|
[376]
|
Chigome, A., Ramdas, N., Skosana, P., Cook, A., Schellack, N., Campbell, S., et al. (2023) A Narrative Review of Antibiotic Prescribing Practices in Primary Care Settings in South Africa and Potential Ways Forward to Reduce Antimicrobial Resistance. Antibiotics, 12, Article 1540. https://doi.org/10.3390/antibiotics12101540
|
[377]
|
Siachalinga, L., Godman, B., Mwita, J.C., Sefah, I.A., Ogunleye, O.O., Massele, A., et al. (2023) Current Antibiotic Use among Hospitals in the Sub-Saharan Africa Region; Findings and Implications. Infection and Drug Resistance, 16, 2179-2190. https://doi.org/10.2147/idr.s398223
|
[378]
|
Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., et al. (2021) The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. The BMJ, 372, n71. https://pubmed.ncbi.nlm.nih.gov/33782057/
|
[379]
|
Al-Omari, A., Al Mutair, A., Alhumaid, S., Salih, S., Alanazi, A., Albarsan, H., et al. (2020) The Impact of Antimicrobial Stewardship Program Implementation at Four Tertiary Private Hospitals: Results of a Five-Years Pre-Post Analysis. Antimicrobial Resistance & Infection Control, 9, Article No. 95. https://doi.org/10.1186/s13756-020-00751-4
|
[380]
|
Fishman, N. (2006) Antimicrobial Stewardship. American Journal of Infection Control, 34, S55-S63. https://doi.org/10.1016/j.ajic.2006.05.237
|
[381]
|
Valiquette, L., Cossette, B., Garant, M., Diab, H. and Pépin, J. (2007) Impact of a Reduction in the Use of High-Risk Antibiotics on the Course of an Epidemic of Clostridium Difficile-Associated Disease Caused by the Hypervirulent NAP1/027 Strain. Clinical Infectious Diseases, 45, S112-S121. https://doi.org/10.1086/519258
|
[382]
|
Shively, N.R., Moffa, M.A., Paul, K.T., Wodusky, E.J., Schipani, B.A., Cuccaro, S.L., et al. (2019) Impact of a Telehealth-Based Antimicrobial Stewardship Program in a Community Hospital Health System. Clinical Infectious Diseases, 71, 539-545. https://doi.org/10.1093/cid/ciz878
|
[383]
|
Yusef, D., Hayajneh, W.A., Bani Issa, A., Haddad, R., Al-Azzam, S., Lattyak, E.A., et al. (2020) Impact of an Antimicrobial Stewardship Programme on Reducing Broad-Spectrum Antibiotic Use and Its Effect on Carbapenem-Resistant Acinetobacter baumannii (Crab) in Hospitals in Jordan. Journal of Antimicrobial Chemotherapy, 76, 516-523. https://doi.org/10.1093/jac/dkaa464
|
[384]
|
Apisarnthanarak, A., Danchaivijitr, S., Khawcharoenporn, T., Limsrivilai, J., Warachan, B., Bailey, T.C., et al. (2006) Effectiveness of Education and an Antibiotic-Control Program in a Tertiary Care Hospital in Thailand. Clinical Infectious Diseases, 42, 768-775. https://doi.org/10.1086/500325
|
[385]
|
Boyles, T.H., Whitelaw, A., Bamford, C., Moodley, M., Bonorchis, K., Morris, V., et al. (2013) Antibiotic Stewardship Ward Rounds and a Dedicated Prescription Chart Reduce Antibiotic Consumption and Pharmacy Costs without Affecting Inpatient Mortality or Re-Admission Rates. PLOS ONE, 8, e79747. https://doi.org/10.1371/journal.pone.0079747
|
[386]
|
Alabi, A.S., Picka, S.W., Sirleaf, R., Ntirenganya, P.R., Ayebare, A., Correa, N., et al. (2022) Implementation of an Antimicrobial Stewardship Programme in Three Regional Hospitals in the South-East of Liberia: Lessons Learned. JAC-Antimicrobial Resistance, 4, dlac069. https://doi.org/10.1093/jacamr/dlac069
|
[387]
|
Arenz, L., Porger, A., De Michel, M., Weber, A., Jung, J., Horns, H., et al. (2023) Effect and Sustainability of a Stepwise Implemented Multidisciplinary Antimicrobial Stewardship Programme in a University Hospital Emergency Department. JAC-Antimicrobial Resistance, 6, dlae026. https://doi.org/10.1093/jacamr/dlae026
|
[388]
|
Raja Dahar, M., Nabi, N., Bilawal, M., Qasim Barkat, M., Taj, Z., Aiman, S., et al. (2024) Comparative Study on Antibiotic Stewardship and Its Impact on Patient’s Health: Evidence-Based and Case Studies. International Journal of Innovative Science and Research Technology (IJISRT), 9, 1940-1947. https://doi.org/10.38124/ijisrt/ijisrt24sep1479
|
[389]
|
Baur, D., Gladstone, B.P., Burkert, F., Carrara, E., Foschi, F., Döbele, S., et al. (2017) Effect of Antibiotic Stewardship on the Incidence of Infection and Colonisation with Antibiotic-Resistant Bacteria and Clostridium Difficile Infection: A Systematic Review and Meta-Analysis. The Lancet Infectious Diseases, 17, 990-1001. https://doi.org/10.1016/s1473-3099(17)30325-0
|
[390]
|
Davey, P., Marwick, C.A., Scott, C.L., Charani, E., McNeil, K., Brown, E., et al. (2017) Interventions to Improve Antibiotic Prescribing Practices for Hospital Inpatients. Cochrane Database of Systematic Reviews, 2, CD003543. https://doi.org/10.1002/14651858.cd003543.pub4
|
[391]
|
Schuts, E.C., Hulscher, M.E.J.L., Mouton, J.W., Verduin, C.M., Stuart, J.W.T.C., Overdiek, H.W.P.M., et al. (2016) Current Evidence on Hospital Antimicrobial Stewardship Objectives: A Systematic Review and Meta-Analysis. The Lancet Infectious Diseases, 16, 847-856. https://doi.org/10.1016/s1473-3099(16)00065-7
|
[392]
|
Pulcini, C., Binda, F., Lamkang, A.S., Trett, A., Charani, E., Goff, D.A., et al. (2019) Developing Core Elements and Checklist Items for Global Hospital Antimicrobial Stewardship Programmes: A Consensus Approach. Clinical Microbiology and Infection, 25, 20-25. https://doi.org/10.1016/j.cmi.2018.03.033
|
[393]
|
Howard, P., Pulcini, C., Levy Hara, G., West, R.M., Gould, I.M., Harbarth, S., et al. (2014) An International Cross-Sectional Survey of Antimicrobial Stewardship Programmes in Hospitals. Journal of Antimicrobial Chemotherapy, 70, 1245-1255. https://doi.org/10.1093/jac/dku497
|
[394]
|
Nathwani, D., Varghese, D., Stephens, J., Ansari, W., Martin, S. and Charbonneau, C. (2019) Value of Hospital Antimicrobial Stewardship Programs [ASPs]: A Systematic Review. Antimicrobial Resistance & Infection Control, 8, Article No. 35. https://doi.org/10.1186/s13756-019-0471-0
|
[395]
|
Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K.M., Wertheim, H.F.L., Sumpradit, N., et al. (2013) Antibiotic Resistance—The Need for Global Solutions. The Lancet Infectious Diseases, 13, 1057-1098. https://doi.org/10.1016/s1473-3099(13)70318-9
|
[396]
|
Rajput, A. (2023) Examining the Implementation and Effectiveness of Antibiotic Stewardship Programs in Healthcare Settings to Prevent Antibiotic Resistance and Promote Prudent Antibiotic Use. Knowledgeable Research: A Multidisciplinary Journal, 1, 11-24. https://doi.org/10.57067/kr.v1i11.95
|
[397]
|
Cassim, J., Essack, S.Y. and Chetty, S. (2024) Building an Antimicrobial Stewardship Model for a Public-Sector Hospital: A Pre-Implementation Study. Journal of Medical Microbiology, 73, Article ID: 001853. https://doi.org/10.1099/jmm.0.001853
|
[398]
|
Nyoloka, N., Richards, C., Mpute, W., Chadwala, H.M., Kumwenda, H.S., Mwangonde-Phiri, V., et al. (2024) Pharmacist-led Antimicrobial Stewardship Programme in Two Tertiary Hospitals in Malawi. Antibiotics, 13, Article 480. https://doi.org/10.3390/antibiotics13060480
|
[399]
|
AlAhmad, M.M., Rabbani, S.A., Al-Salman, R., Alameri, H., Al Namer, Y. and Jaber, A.A.S. (2023) Antimicrobial Stewardship Practices of Community Pharmacists in United Arab Emirates. Antibiotics, 12, Article 1238. https://doi.org/10.3390/antibiotics12081238
|
[400]
|
Mohammed, A.H., Lim, A., Hassan, B.A.R., Blebil, A., Dujaili, J., Ramachandram, D.S., et al. (2024) Implementing a Community-Based Antimicrobial Stewardship Intervention in Malaysia. Journal of Infection Prevention, 25, 225-235. https://doi.org/10.1177/17571774241251650
|
[401]
|
Bishop, C., Yacoob, Z., Knobloch, M.J. and Safdar, N. (2019) Community Pharmacy Interventions to Improve Antibiotic Stewardship and Implications for Pharmacy Education: A Narrative Overview. Research in Social and Administrative Pharmacy, 15, 627-631. https://doi.org/10.1016/j.sapharm.2018.09.017
|
[402]
|
Mufwambi, W., Musuku, K., Hangoma, J., Muzondo, N.V., Mweetwa, L. and Mudenda, S. (2024) Community Pharmacists’ Knowledge and Practices Towards Antimicrobial Stewardship: Findings and Implications. JAC-Antimicrobial Resistance, 6, dlae176. https://doi.org/10.1093/jacamr/dlae176
|
[403]
|
Akande-Sholabi, W., Oyesiji, E. and Adebisi, Y.A. (2023) Antimicrobial Stewardship: Community Pharmacists’ Antibiotic Dispensing Practices, Knowledge, and Perception Regarding Antibiotics and Antibiotic Resistance. Journal of Pharmaceutical Health Services Research, 14, 383-391. https://doi.org/10.1093/jphsr/rmad040
|
[404]
|
Azevedo, M., Pinheiro, C., Yaphe, J. and Baltazar, F. (2013) Assessing the Impact of a School Intervention to Promote Students’ Knowledge and Practices on Correct Antibiotic Use. International Journal of Environmental Research and Public Health, 10, 2920-2931. https://doi.org/10.3390/ijerph10072920
|
[405]
|
Hayat, K., Li, P., Rosenthal, M., Xu, S., Chang, J., Gillani, A.H., et al. (2019) Perspective of Community Pharmacists about Community-Based Antimicrobial Stewardship Programs. A Multicenter Cross-Sectional Study from China. Expert Review of Anti-infective Therapy, 17, 1043-1050. https://doi.org/10.1080/14787210.2019.1692655
|
[406]
|
Kafle, K., Karkee, S., Shrestha, N., Prasad, R., Bhuju, G., Das, P., et al. (1970) Community Intervention to Improve Knowledge and Practices on Commonly Used Drugs. Kathmandu University Medical Journal, 8, 29-34. https://doi.org/10.3126/kumj.v8i1.3218
|
[407]
|
Lee, Y. and Bradley, N. (2023) Antimicrobial Stewardship Practices in a Subset of Community Pharmacies across the United States. Pharmacy, 11, Article 26. https://doi.org/10.3390/pharmacy11010026
|
[408]
|
Dlungele, A.P. and Mathibe, L.J. (2023) Implementation of Antimicrobial Stewardship Programmes in Private Healthcare Settings in Africa: A Scoping Review. Health SA Gesondheid, 28, a2104. https://doi.org/10.4102/hsag.v28i0.2104
|
[409]
|
Saha, S.K., Kong, D.C.M., Thursky, K. and Mazza, D. (2021) Antimicrobial Stewardship by Australian Community Pharmacists: Uptake, Collaboration, Challenges, and Needs. Journal of the American Pharmacists Association, 61, 158-168.e7. https://doi.org/10.1016/j.japh.2020.10.014
|
[410]
|
Gebretekle, G.B., Haile Mariam, D., Abebe Taye, W., Mulu Fentie, A., Amogne Degu, W., Alemayehu, T., et al. (2020) Half of Prescribed Antibiotics Are Not Needed: A Pharmacist-Led Antimicrobial Stewardship Intervention and Clinical Outcomes in a Referral Hospital in Ethiopia. Frontiers in Public Health, 8, Article 109. https://doi.org/10.3389/fpubh.2020.00109
|
[411]
|
Dambrino, K.L. and Green, M. (2022) Antimicrobial Stewardship in College and University Health Settings: A Public Health Opportunity. Antibiotics, 11, Article 89. https://doi.org/10.3390/antibiotics11010089
|
[412]
|
Tulloch, L.G., Relan, A., Curello, J., Martin, E., Patel, R. and Vijayan, T. (2019) Using Modified Team-Based Learning to Teach Antimicrobial Stewardship to Medical Students: One Institution’s Approach. Medical Science Educator, 29, 1179-1185. https://doi.org/10.1007/s40670-019-00804-3
|
[413]
|
Majumder, M.A.A., Singh, K., Hilaire, M.G., Rahman, S., Sa, B. and Haque, M. (2020) Tackling Antimicrobial Resistance by Promoting Antimicrobial Stewardship in Medical and Allied Health Professional Curricula. Expert Review of Anti-Infective Therapy, 18, 1245-1258. https://doi.org/10.1080/14787210.2020.1796638
|
[414]
|
Beck, A.P., Baubie, K., Knobloch, M.J. and Safdar, N. (2018) Promoting Antimicrobial Stewardship by Incorporating It in Undergraduate Medical Education Curricula. Wisconsin Medical Journal, 117, 224-228. https://wmjonline.org/117no5/beck/
|
[415]
|
Chahine, E.B., El-Lababidi, R.M. and Sourial, M. (2014) Engaging Pharmacy Students, Residents, and Fellows in Antimicrobial Stewardship. Journal of Pharmacy Practice, 28, 585-591. https://doi.org/10.1177/0897190013516506
|
[416]
|
Augie, B.M., Miot, J., van Zyl, R.L. and McInerney, P.A. (2021) Educational Antimicrobial Stewardship Programs in Medical Schools: A Scoping Review. JBI Evidence Synthesis, 19, 2906-2928. https://doi.org/10.11124/jbies-20-00330
|
[417]
|
Lee, Y. and Bradley, N. (2021) A Peer Educational Tool to Promote Antimicrobial Stewardship on a University Campus. Pharmacy, 9, Article 199. https://doi.org/10.3390/pharmacy9040199
|
[418]
|
Shahpawee, N.S., Chaw, L.L., Muharram, S.H., Goh, H.P., Hussain, Z. and Ming, L.C. (2020) University Students’ Antibiotic Use and Knowledge of Antimicrobial Resistance: What Are the Common Myths? Antibiotics, 9, Article 349. https://doi.org/10.3390/antibiotics9060349
|
[419]
|
Dyar, O., Hills, H., Seitz, L., Perry, A. and Ashiru-Oredope, D. (2018) Assessing the Knowledge, Attitudes and Behaviors of Human and Animal Health Students Towards Antibiotic Use and Resistance: A Pilot Cross-Sectional Study in the UK. Antibiotics, 7, Article 10. https://doi.org/10.3390/antibiotics7010010
|
[420]
|
MacDougall, C., Schwartz, B.S., Kim, L., Nanamori, M., Shekarchian, S. and Chin-Hong, P.V. (2017) An Interprofessional Curriculum on Antimicrobial Stewardship Improves Knowledge and Attitudes toward Appropriate Antimicrobial Use and Collaboration. Open Forum Infectious Diseases, 4, ofw225. https://doi.org/10.1093/ofid/ofw225
|
[421]
|
Mitchell, J., Cooke, P., Ahorlu, C., Arjyal, A., Baral, S., Carter, L., et al. (2021) Community Engagement: The Key to Tackling Antimicrobial Resistance (AMR) across a One Health Context? Global Public Health, 17, 2647-2664. https://doi.org/10.1080/17441692.2021.2003839
|
[422]
|
Okonkwo, R.I., Ndukwe, H., Grant, G. and Khan, S. (2025) Antimicrobial Stewardship in the Community Setting: A Qualitative Exploratory Study. Antimicrobial Resistance & Infection Control, 14, Article No. 9. https://doi.org/10.1186/s13756-025-01524-7
|
[423]
|
Bouza, E., Muñoz, P. and Burillo, A. (2018) Role of the Clinical Microbiology Laboratory in Antimicrobial Stewardship. Medical Clinics of North America, 102, 883-898. https://doi.org/10.1016/j.mcna.2018.05.003
|
[424]
|
Perez, K.K., Olsen, R.J., Musick, W.L., Cernoch, P.L., Davis, J.R., Peterson, L.E., et al. (2014) Integrating Rapid Diagnostics and Antimicrobial Stewardship Improves Outcomes in Patients with Antibiotic-Resistant Gram-Negative Bacteremia. Journal of Infection, 69, 216-225. https://doi.org/10.1016/j.jinf.2014.05.005
|
[425]
|
Perez, K.K., Olsen, R.J., Musick, W.L., Cernoch, P.L., Davis, J.R., Land, G.A., et al. (2012) Integrating Rapid Pathogen Identification and Antimicrobial Stewardship Significantly Decreases Hospital Costs. Archives of Pathology & Laboratory Medicine, 137, 1247-1254. https://doi.org/10.5858/arpa.2012-0651-oa
|
[426]
|
MacVane, S.H. (2016) Antimicrobial Resistance in the Intensive Care Unit. Journal of Intensive Care Medicine, 32, 25-37. https://doi.org/10.1177/0885066615619895
|
[427]
|
Messacar, K., Parker, S.K., Todd, J.K. and Dominguez, S.R. (2017) Implementation of Rapid Molecular Infectious Disease Diagnostics: The Role of Diagnostic and Antimicrobial Stewardship. Journal of Clinical Microbiology, 55, 715-723. https://doi.org/10.1128/jcm.02264-16
|
[428]
|
Doern, G.V., Carroll, K.C., Diekema, D.J., Garey, K.W., Rupp, M.E., Weinstein, M.P., et al. (2019) Practical Guidance for Clinical Microbiology Laboratories: A Comprehensive Update on the Problem of Blood Culture Contamination and a Discussion of Methods for Addressing the Problem. Clinical Microbiology Reviews, 33, e00009-19. https://doi.org/10.1128/cmr.00009-19
|
[429]
|
Banerjee, R., Teng, C.B., Cunningham, S.A., Ihde, S.M., Steckelberg, J.M., Moriarty, J.P., et al. (2015) Randomized Trial of Rapid Multiplex Polymerase Chain Reaction-Based Blood Culture Identification and Susceptibility Testing. Clinical Infectious Diseases, 61, 1071-1080. https://doi.org/10.1093/cid/civ447
|
[430]
|
Huang, A.M., Newton, D., Kunapuli, A., Gandhi, T.N., Washer, L.L., Isip, J., et al. (2013) Impact of Rapid Organism Identification via Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Combined with Antimicrobial Stewardship Team Intervention in Adult Patients with Bacteremia and Candidemia. Clinical Infectious Diseases, 57, 1237-1245. https://doi.org/10.1093/cid/cit498
|
[431]
|
Lloyd, D.H. and Page, S.W. (2018) Antimicrobial Stewardship in Veterinary Medicine. Microbiology Spectrum, 6, 1-22. https://doi.org/10.1128/microbiolspec.arba-0023-2017
|
[432]
|
Allerton, F. and Russell, J. (2023) Antimicrobial Stewardship in Veterinary Medicine: A Review of Online Resources. JAC-Antimicrobial Resistance, 5, dlad058. https://doi.org/10.1093/jacamr/dlad058
|
[433]
|
Hardefeldt, L.Y., Hur, B., Richards, S., Scarborough, R., Browning, G.F., Billman-Jacobe, H., et al. (2022) Antimicrobial Stewardship in Companion Animal Practice: An Implementation Trial in 135 General Practice Veterinary Clinics. JAC-Antimicrobial Resistance, 4, dlac015. https://doi.org/10.1093/jacamr/dlac015
|
[434]
|
Redding, L.E., Reilly, K., Radtke, B., Bartholomew, S. and Cole, S.D. (2023) The Potential Role of Veterinary Technicians in Promoting Antimicrobial Stewardship. BMC Veterinary Research, 19, Article No. 142. https://doi.org/10.1186/s12917-023-03637-w
|
[435]
|
Walker, B., Sánchez‐Vizcaíno, F. and Barker, E.N. (2022) Effect of an Antimicrobial Stewardship Intervention on the Prescribing Behaviours of Companion Animal Veterinarians: A Pre-Post Study. Veterinary Record, 190, e148. https://doi.org/10.1002/vetr.1485
|
[436]
|
Lagana, D.M., Taylor, D.D. and Scallan Walter, E.J. (2023) Advancing Antimicrobial Stewardship in Companion Animal Veterinary Medicine: A Qualitative Study on Perceptions and Solutions to a One Health Problem. Journal of the American Veterinary Medical Association, 261, 1200-1207. https://doi.org/10.2460/javma.23.02.0100
|
[437]
|
Robbins, S.N., Goggs, R., Kraus‐Malett, S. and Goodman, L. (2024) Effect of Institutional Antimicrobial Stewardship Guidelines on Prescription of Critically Important Antimicrobials for Dogs and Cats. Journal of Veterinary Internal Medicine, 38, 1706-1717. https://doi.org/10.1111/jvim.17043
|
[438]
|
Craig, J., Sriram, A., Sadoff, R., Bennett, S., Bahati, F. and Beauvais, W. (2023) Behavior-Change Interventions to Improve Antimicrobial Stewardship in Human Health, Animal Health, and Livestock Agriculture: A Systematic Review. PLOS Global Public Health, 3, e0001526. https://doi.org/10.1371/journal.pgph.0001526
|
[439]
|
Hardefeldt, L.Y., Gilkerson, J.R., Billman‐Jacobe, H., Stevenson, M.A., Thursky, K., Bailey, K.E., et al. (2018) Barriers to and Enablers of Implementing Antimicrobial Stewardship Programs in Veterinary Practices. Journal of Veterinary Internal Medicine, 32, 1092-1099. https://doi.org/10.1111/jvim.15083
|
[440]
|
Mutua, F., Sharma, G., Grace, D., Bandyopadhyay, S., Shome, B. and Lindahl, J. (2020) A Review of Animal Health and Drug Use Practices in India, and Their Possible Link to Antimicrobial Resistance. Antimicrobial Resistance & Infection Control, 9, Article No. 103. https://doi.org/10.1186/s13756-020-00760-3
|
[441]
|
Shano, S., Kalam, M.A., Afrose, S., Rahman, M.S., Akter, S., Uddin, M.N., et al. (2024) An Application of COM-b Model to Explore Factors Influencing Veterinarians’ Antimicrobial Prescription Behaviors: Findings from a Qualitative Study in Bangladesh. PLOS ONE, 19, e0315246. https://doi.org/10.1371/journal.pone.0315246
|
[442]
|
Virhia, J., Laurie, E., Lembo, T., Seni, J., Pollack, R., Davis, A., et al. (2024) Developing a Logic Model for Communication-Based Interventions on Antimicrobial Resistance (AMR). PLOS Global Public Health, 4, e0002965. https://doi.org/10.1371/journal.pgph.0002965
|
[443]
|
Abdelfattah, E.M., Ekong, P.S., Okello, E., Williams, D.R., Karle, B.M., Rowe, J.D., et al. (2021) 2019 Survey of Antimicrobial Drug Use and Stewardship Practices in Adult Cows on California Dairies: Post Senate Bill 27. Microorganisms, 9, Article 1507. https://doi.org/10.3390/microorganisms9071507
|
[444]
|
Pezzani, M.D., Mazzaferri, F., Compri, M., Galia, L., Mutters, N.T., Kahlmeter, G., et al. (2020) Linking Antimicrobial Resistance Surveillance to Antibiotic Policy in Healthcare Settings: The COMBACTE-Magnet Epi-Net COACH Project. Journal of Antimicrobial Chemotherapy, 75, ii2-ii19. https://doi.org/10.1093/jac/dkaa425
|
[445]
|
van Kessel, S.A.M., Wielders, C.C.H., Schoffelen, A.F. and Verbon, A. (2025) Enhancing Antimicrobial Resistance Surveillance and Research: A Systematic Scoping Review on the Possibilities, Yield and Methods of Data Linkage Studies. Antimicrobial Resistance & Infection Control, 14, Article No. 25. https://doi.org/10.1186/s13756-025-01540-7
|
[446]
|
Do, P.C., Assefa, Y.A., Batikawai, S.M. and Reid, S.A. (2023) Strengthening Antimicrobial Resistance Surveillance Systems: A Scoping Review. BMC Infectious Diseases, 23, Article No. 593. https://doi.org/10.1186/s12879-023-08585-2
|
[447]
|
Aenishaenslin, C., Häsler, B., Ravel, A., Parmley, E.J., Mediouni, S., Bennani, H., et al. (2021) Evaluating the Integration of One Health in Surveillance Systems for Antimicrobial Use and Resistance: A Conceptual Framework. Frontiers in Veterinary Science, 8, Article 611931. https://doi.org/10.3389/fvets.2021.611931
|
[448]
|
Agunos, A., Gow, S.P., Deckert, A.E., Kuiper, G. and Léger, D.F. (2021) Informing Stewardship Measures in Canadian Food Animal Species through Integrated Reporting of Antimicrobial Use and Antimicrobial Resistance Surveillance Data—Part I, Methodology Development. Pathogens, 10, Article 1492. https://doi.org/10.3390/pathogens10111492
|
[449]
|
Lacotte, Y., Årdal, C. and Ploy, M. (2020) Infection Prevention and Control Research Priorities: What Do We Need to Combat Healthcare-Associated Infections and Antimicrobial Resistance? Results of a Narrative Literature Review and Survey Analysis. Antimicrobial Resistance & Infection Control, 9, Article No. 142. https://doi.org/10.1186/s13756-020-00801-x
|
[450]
|
Magill, S.S., Edwards, J.R., Bamberg, W., Beldavs, Z.G., Dumyati, G., Kainer, M.A., et al. (2014) Multistate Point-Prevalence Survey of Health Care-Associated Infections. New England Journal of Medicine, 370, 1198-1208. https://doi.org/10.1056/nejmoa1306801
|
[451]
|
Allegranzi, B., Zayed, B., Bischoff, P., Kubilay, N.Z., de Jonge, S., de Vries, F., et al. (2016) New WHO Recommendations on Intraoperative and Postoperative Measures for Surgical Site Infection Prevention: An Evidence-Based Global Perspective. The Lancet Infectious Diseases, 16, e288-e303. https://doi.org/10.1016/s1473-3099(16)30402-9
|
[452]
|
Karanika, S., Paudel, S., Grigoras, C., Kalbasi, A. and Mylonakis, E. (2016) Systematic Review and Meta-Analysis of Clinical and Economic Outcomes from the Implementation of Hospital-Based Antimicrobial Stewardship Programs. Antimicrobial Agents and Chemotherapy, 60, 4840-4852. https://doi.org/10.1128/aac.00825-16
|
[453]
|
Gentilotti, E., De Nardo, P., Nguhuni, B., Piscini, A., Damian, C., Vairo, F., et al. (2020) Implementing a Combined Infection Prevention and Control with Antimicrobial Stewardship Joint Program to Prevent Caesarean Section Surgical Site Infections and Antimicrobial Resistance: A Tanzanian Tertiary Hospital Experience. Antimicrobial Resistance & Infection Control, 9, Article No. 69. https://doi.org/10.1186/s13756-020-00740-7
|
[454]
|
Liu, G., Yu, D., Fan, M., Zhang, X., Jin, Z., Tang, C., et al. (2024) Antimicrobial Resistance Crisis: Could Artificial Intelligence Be the Solution? Military Medical Research, 11, Article No. 7. https://doi.org/10.1186/s40779-024-00510-1
|
[455]
|
Tran, M., Nguyen, N.Q. and Pham, H.T. (2022) A New Hope in the Fight against Antimicrobial Resistance with Artificial Intelligence. Infection and Drug Resistance, 15, 2685-2688. https://doi.org/10.2147/idr.s362356
|
[456]
|
Lau, H.J., Lim, C.H., Foo, S.C. and Tan, H.S. (2021) The Role of Artificial Intelligence in the Battle against Antimicrobial-Resistant Bacteria. Current Genetics, 67, 421-429. https://doi.org/10.1007/s00294-021-01156-5
|
[457]
|
Zagajewski, A., Turner, P., Feehily, C., El Sayyed, H., Andersson, M., Barrett, L., et al. (2023) Deep Learning and Single-Cell Phenotyping for Rapid Antimicrobial Susceptibility Detection in Escherichia coli. Communications Biology, 6, Article No. 1164. https://doi.org/10.1038/s42003-023-05524-4
|
[458]
|
Olatunji, I., Bardaji, D.K.R., Miranda, R.R., Savka, M.A. and Hudson, A.O. (2024) Artificial Intelligence Tools for the Identification of Antibiotic Resistance Genes. Frontiers in Microbiology, 15, Article 1437602. https://doi.org/10.3389/fmicb.2024.1437602
|
[459]
|
Tsoukalas, A., Albertson, T. and Tagkopoulos, I. (2015) From Data to Optimal Decision Making: A Data-Driven, Probabilistic Machine Learning Approach to Decision Support for Patients with Sepsis. JMIR Medical Informatics, 3, e11. https://doi.org/10.2196/medinform.3445
|
[460]
|
Giske, C.G., Bressan, M., Fiechter, F., Hinic, V., Mancini, S., Nolte, O., et al. (2024) GPT-4-Based AI Agents—The New Expert System for Detection of Antimicrobial Resistance Mechanisms? Journal of Clinical Microbiology, 62, e0068924. https://doi.org/10.1128/jcm.00689-24
|
[461]
|
Abavisani, M., Khoshrou, A., Karbas Foroushan, S. and Sahebkar, A. (2024) Chatting with Artificial Intelligence to Combat Antibiotic Resistance: Opportunities and Challenges. Current Research in Biotechnology, 7, Article ID: 100197. https://doi.org/10.1016/j.crbiot.2024.100197
|
[462]
|
Harandi, H., Shafaati, M., Salehi, M., Roozbahani, M.M., Mohammadi, K., Akbarpour, S., et al. (2025) Artificial Intelligence-Driven Approaches in Antibiotic Stewardship Programs and Optimizing Prescription Practices: A Systematic Review. Artificial Intelligence in Medicine, 162, Article ID: 103089. https://doi.org/10.1016/j.artmed.2025.103089
|
[463]
|
Tran-The, T., Heo, E., Lim, S., Suh, Y., Heo, K., Lee, E.E., et al. (2024) Development of Machine Learning Algorithms for Scaling-Up Antibiotic Stewardship. International Journal of Medical Informatics, 181, Article ID: 105300. https://doi.org/10.1016/j.ijmedinf.2023.105300
|
[464]
|
Hajipour, M.J., Fromm, K.M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I.R.d., Rojo, T., et al. (2012) Antibacterial Properties of Nanoparticles. Trends in Biotechnology, 30, 499-511. https://doi.org/10.1016/j.tibtech.2012.06.004
|
[465]
|
Gurunathan, S., Han, J.W., Kwon, D. and Kim, J. (2014) Enhanced Antibacterial and Anti-Biofilm Activities of Silver Nanoparticles against Gram-Negative and Gram-Positive Bacteria. Nanoscale Research Letters, 9, Article No. 373. https://doi.org/10.1186/1556-276x-9-373
|
[466]
|
Hetta, H.F., Ramadan, Y.N., Al-Harbi, A.I., A. Ahmed, E., Battah, B., Abd Ellah, N.H., et al. (2023) Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines, 11, Article 413. https://doi.org/10.3390/biomedicines11020413
|
[467]
|
Rai, M.K., Deshmukh, S.D., Ingle, A.P. and Gade, A.K. (2012) Silver Nanoparticles: The Powerful Nanoweapon against Multidrug-Resistant Bacteria. Journal of Applied Microbiology, 112, 841-852. https://doi.org/10.1111/j.1365-2672.2012.05253.x
|
[468]
|
Pelgrift, R.Y. and Friedman, A.J. (2013) Nanotechnology as a Therapeutic Tool to Combat Microbial Resistance. Advanced Drug Delivery Reviews, 65, 1803-1815. https://doi.org/10.1016/j.addr.2013.07.011
|
[469]
|
Zhou, Q., Zhang, L., Yang, T. and Wu, H. (2018) Stimuli-Responsive Polymeric Micelles for Drug Delivery and Cancer Therapy. International Journal of Nanomedicine, 13, 2921-2942. https://doi.org/10.2147/ijn.s158696
|
[470]
|
Baptista, P.V., McCusker, M.P., Carvalho, A., Ferreira, D.A., Mohan, N.M., Martins, M., et al. (2018) Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Frontiers in Microbiology, 9, Article 1441. https://doi.org/10.3389/fmicb.2018.01441
|
[471]
|
Lara, H.H., Ayala-Nuñez, N.V., Ixtepan-Turrent, L. and Rodriguez-Padilla, C. (2010) Mode of Antiviral Action of Silver Nanoparticles against HIV-1. Journal of Nanobiotechnology, 8, Article No. 1. https://doi.org/10.1186/1477-3155-8-1
|
[472]
|
Durán, N., Durán, M., de Jesus, M.B., Seabra, A.B., Fávaro, W.J. and Nakazato, G. (2016) Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 789-799. https://doi.org/10.1016/j.nano.2015.11.016
|
[473]
|
Tamma, P.D. and Cosgrove, S.E. (2011) Antimicrobial Stewardship. Infectious Disease Clinics of North America, 25, 245-260. https://doi.org/10.1016/j.idc.2010.11.011
|
[474]
|
Katz, M.J., Tamma, P.D., Cosgrove, S.E., Miller, M.A., Dullabh, P., Rowe, T.A., et al. (2022) Implementation of an Antibiotic Stewardship Program in Long-Term Care Facilities across the Us. JAMA Network Open, 5, e220181. https://doi.org/10.1001/jamanetworkopen.2022.0181
|
[475]
|
Kimbowa, I.M., Eriksen, J., Nakafeero, M., Obua, C., Lundborg, C.S., Kalyango, J., et al. (2022) Antimicrobial Stewardship: Attitudes and Practices of Healthcare Providers in Selected Health Facilities in Uganda. PLOS ONE, 17, e0262993. https://doi.org/10.1371/journal.pone.0262993
|
[476]
|
MacDougall, C. and Polk, R.E. (2005) Antimicrobial Stewardship Programs in Health Care Systems. Clinical Microbiology Reviews, 18, 638-656. https://doi.org/10.1128/cmr.18.4.638-656.2005
|
[477]
|
Sefah, I.A., Chetty, S., Yamoah, P., Godman, B. and Bangalee, V. (2024) An Assessment of the Current Level of Implementation of the Core Elements of Antimicrobial Stewardship Programs in Public Hospitals in Ghana. Hospital Pharmacy, 59, 367-377. https://doi.org/10.1177/00185787231224066
|
[478]
|
Elshenawy, R.A., Umaru, N., Alharbi, A.B. and Aslanpour, Z. (2023) Antimicrobial Stewardship Implementation before and during the COVID-19 Pandemic in the Acute Care Settings: A Systematic Review. BMC Public Health, 23, Article No. 309. https://doi.org/10.1186/s12889-023-15072-5
|
[479]
|
McKnight, J., Maina, M., Zosi, M., Kimemia, G., Onyango, T., Schultsz, C., et al. (2019) Evaluating Hospital Performance in Antibiotic Stewardship to Guide Action at National and Local Levels in a Lower-Middle Income Setting. Global Health Action, 12, Article ID: 1761657. https://doi.org/10.1080/16549716.2020.1761657
|
[480]
|
Chetty, S., Reddy, M., Ramsamy, Y., Dlamini, V.C., Reddy-Naidoo, R. and Essack, S.Y. (2022) Antimicrobial Stewardship in Public-Sector Hospitals in Kwazulu-Natal, South Africa. Antibiotics, 11, Article 881. https://doi.org/10.3390/antibiotics11070881
|
[481]
|
Kiggundu, R., Waswa, J., Nakambale, H.N., Kakooza, F., Kassuja, H., Murungi, M., et al. (2023) Development and Evaluation of a Continuous Quality Improvement Programme for Antimicrobial Stewardship in Six Hospitals in Uganda. BMJ Open Quality, 12, e002293. https://doi.org/10.1136/bmjoq-2023-002293
|
[482]
|
McGill, E., Neitzel, A., Bartoszko, J.J., Buchanan-Chell, M., Grant, J., Leal, J., et al. (2025) Antimicrobial Stewardship Programs in a Network of Canadian Acute Care Hospitals: A Cross-Sectional Survey. Antimicrobial Stewardship & Healthcare Epidemiology, 5, e122. https://doi.org/10.1017/ash.2025.181
|
[483]
|
Chitatanga, R., Yiwombe, C., Divala, O., Msokera, M.P., Banda, E., Chadwala, H., et al. (2025) A Baseline Assessment of Antimicrobial Stewardship Core Element Implementation in Selected Public Hospitals in Malawi: Findings from the 2023 National Program Audit. Frontiers in Public Health, 13, Article 1588778. https://doi.org/10.3389/fpubh.2025.1588778
|
[484]
|
Amponsah, O.K.O., Courtenay, A., Ayisi-Boateng, N.K., Abuelhana, A., Opoku, D.A., Blay, L.K., et al. (2023) Assessing the Impact of Antimicrobial Stewardship Implementation at a District Hospital in Ghana Using a Health Partnership Model. JAC-Antimicrobial Resistance, 5, dlad084. https://doi.org/10.1093/jacamr/dlad084
|
[485]
|
Otieno, P.A., Campbell, S., Maley, S., Obinju Arunga, T. and Otieno Okumu, M. (2022) A Systematic Review of Pharmacist-Led Antimicrobial Stewardship Programs in Sub-Saharan Africa. International Journal of Clinical Practice, 2022, Article ID: 3639943. https://doi.org/10.1155/2022/3639943
|
[486]
|
Albano, G.D., Midiri, M., Zerbo, S., Matteini, E., Passavanti, G., Curcio, R., et al. (2023) Implementation of a Year-Long Antimicrobial Stewardship Program in a 227-Bed Community Hospital in Southern Italy. International Journal of Environmental Research and Public Health, 20, Article 996. https://doi.org/10.3390/ijerph20020996
|
[487]
|
Donida, B.M., Mingolla, G. and Manfredi, A. (2025) Optimizing Antibiotic Use and Awareness in Hospitals: Establishing Effective Antimicrobial Stewardship Pathways. Current Drug Safety. https://doi.org/10.2174/0115748863357518250419160411
|
[488]
|
Chetty, S., Swe-Han, K.S., Mahabeer, Y., Pillay, A. and Essack, S.Y. (2024) Interprofessional Education in Antimicrobial Stewardship, a Collaborative Effort. JAC-Antimicrobial Resistance, 6, dlae054. https://doi.org/10.1093/jacamr/dlae054
|
[489]
|
Nassar, H., Abu-Farha, R., Barakat, M. and Alefishat, E. (2022) Antimicrobial Stewardship from Health Professionals’ Perspective: Awareness, Barriers, and Level of Implementation of the Program. Antibiotics, 11, Article 99. https://doi.org/10.3390/antibiotics11010099
|
[490]
|
Bulabula, A.N.H., Jenkins, A., Mehtar, S. and Nathwani, D. (2018) Education and Management of Antimicrobials Amongst Nurses in Africa—A Situation Analysis: An Infection Control Africa Network (ICAN)/BSAC Online Survey. Journal of Antimicrobial Chemotherapy, 73, 1408-1415. https://doi.org/10.1093/jac/dky023
|
[491]
|
Brinkmann, I. and Kibuule, D. (2020) Effectiveness of Antibiotic Stewardship Programmes in Primary Health Care Settings in Developing Countries. Research in Social and Administrative Pharmacy, 16, 1309-1313. https://doi.org/10.1016/j.sapharm.2019.03.008
|
[492]
|
Brigadoi, G., Gres, E., Barbieri, E., Liberati, C., Rossin, S., Chiusaroli, L., et al. (2024) Impact of a Multifaceted Antibiotic Stewardship Programme in a Paediatric Acute Care Unit over 8 Years. JAC-Antimicrobial Resistance, 6, dlae181. https://doi.org/10.1093/jacamr/dlae181
|
[493]
|
Sartelli, M., Barie, P.S., Coccolini, F., Abbas, M., Abbo, L.M., Abdukhalilova, G.K., et al. (2023) Ten Golden Rules for Optimal Antibiotic Use in Hospital Settings: The WARNING Call to Action. World Journal of Emergency Surgery, 18, Article No. 50. https://wjes.biomedcentral.com/articles/10.1186/s13017-023-00518-3
|
[494]
|
Hingorani, R., Mahmood, M. and Alweis, R. (2015) Improving Antibiotic Adherence in Treatment of Acute Upper Respiratory Infections: A Quality Improvement Process. Journal of Community Hospital Internal Medicine Perspectives, 5, Article 27472. https://doi.org/10.3402/jchimp.v5.27472
|
[495]
|
Boltena, M.T., Woldie, M., Siraneh, Y., Steck, V., El-Khatib, Z. and Morankar, S. (2023) Adherence to Evidence-Based Implementation of Antimicrobial Treatment Guidelines among Prescribers in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. Journal of Pharmaceutical Policy and Practice, 16, Article No. 137. https://doi.org/10.1186/s40545-023-00634-0
|
[496]
|
Lakoh, S., Bawoh, M., Lewis, H., Jalloh, I., Thomas, C., Barlatt, S., et al. (2023) Establishing an Antimicrobial Stewardship Program in Sierra Leone: A Report of the Experience of a Low-Income Country in West Africa. Antibiotics, 12, Article 424. https://doi.org/10.3390/antibiotics12030424
|
[497]
|
Cotta, M.O., Robertson, M.S., Marshall, C., Thursky, K.A., Liew, D. and Buising, K.L. (2015) Implementing Antimicrobial Stewardship in the Australian Private Hospital System: A Qualitative Study. Australian Health Review, 39, 315-322. https://doi.org/10.1071/ah14111
|
[498]
|
Cairns, K.A., Roberts, J.A., Cotta, M.O. and Cheng, A.C. (2015) Antimicrobial Stewardship in Australian Hospitals and Other Settings. Infectious Diseases and Therapy, 4, 27-38. https://doi.org/10.1007/s40121-015-0083-9
|
[499]
|
Nie, H., Yue, L., Peng, H., Zhou, J., Li, B. and Cao, Z. (2024) Nurses’ Engagement in Antimicrobial Stewardship and Its Influencing Factors: A Cross-Sectional Study. International Journal of Nursing Sciences, 11, 91-98. https://doi.org/10.1016/j.ijnss.2023.12.002
|
[500]
|
Wickens, H.J., Farrell, S., Ashiru-Oredope, D.A.I., Jacklin, A., Holmes, A., Cooke, J., et al. (2013) The Increasing Role of Pharmacists in Antimicrobial Stewardship in English Hospitals. Journal of Antimicrobial Chemotherapy, 68, 2675-2681. https://doi.org/10.1093/jac/dkt241
|
[501]
|
Sakeena, M.H.F., Bennett, A.A. and McLachlan, A.J. (2018) Enhancing Pharmacists’ Role in Developing Countries to Overcome the Challenge of Antimicrobial Resistance: A Narrative Review. Antimicrobial Resistance & Infection Control, 7, Article No. 63. https://doi.org/10.1186/s13756-018-0351-z
|
[502]
|
Musoke, D., Kitutu, F.E., Mugisha, L., Amir, S., Brandish, C., Ikhile, D., et al. (2020) A One Health Approach to Strengthening Antimicrobial Stewardship in Wakiso District, Uganda. Antibiotics, 9, Article 764. https://doi.org/10.3390/antibiotics9110764
|
[503]
|
Tang, K.W.K., Millar, B.C. and Moore, J.E. (2023) Antimicrobial Resistance (AMR). British Journal of Biomedical Science, 80, Article 11387. https://doi.org/10.3389/bjbs.2023.11387
|
[504]
|
Lai, W.M., Islahudin, F.H., Ambaras Khan, R. and Chong, W.W. (2020) The Impact of Pharmacists’ Involvement in Antimicrobial Stewardship (AMS) Strategies and Potential for Role Expansion: A Qualitative Study. International Journal of Infectious Diseases, 101, Article No. 109. https://doi.org/10.1016/j.ijid.2020.09.303
|
[505]
|
Morency-Potvin, P., Schwartz, D.N. and Weinstein, R.A. (2017) Antimicrobial Stewardship: How the Microbiology Laboratory Can Right the Ship. Clinical Microbiology Reviews, 30, 381-407. https://doi.org/10.1128/cmr.00066-16
|
[506]
|
Can, F. and Karatuna, O. (2017) The Role of Microbiology Laboratory in Promoting Antimicrobial Stewardship. In: Pulcini, C., Ergönül, Ö., et al., Eds., Antimicrobial Stewardship, Elsevier, 115-128. https://doi.org/10.1016/b978-0-12-810477-4.00009-x
|
[507]
|
Araj, G.F., Avedissian, A.Z., Itani, L.Y. and Obeid, J.A. (2018) Antimicrobial Agents Active against Carbapenem-Resistant Escherichia coli and Klebsiella Pneumoniae Isolates in Lebanon. The Journal of Infection in Developing Countries, 12, 164-170. https://doi.org/10.3855/jidc.9729
|
[508]
|
MacVane, S.H., Hurst, J.M. and Steed, L.L. (2016) The Role of Antimicrobial Stewardship in the Clinical Microbiology Laboratory: Stepping up to the Plate. Open Forum Infectious Diseases, 3, ofw201. https://doi.org/10.1093/ofid/ofw201
|
[509]
|
Rudnick, W., Mukhi, S., Reid-Smith, R., German, G., Nichani, A. and Mulvey, M. (2022) Overview of Canada’s Antimicrobial Resistance Network (AMRNet): A Data-Driven One Health Approach to Antimicrobial Resistance Surveillance. Canada Communicable Disease Report, 48, 522-528. https://doi.org/10.14745/ccdr.v48i1112a05
|
[510]
|
Nyasulu, P.S., Paszko, C. and Mbelle, N. (2014) A Narrative Review of the Laboratory Information System and Its Role in Antimicrobial Resistance Surveillance in South Africa. Advances in Microbiology, 4, 692-696. https://doi.org/10.4236/aim.2014.410074
|
[511]
|
Avdic, E. and Carroll, K.C. (2014) The Role of the Microbiology Laboratory in Antimicrobial Stewardship Programs. Infectious Disease Clinics of North America, 28, 215-235. https://doi.org/10.1016/j.idc.2014.01.002
|
[512]
|
Arena, F., Giani, T., Pollini, S., Viaggi, B., Pecile, P. and Rossolini, G.M. (2017) Molecular Antibiogram in Diagnostic Clinical Microbiology: Advantages and Challenges. Future Microbiology, 12, 361-364. https://doi.org/10.2217/fmb-2017-0019
|
[513]
|
Goff, D.A., Jankowski, C. and Tenover, F.C. (2012) Using Rapid Diagnostic Tests to Optimize Antimicrobial Selection in Antimicrobial Stewardship Programs. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 32, 677-687. https://doi.org/10.1002/j.1875-9114.2012.01137.x
|
[514]
|
Pulido, M.R., Garcia-Quintanilla, M., Martin-Pena, R., Cisneros, J.M. and McConnell, M.J. (2013) Progress on the Development of Rapid Methods for Antimicrobial Susceptibility Testing. Journal of Antimicrobial Chemotherapy, 68, 2710-2717. https://doi.org/10.1093/jac/dkt253
|
[515]
|
Timbrook, T.T., Spivak, E.S. and Hanson, K.E. (2018) Current and Future Opportunities for Rapid Diagnostics in Antimicrobial Stewardship. Medical Clinics of North America, 102, 899-911. https://doi.org/10.1016/j.mcna.2018.05.004
|
[516]
|
Tenover, F.C. (2010) Potential Impact of Rapid Diagnostic Tests on Improving Antimicrobial Use. Annals of the New York Academy of Sciences, 1213, 70-80. https://doi.org/10.1111/j.1749-6632.2010.05827.x
|
[517]
|
Darboe, S., Mirasol, R., Adejuyigbe, B., Muhammad, A.K., Nadjm, B., De St. Maurice, A., et al. (2023) Using an Antibiogram Profile to Improve Infection Control and Rational Antimicrobial Therapy in an Urban Hospital in the Gambia, Strategies and Lessons for Low-and Middle-Income Countries. Antibiotics, 12, Article 790. https://doi.org/10.3390/antibiotics12040790
|
[518]
|
Dakorah, M.P., Agyare, E., Acolatse, J.E.E., Akafity, G., Stelling, J., Chalker, V.J., et al. (2022) Utilising Cumulative Antibiogram Data to Enhance Antibiotic Stewardship Capacity in the Cape Coast Teaching Hospital, Ghana. Antimicrobial Resistance & Infection Control, 11, Article No. 122. https://doi.org/10.1186/s13756-022-01160-5
|
[519]
|
Ture, Z., Güner, R. and Alp, E. (2023) Antimicrobial Stewardship in the Intensive Care Unit. Journal of Intensive Medicine, 3, 244-253. https://doi.org/10.1016/j.jointm.2022.10.001
|
[520]
|
Obasanya, J.O., Ogunbode, O. and Landu-Adams, V. (2022) An Appraisal of the Contextual Drivers of Successful Antimicrobial Stewardship Implementation in Nigerian Health Care Facilities. Journal of Global Antimicrobial Resistance, 31, 141-148. https://doi.org/10.1016/j.jgar.2022.08.007
|
[521]
|
Frey, E., Costin, M., Granick, J., Kornya, M. and Weese, J.S. (2022) 2022 AAFP/AAHA Antimicrobial Stewardship Guidelines. Journal of the American Animal Hospital Association, 58, 1-5. https://doi.org/10.5326/1547-3317-58.4.1
|
[522]
|
Norris, J., Heller, J., Gibson, J., Hardefeldt, L., Hyndman, T., Nielsen, T., et al. (2019) Development of a Veterinary Antimicrobial Stewardship Online Training Program for Australian Veterinarians: A National Collaborative Effort. Australian Veterinary Journal, 97, 290-291. https://doi.org/10.1111/avj.12821
|
[523]
|
Rehan, M., Akhtar, J., Islam, A., Badruddeen,, Irfan Khan, M., Ahmad, A., et al. (2025) Nanotechnology in the Fight against Antimicrobial Resistance: Designing the Next-Generation Therapies. In: Mustafa, G., et al., Eds., Antimicrobial Resistance—New Insights, IntechOpen, 1-23. https://doi.org/10.5772/intechopen.1009429
|
[524]
|
Bharti, S. and Kumar, A. (2024) Nanotechnology in Targeted Delivery of Antimicrobials and Overcoming Resistance. BioNanoScience, 15, Article No. 20. https://doi.org/10.1007/s12668-024-01654-z
|
[525]
|
Chakraborty, N., Jha, D., Roy, I., Kumar, P., Gaurav, S.S., Marimuthu, K., et al. (2022) Nanobiotics against Antimicrobial Resistance: Harnessing the Power of Nanoscale Materials and Technologies. Journal of Nanobiotechnology, 20, Article No. 375. https://doi.org/10.1186/s12951-022-01573-9
|
[526]
|
Zhu, X., Tang, Q., Zhou, X. and Momeni, M.R. (2024) Antibiotic Resistance and Nanotechnology: A Narrative Review. Microbial Pathogenesis, 193, Article ID: 106741. https://doi.org/10.1016/j.micpath.2024.106741
|
[527]
|
Trivedi, R., Upadhyay, T.K., Kausar, M.A., Saeed, A., Sharangi, A.B., Almatroudi, A., et al. (2022) Nanotechnological Interventions of the Microbiome as a Next-Generation Antimicrobial Therapy. Science of the Total Environment, 833, Article ID: 155085. https://doi.org/10.1016/j.scitotenv.2022.155085
|
[528]
|
Gupta, A., Mumtaz, S., Li, C., Hussain, I. and Rotello, V.M. (2019) Combatting Antibiotic-Resistant Bacteria Using Nanomaterials. Chemical Society Reviews, 48, 415-427. https://doi.org/10.1039/c7cs00748e
|
[529]
|
Hassan, P.B., Mohammed Ameen, S.S., Mohammed, L., Muhammed Ameen, S.M. and Omer, K.M. (2024) Enhanced Antibacterial Activity of a Novel Silver-Based Metal Organic Framework Towards Multidrug-Resistant klebsiella Pneumonia. Nanoscale Advances, 6, 3801-3808. https://doi.org/10.1039/d4na00037d
|
[530]
|
Murugaiyan, J., Kumar, P.A., Rao, G.S., Iskandar, K., Hawser, S., Hays, J.P., et al. (2022) Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics, 11, Article 200. https://doi.org/10.3390/antibiotics11020200
|
[531]
|
Parvin, N., Joo, S.W. and Mandal, T.K. (2025) Nanomaterial-based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications. Antibiotics, 14, Article 207. https://doi.org/10.3390/antibiotics14020207
|
[532]
|
Mukherjee, R., Chang, C., Pandey, R.P. and Hameed, S. (2024) Role of Nanomedicine in Overcoming Antimicrobial Resistance: Challenges and Opportunities. In: Wani, M.Y., Wani, I.A. and Rai, A., Eds., Nanotechnology Based Strategies for Combating Antimicrobial Resistance, Springer, 45-60. https://doi.org/10.1007/978-981-97-2023-1_2
|
[533]
|
Mgadi, K., Ndaba, B., Roopnarain, A., Rama, H. and Adeleke, R. (2024) Nanoparticle Applications in Agriculture: Overview and Response of Plant-Associated Microorganisms. Frontiers in Microbiology, 15, Article 1354440. https://doi.org/10.3389/fmicb.2024.1354440
|
[534]
|
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S.A., Rehman, H.U., et al. (2020) Nanotechnology in Agriculture: Current Status, Challenges and Future Opportunities. Science of the Total Environment, 721, Article ID: 137778. https://doi.org/10.1016/j.scitotenv.2020.137778
|
[535]
|
Shah, M.A., Shahnaz, T., Zehab-ud-Din, Masoodi, J.H., Nazir, S., Qurashi, A., et al. (2024) Application of Nanotechnology in the Agricultural and Food Processing Industries: A Review. Sustainable Materials and Technologies, 39, e00809. https://doi.org/10.1016/j.susmat.2023.e00809
|
[536]
|
Atanda, S.A., Shaibu, R.O. and Agunbiade, F.O. (2025) Nanoparticles in Agriculture: Balancing Food Security and Environmental Sustainability. Discover Agriculture, 3, Article No. 26. https://doi.org/10.1007/s44279-025-00159-x
|
[537]
|
Bess, A., Berglind, F., Mukhopadhyay, S., Brylinski, M., Griggs, N., Cho, T., et al. (2022) Artificial Intelligence for the Discovery of Novel Antimicrobial Agents for Emerging Infectious Diseases. Drug Discovery Today, 27, 1099-1107. https://doi.org/10.1016/j.drudis.2021.10.022
|
[538]
|
Yue, L., Song, L., Zhu, S., Fu, X., Li, X., He, C., et al. (2024) Machine Learning Assisted Rational Design of Antimicrobial Peptides Based on Human Endogenous Proteins and Their Applications for Cosmetic Preservative System Optimization. Scientific Reports, 14, Article No. 947. https://doi.org/10.1038/s41598-023-50832-8
|
[539]
|
Xin, H., Virk, A.S., Virk, S.S., Akin-Ige, F. and Amin, S. (2024) Applications of Artificial Intelligence and Machine Learning on Critical Materials Used in Cosmetics and Personal Care Formulation Design. Current Opinion in Colloid & Interface Science, 73, Article ID: 101847. https://doi.org/10.1016/j.cocis.2024.101847
|
[540]
|
Abu-El-Ruz, R., AbuHaweeleh, M.N., Hamdan, A., Rajha, H.E., Sarah, J.M., Barakat, K., et al. (2025) Artificial Intelligence in Bacterial Infections Control: A Scoping Review. Antibiotics, 14, Article 256. https://doi.org/10.3390/antibiotics14030256
|
[541]
|
Ali, T., Ahmed, S. and Aslam, M. (2023) Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities Towards Practical Implementation. Antibiotics, 12, Article 523. https://doi.org/10.3390/antibiotics12030523
|
[542]
|
Kim, J.I., Maguire, F., Tsang, K.K., Gouliouris, T., Peacock, S.J., McAllister, T.A., et al. (2022) Machine Learning for Antimicrobial Resistance Prediction: Current Practice, Limitations, and Clinical Perspective. Clinical Microbiology Reviews, 35, e00179-21. https://doi.org/10.1128/cmr.00179-21
|
[543]
|
Ren, Y., Chakraborty, T., Doijad, S., Falgenhauer, L., Falgenhauer, J., Goesmann, A., et al. (2021) Prediction of Antimicrobial Resistance Based on Whole-Genome Sequencing and Machine Learning. Bioinformatics, 38, 325-334. https://doi.org/10.1093/bioinformatics/btab681
|
[544]
|
Elhaddad, M. and Hamam, S. (2024) AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential. Cureus, 16, e57728. https://doi.org/10.7759/cureus.57728
|
[545]
|
Lin, T., Chung, H., Jian, M., Chang, C., Lin, H., Yu, C., et al. (2024) Artificial Intelligence-Clinical Decision Support System for Enhanced Infectious Disease Management: Accelerating Ceftazidime-Avibactam Resistance Detection in Klebsiella Pneumoniae. Journal of Infection and Public Health, 17, Article ID: 102541. https://doi.org/10.1016/j.jiph.2024.102541
|
[546]
|
Lv, J., Deng, S. and Zhang, L. (2021) A Review of Artificial Intelligence Applications for Antimicrobial Resistance. Biosafety and Health, 3, 22-31. https://doi.org/10.1016/j.bsheal.2020.08.003
|
[547]
|
Arnold, A., McLellan, S. and Stokes, J.M. (2025) How AI Can Help Us Beat Amr. npj Antimicrobials and Resistance, 3, Article No. 18. https://doi.org/10.1038/s44259-025-00085-4
|
[548]
|
Andrew, A. (2024) Potential Applications and Implications of Large Language Models in Primary Care. Family Medicine and Community Health, 12, e002602. https://doi.org/10.1136/fmch-2023-002602
|
[549]
|
Mazhar, T., khan, S., Shahzad, T., khan, M.A., Saeed, M.M., Awotunde, J.B., et al. (2025) Generative AI, IoT, and Blockchain in Healthcare: Application, Issues, and Solutions. Discover Internet of Things, 5, Article No. 5. https://doi.org/10.1007/s43926-025-00095-8
|
[550]
|
Antonie, N.I., Gheorghe, G., Ionescu, V.A., Tiucă, L. and Diaconu, C.C. (2025) The Role of ChatGPT and AI Chatbots in Optimizing Antibiotic Therapy: A Comprehensive Narrative Review. Antibiotics, 14, Article 60. https://doi.org/10.3390/antibiotics14010060
|
[551]
|
Mohammed, A.M., Mohammed, M., Oleiwi, J.K., Osman, A.F., Adam, T., Betar, B.O., et al. (2025) Enhancing Antimicrobial Resistance Strategies: Leveraging Artificial Intelligence for Improved Outcomes. South African Journal of Chemical Engineering, 51, 272-286. https://doi.org/10.1016/j.sajce.2024.12.005
|
[552]
|
Pennisi, F., Pinto, A., Ricciardi, G.E., Signorelli, C. and Gianfredi, V. (2025) The Role of Artificial Intelligence and Machine Learning Models in Antimicrobial Stewardship in Public Health: A Narrative Review. Antibiotics, 14, Article 134. https://doi.org/10.3390/antibiotics14020134
|
[553]
|
World Health Organization (2016) Guidelines on Core Components of Infection Prevention and Control Programmes at the National and Acute Health Care Facility Level. https://www.who.int/publications/i/item/9789241549929
|
[554]
|
World Health Organization (2017) Interim Practical Manual supporting national Implementation of the WHO Guidelines on Core Components of Infection Prevention and Control Programmes. 1-77. https://www.who.int/publications/i/item/WHO-HIS-SDS-2017-8
|
[555]
|
Avortri, G.S. and Nabyonga-Orem, J. (2019) The Global Call for Action on Infection Prevention and Control. International Journal of Health Care Quality Assurance, 32, 927-940. https://doi.org/10.1108/ijhcqa-03-2018-0063
|
[556]
|
Pollack, L.A. and Srinivasan, A. (2014) Core Elements of Hospital Antibiotic Stewardship Programs from the Centers for Disease Control and Prevention. Clinical Infectious Diseases, 59, S97-S100. https://doi.org/10.1093/cid/ciu542
|
[557]
|
Hwang, S. and Kwon, K.T. (2021) Core Elements for Successful Implementation of Antimicrobial Stewardship Programs. Infection & Chemotherapy, 53, 421-435. https://doi.org/10.3947/ic.2021.0093
|
[558]
|
Villanueva, P., Coffin, S.E., Mekasha, A., McMullan, B., Cotton, M.F. and Bryant, P.A. (2022) Comparison of Antimicrobial Stewardship and Infection Prevention and Control Activities and Resources between Low-/Middle-and High-Income Countries. Pediatric Infectious Disease Journal, 41, S3-S9. https://doi.org/10.1097/inf.0000000000003318
|
[559]
|
Knobloch, M.J., McKinley, L., Keating, J. and Safdar, N. (2021) Integrating Antibiotic Stewardship and Infection Prevention and Control Programs Using a Team Science Approach. American Journal of Infection Control, 49, 1072-1074. https://doi.org/10.1016/j.ajic.2021.01.020
|
[560]
|
Dik, J.H., Poelman, R., Friedrich, A.W., Niesters, H.G.M., Rossen, J.W.A. and Sinha, B. (2017) Integrated Stewardship Model Comprising Antimicrobial, Infection Prevention, and Diagnostic Stewardship (AID Stewardship). Journal of Clinical Microbiology, 55, 3306-3307. https://doi.org/10.1128/jcm.01283-17
|
[561]
|
Leonard, A.F.C., Zhang, L., Balfour, A.J., Garside, R., Hawkey, P.M., Murray, A.K., et al. (2018) Exposure to and Colonisation by Antibiotic-Resistant E. Coli in UK Coastal Water Users: Environmental Surveillance, Exposure Assessment, and Epidemiological Study (Beach Bum Survey). Environment International, 114, 326-333. https://doi.org/10.1016/j.envint.2017.11.003
|
[562]
|
Leonard, A.F.C., Zhang, L., Balfour, A.J., Garside, R. and Gaze, W.H. (2015) Human Recreational Exposure to Antibiotic Resistant Bacteria in Coastal Bathing Waters. Environment International, 82, 92-100. https://doi.org/10.1016/j.envint.2015.02.013
|
[563]
|
Paneri, M. and Sevta, P. (2023) Overview of Antimicrobial Resistance: An Emerging Silent Pandemic. Global Journal of Medical, Pharmaceutical, and Biomedical Update, 18, Article 11. https://doi.org/10.25259/gjmpbu_153_2022
|
[564]
|
Sharma, C., Rokana, N., Chandra, M., Singh, B.P., Gulhane, R.D., Gill, J.P.S., et al. (2018) Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Frontiers in Veterinary Science, 4, Article 237. https://doi.org/10.3389/fvets.2017.00237
|
[565]
|
Nowbuth, A.A., Asombang, A.W., Tazinkeng, N.N., Makinde, O.Y. and Sheets, L.R. (2023) Antimicrobial Resistance from a One Health Perspective in Zambia: A Systematic Review. Antimicrobial Resistance & Infection Control, 12, Article No. 15. https://doi.org/10.1186/s13756-023-01224-0
|
[566]
|
Hernando-Amado, S., Coque, T.M., Baquero, F. and Martínez, J.L. (2019) Defining and Combating Antibiotic Resistance from One Health and Global Health Perspectives. Nature Microbiology, 4, 1432-1442. https://doi.org/10.1038/s41564-019-0503-9
|
[567]
|
McEwen, S.A. and Collignon, P.J. (2018) Antimicrobial Resistance: A One Health Perspective. Microbiology Spectrum, 6, 1-26. https://doi.org/10.1128/microbiolspec.arba-0009-2017
|
[568]
|
Alawneh, J.I., Hassan, M.M., Camac, J., Ransom, L., Planck, J., Porchun, S.C., et al. (2025) Plant Biosecurity and One Health: Government and Industry Roles as Risk Creators and Mitigators. One Health Outlook, 7, Article No. 27. https://doi.org/10.1186/s42522-025-00150-y
|
[569]
|
Oliveira, M., Antunes, W., Mota, S., Madureira-Carvalho, Á., Dinis-Oliveira, R.J. and Dias da Silva, D. (2024) An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms, 12, Article 1920. https://doi.org/10.3390/microorganisms12091920
|
[570]
|
Yadav, S.K., Shrestha, L., Acharya, J., Gompo, T.R., Chapagain, S. and Jha, R. (2023) Integrative Digital Tools to Strengthen Data Management for Antimicrobial Resistance Surveillance in the “One Health” Domain in Nepal. Tropical Medicine and Infectious Disease, 8, Article 291. https://doi.org/10.3390/tropicalmed8060291
|
[571]
|
Kahn, L.H. (2017) Antimicrobial Resistance: A One Health Perspective. Transactions of the Royal Society of Tropical Medicine and Hygiene, 111, 255-260. https://doi.org/10.1093/trstmh/trx050
|
[572]
|
Jani, K., Srivastava, V., Sharma, P., Vir, A. and Sharma, A. (2021) Easy Access to Antibiotics; Spread of Antimicrobial Resistance and Implementation of One Health Approach in India. Journal of Epidemiology and Global Health, 11, 444-452. https://doi.org/10.1007/s44197-021-00008-2
|
[573]
|
Kasimanickam, V., Kasimanickam, M. and Kasimanickam, R. (2021) Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Medical Sciences, 9, Article 14. https://doi.org/10.3390/medsci9010014
|
[574]
|
World Health Organization (2019) Monitoring and Evaluation of the Global Action Plan on Antimicrobial Resistance. https://apps.who.int/iris/bitstream/handle/10665/325006/9789241515665-eng.pdf?sequence=1&isAllowed=y
|
[575]
|
Donado‐Godoy, P., Castellanos, R., León, M., Arevalo, A., Clavijo, V., Bernal, J., et al. (2015) The Establishment of the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS): A Pilot Project on Poultry Farms, Slaughterhouses and Retail Market. Zoonoses and Public Health, 62, 58-69. https://doi.org/10.1111/zph.12192
|
[576]
|
Sudatip, D., Tiengrim, S., Chasiri, K., Kritiyakan, A., Phanprasit, W., Morand, S., et al. (2022) One Health Surveillance of Antimicrobial Resistance Phenotypes in Selected Communities in Thailand. Antibiotics, 11, Article 556. https://doi.org/10.3390/antibiotics11050556
|
[577]
|
Ebrahim, M., Gravel, D., Thabet, C., Abdesselam, K., Paramalingam, S. and Hyson, C. (2016) Antimicrobial Use and Antimicrobial Resistance Trends in Canada: 2014. Canada Communicable Disease Report, 42, 227-231. https://doi.org/10.14745/ccdr.v42i11a02
|
[578]
|
Collineau, L., Bourély, C., Rousset, L., Berger-Carbonne, A., Ploy, M., Pulcini, C., et al. (2023) Towards One Health Surveillance of Antibiotic Resistance: Characterisation and Mapping of Existing Programmes in Humans, Animals, Food and the Environment in France, 2021. Eurosurveillance, 28, Article ID: 2200804. https://doi.org/10.2807/1560-7917.es.2023.28.22.2200804
|
[579]
|
Woolhouse, M.E.J. (2024) One Health Approaches to Tackling Antimicrobial Resistance. Science in One Health, 3, Article ID: 100082. https://doi.org/10.1016/j.soh.2024.100082
|
[580]
|
Sandberg, M., Hesp, A., Aenishaenslin, C., Bordier, M., Bennani, H., Bergwerff, U., et al. (2021) Assessment of Evaluation Tools for Integrated Surveillance of Antimicrobial Use and Resistance Based on Selected Case Studies. Frontiers in Veterinary Science, 8, Article 620998. https://doi.org/10.3389/fvets.2021.620998
|
[581]
|
Chukwu, E.E., Abuh, D., Idigbe, I.E., Osuolale, K.A., Chuka-Ebene, V., Awoderu, O., et al. (2024) Implementation of Antimicrobial Stewardship Programs: A Study of Prescribers’ Perspective of Facilitators and Barriers. PLOS ONE, 19, e0297472. https://doi.org/10.1371/journal.pone.0297472
|
[582]
|
Burns, T., Radke, B.R., Stitt, T. and Ribble, C. (2018) Developing an Evidence-Based Approach for Antimicrobial Resistance Reporting for British Columbia Diagnostic Animal Health Laboratory Data. The Canadian Veterinary Journal, 59, 480-490.
|
[583]
|
MacKinnon, M.C., Pearl, D.L., Carson, C.A., Parmley, E.J. and McEwen, S.A. (2018) Comparison of Annual and Regional Variation in Multidrug Resistance Using Various Classification Metrics for Generic Escherichia coli Isolated from Chicken Abattoir Surveillance Samples in Canada. Preventive Veterinary Medicine, 154, 9-17. https://doi.org/10.1016/j.prevetmed.2018.03.010
|
[584]
|
Agunos, A., Gow, S.P., Léger, D.F., Carson, C.A., Deckert, A.E., Bosman, A.L., et al. (2019) Antimicrobial Use and Antimicrobial Resistance Indicators—Integration of Farm-Level Surveillance Data from Broiler Chickens and Turkeys in British Columbia, Canada. Frontiers in Veterinary Science, 6, Article 131. https://doi.org/10.3389/fvets.2019.00131
|
[585]
|
Chung, P.Y. (2025) One Health Strategies in Combating Antimicrobial Resistance: A Southeast Asian Perspective. Journal of Global Health, 15, Article ID: 03025. https://doi.org/10.7189/jogh.15.03025
|
[586]
|
Gahamanyi, N., Umuhoza, T., Saeed, S.I., Mayigane, L.N. and Hakizimana, J.N. (2023) A Review of the Important Weapons against Antimicrobial Resistance in Sub-Saharan Africa. Applied Biosciences, 2, 136-156. https://doi.org/10.3390/applbiosci2020011
|
[587]
|
Nowbuth, A., Asombang, A., Tazikeng, N., Makinde, O. and Sheets, L. (2022) Antimicrobial Resistance in Zambia: A Systematic Review. International Journal of Infectious Diseases, 116, S17-S18. https://doi.org/10.1016/j.ijid.2021.12.042
|
[588]
|
Chua, A.Q., Verma, M., Villanueva, S.Y.A., Roxas, E., Hsu, L.Y. and Legido-Quigley, H. (2023) A Qualitative Study on the Implementation of the National Action Plan on Antimicrobial Resistance in Singapore. Antibiotics, 12, Article 1258. https://doi.org/10.3390/antibiotics12081258
|
[589]
|
Song, M., Deng, Z., Chan, O. and Grépin, K.A. (2022) Understanding the Implementation of Antimicrobial Policies: Lessons from the Hong Kong Strategy and Action Plan. Antibiotics, 11, Article 636. https://doi.org/10.3390/antibiotics11050636
|
[590]
|
Knowles, R., Chandler, C., O’Neill, S., Sharland, M. and Mays, N. (2024) A Systematic Review of National Interventions and Policies to Optimize Antibiotic Use in Healthcare Settings in England. Journal of Antimicrobial Chemotherapy, 79, 1234-1247. https://doi.org/10.1093/jac/dkae061
|
[591]
|
Ogunnigbo, O., Nabiryo, M., Atteh, M., Muringu, E., Olaitan, O.J., Rutter, V., et al. (2022) Exploring the Antimicrobial Stewardship Educational Needs of Healthcare Students and the Potential of an Antimicrobial Prescribing App as an Educational Tool in Selected African Countries. Antibiotics, 11, Article 691. https://doi.org/10.3390/antibiotics11050691
|
[592]
|
Khan, X., Lim, R.H.M., Rymer, C. and Ray, P. (2022) Fijian Farmers’ Attitude and Knowledge Towards Antimicrobial Use and Antimicrobial Resistance in Livestock Production Systems—A Qualitative Study. Frontiers in Veterinary Science, 9, Article 838457. https://doi.org/10.3389/fvets.2022.838457
|
[593]
|
Tiong, J.J.L., Loo, J.S.E. and Mai, C. (2016) Global Antimicrobial Stewardship: A Closer Look at the Formidable Implementation Challenges. Frontiers in Microbiology, 7, Article 1860. https://doi.org/10.3389/fmicb.2016.01860
|
[594]
|
Peghin, M., Vena, A., Graziano, E., Giacobbe, D.R., Tascini, C. and Bassetti, M. (2022) Improving Management and Antimicrobial Stewardship for Bacterial and Fungal Infections in Hospitalized Patients with COVID-19. Therapeutic Advances in Infectious Disease, 9, 1-16. https://doi.org/10.1177/20499361221095732
|
[595]
|
Joshi, M.P., Hafner, T., Twesigye, G., Ndiaye, A., Kiggundu, R., Mekonnen, N., et al. (2021) Strengthening Multisectoral Coordination on Antimicrobial Resistance: A Landscape Analysis of Efforts in 11 Countries. Journal of Pharmaceutical Policy and Practice, 14, Article No. 27. https://doi.org/10.1186/s40545-021-00309-8
|
[596]
|
Sommanustweechai, A., Tangcharoensathien, V., Malathum, K., Sumpradit, N., Kiatying-Angsulee, N., Janejai, N., et al. (2018) Implementing National Strategies on Antimicrobial Resistance in Thailand: Potential Challenges and Solutions. Public Health, 157, 142-146. https://doi.org/10.1016/j.puhe.2018.01.005
|
[597]
|
Munkholm, L. and Rubin, O. (2020) The Global Governance of Antimicrobial Resistance: A Cross-Country Study of Alignment between the Global Action Plan and National Action Plans. Globalization and Health, 16, Article No. 109. https://doi.org/10.1186/s12992-020-00639-3
|
[598]
|
Ho, C.W.L. and Lee, T. (2020) Global Governance of Anti-Microbial Resistance: A Legal and Regulatory Toolkit. In: Jamrozik, E. and Selgelid, M., Eds., Public Health Ethics Analysis, Springer, 401-420. https://doi.org/10.1007/978-3-030-27874-8_25
|
[599]
|
Dye, C. (2022) One Health as a Catalyst for Sustainable Development. Nature Microbiology, 7, 467-468. https://doi.org/10.1038/s41564-022-01076-1
|
[600]
|
Gupta, R. and Sharma, S. (2022) Role of Alternatives to Antibiotics in Mitigating the Antimicrobial Resistance Crisis. Indian Journal of Medical Research, 156, 464-477. https://doi.org/10.4103/ijmr.ijmr_3514_20
|
[601]
|
Ajose, D.J., Adekanmbi, A.O., Kamaruzzaman, N.F., Ateba, C.N. and Saeed, S.I. (2024) Combating Antibiotic Resistance in a One Health Context: A Plethora of Frontiers. One Health Outlook, 6, Article No. 19. https://doi.org/10.1186/s42522-024-00115-7
|
[602]
|
Arip, M., Selvaraja, M., R, M., Tan, L.F., Leong, M.Y., Tan, P.L., et al. (2022) Review on Plant-Based Management in Combating Antimicrobial Resistance—Mechanistic Perspective. Frontiers in Pharmacology, 13, Article 879496. https://doi.org/10.3389/fphar.2022.879495
|
[603]
|
Jo, D., Tabassum, N., Oh, D.K., Ko, S., Kim, K.W., Yang, D., et al. (2024) Green Medicine: Advancing Antimicrobial Solutions with Diverse Terrestrial and Marine Plant-Derived Compounds. Processes, 12, Article 2316. https://doi.org/10.3390/pr12112316
|
[604]
|
Guglielmi, P., Pontecorvi, V. and Rotondi, G. (2020) Natural Compounds and Extracts as Novel Antimicrobial Agents. Expert Opinion on Therapeutic Patents, 30, 949-962. https://doi.org/10.1080/13543776.2020.1853101
|
[605]
|
Bittner Fialová, S., Rendeková, K., Mučaji, P., Nagy, M. and Slobodníková, L. (2021) Antibacterial Activity of Medicinal Plants and Their Constituents in the Context of Skin and Wound Infections, Considering European Legislation and Folk Medicine—A Review. International Journal of Molecular Sciences, 22, Article 10746. https://doi.org/10.3390/ijms221910746
|
[606]
|
Parisi, M.G., Ozón, B., Vera González, S.M., García-Pardo, J. and Obregón, W.D. (2024) Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review. Pharmaceutics, 16, Article 582. https://doi.org/10.3390/pharmaceutics16050582
|
[607]
|
Mudenda, S., Banda, M., Mohamed, S. and Chabalenge, B. (2023) Phytochemical Composition and Antibacterial Activities of Azadirachta indica (Neem): Significance of Traditional Medicine in Combating Infectious Diseases and Antimicrobial Resistance. Journal of Pharmacognosy and Phytochemistry, 12, 256-263. https://doi.org/10.22271/phyto.2023.v12.i5c.14733
|
[608]
|
Moiketsi, B.N., Makale, K.P.P., Rantong, G., Rahube, T.O. and Makhzoum, A. (2023) Potential of Selected African Medicinal Plants as Alternative Therapeutics against Multi-Drug-Resistant Bacteria. Biomedicines, 11, Article 2605. https://doi.org/10.3390/biomedicines11102605
|
[609]
|
Anand, U., Jacobo-Herrera, N., Altemimi, A. and Lakhssassi, N. (2019) A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites, 9, Article 258. https://doi.org/10.3390/metabo9110258
|
[610]
|
Berida, T.I., Adekunle, Y.A., Dada-Adegbola, H., Kdimy, A., Roy, S. and Sarker, S.D. (2024) Plant Antibacterials: The Challenges and Opportunities. Heliyon, 10, e31145. https://doi.org/10.1016/j.heliyon.2024.e31145
|
[611]
|
Iwu-Jaja, C., Gahimbare, L., Mazingisa, A.V., Fuller, W., Mazengiya, D.Y., Okeibunor, J., et al. (2025) Mapping the Role of Vaccines in Combating AMR in the WHO African Region: A Scoping Review and Implications for Research and Policy. BMC Infectious Diseases, 25, Article No. 702. https://doi.org/10.1186/s12879-025-11080-5
|
[612]
|
Rodrigues, C.M.C. and Plotkin, S.A. (2020) Impact of Vaccines; Health, Economic and Social Perspectives. Frontiers in Microbiology, 11, Article 1526. https://doi.org/10.3389/fmicb.2020.01526
|
[613]
|
Sawa, T., Moriyama, K. and Kinoshita, M. (2024) Current Status of Bacteriophage Therapy for Severe Bacterial Infections. Journal of Intensive Care, 12, Article No. 44. https://doi.org/10.1186/s40560-024-00759-7
|
[614]
|
Imran, M., Ahmad, M.N., Dasgupta, A., Rana, P., Srinivas, N. and Chopra, S. (2022) Novel Approaches for the Treatment of Infections Due to Multidrug-Resistant Bacterial Pathogens. Future Medicinal Chemistry, 14, 1133-1148. https://doi.org/10.4155/fmc-2022-0029
|
[615]
|
Ling, H., Lou, X., Luo, Q., He, Z., Sun, M. and Sun, J. (2022) Recent Advances in Bacteriophage-Based Therapeutics: Insight into the Post-Antibiotic Era. Acta Pharmaceutica Sinica B, 12, 4348-4364. https://doi.org/10.1016/j.apsb.2022.05.007
|
[616]
|
Aghamohammad, S. and Rohani, M. (2023) Antibiotic Resistance and the Alternatives to Conventional Antibiotics: The Role of Probiotics and Microbiota in Combating Antimicrobial Resistance. Microbiological Research, 267, Article ID: 127275. https://doi.org/10.1016/j.micres.2022.127275
|
[617]
|
Gulías, Ò., McKenzie, G., Bayó, M., Agut, M. and Nonell, S. (2020) Effective Photodynamic Inactivation of 26 Escherichia coli Strains with Different Antibiotic Susceptibility Profiles: A Planktonic and Biofilm Study. Antibiotics, 9, Article 98. https://doi.org/10.3390/antibiotics9030098
|
[618]
|
Hamblin, M.R. and Hasan, T. (2004) Photodynamic Therapy: A New Antimicrobial Approach to Infectious Disease? Photochemical & Photobiological Sciences, 3, 436-450. https://doi.org/10.1039/b311900a
|
[619]
|
Motley, M.P., Banerjee, K. and Fries, B.C. (2019) Monoclonal Antibody-Based Therapies for Bacterial Infections. Current Opinion in Infectious Diseases, 32, 210-216. https://doi.org/10.1097/QCO.0000000000000539
|
[620]
|
Nagy, E., Nagy, G., Power, C.A., Badarau, A. and Szijártó, V. (2017) Anti-Bacterial Monoclonal Antibodies. In: Lim, T., Ed., Recombinant Antibodies for Infectious Diseases, Springer, 119-153. https://doi.org/10.1007/978-3-319-72077-7_7
|
[621]
|
Kollef, M.H. and Betthauser, K.D. (2021) Monoclonal Antibodies as Antibacterial Therapies: Thinking Outside of the Box. The Lancet Infectious Diseases, 21, 1201-1202. https://doi.org/10.1016/s1473-3099(21)00062-1
|
[622]
|
Romanello, M., McGushin, A., Di Napoli, C., Drummond, P., Hughes, N., Jamart, L., et al. (2021) The 2021 Report of the Lancet Countdown on Health and Climate Change: Code Red for a Healthy Future. Lancet, 398, 1619-1662. https://www.thelancet.com/action/showFullText?pii=S0140673621017876
|
[623]
|
van Bavel, B., Berrang-Ford, L., Moon, K., Gudda, F., Thornton, A.J., Robinson, R.F.S., et al. (2024) Intersections between Climate Change and Antimicrobial Resistance: A Systematic Scoping Review. The Lancet Planetary Health, 8, e1118-e1128. https://doi.org/10.1016/s2542-5196(24)00273-0
|
[624]
|
MacFadden, D.R., McGough, S.F., Fisman, D., Santillana, M. and Brownstein, J.S. (2018) Antibiotic Resistance Increases with Local Temperature. Nature Climate Change, 8, 510-514. https://doi.org/10.1038/s41558-018-0161-6
|
[625]
|
Burnham, J.P. (2021) Climate Change and Antibiotic Resistance: A Deadly Combination. Therapeutic Advances in Infectious Disease, 8, 1-7. https://scholar.google.com/scholar_url?url= https://journals.sagepub.com/doi/pdf/10.1177/2049936121991374&hl=en&sa=T&oi=ucasa&ct=ufr&ei=eOZSaKirLqalieoP6s6swAY&scisig=AAZF9b_BRTMZO1qKvE0cm0I5dUS0
|
[626]
|
Gelband, H. and Laxminarayan, R. (2015) Tackling Antimicrobial Resistance at Global and Local Scales. Trends in Microbiology, 23, 524-526. https://doi.org/10.1016/j.tim.2015.06.005
|
[627]
|
Adisasmito, W.B., Almuhairi, S., Behravesh, C.B., Bilivogui, P., Bukachi, S.A., Casas, N., et al. (2022) One Health: A New Definition for a Sustainable and Healthy Future. PLOS Pathogens, 18, e1010537. https://doi.org/10.1371/journal.ppat.1010537
|
[628]
|
Lewycka, S., Skrinjaric, T., Rukomeza, G., Ngo, H.H.T. and Imbach, P. (2025) Nature-based Solutions to Address Climate Change and Antimicrobial Resistance. The Lancet Planetary Health, 9, e173. https://doi.org/10.1016/s2542-5196(25)00052-x
|
[629]
|
FAO, UNEP, WHO and WOAH (2022) One Health Joint Plan of Action (2022-2026). Working Together for the Health of Humans, Animals, Plants and the Environment. One Health Joint Plan of Action, 2022-2026. https://www.who.int/publications/i/item/9789240059139
|
[630]
|
Yeshiwas, A.G., Bayeh, G.M., Gashu, Z.E., Teym, A., Mekonnen, B.A., Alemayehu, M.A., et al. (2025) Climate Change and Antimicrobial Resistance: Application of One Health Approach to Mitigating Dual Global Threats. Discover Public Health, 22, Article No. 148. https://doi.org/10.1186/s12982-025-00557-y
|