Weighted Estimates for Marcinkiewicz Integral Operator Associated with Schrödinger Operator and Its Commutator on Generalized Fractional Morrey Spaces

Abstract

The aim of this paper is to investigate the boundedness of a Marcinkiewicz integral operator μ j associated with Schrödinger operator and its commutator on weighted generalized fractional Morrey spaces L p,η,φ ( n ,ω ) . Under assumption that the function φ satisfies doubling conditions, the author proves that the μ j is bounded on spaces L p,η,φ ( n ,ω ) , where 0<η< n m , n mη <p< n η , and ω A p ρ,θ ( n ) . Furthermore, the boundedness of the commutator [ b, μ j ] formed by bBMO( n ) and the μ j on spaces L p,η,φ ( n ,ω ) is also obtained.

Share and Cite:

Wang, Y. (2025) Weighted Estimates for Marcinkiewicz Integral Operator Associated with Schrödinger Operator and Its Commutator on Generalized Fractional Morrey Spaces. Applied Mathematics, 16, 470-481. doi: 10.4236/am.2025.166026.

1. Introduction

In 2014, Chen and Zhou investigated the boundedness of [ b, μ j ] on L p ( n ) ( 1<p< ) spaces when bBMO( σ ) in [1]. In 2023, Zhang et al. established the boundedness of μ j on L p ( ω ) spaces and further derived corresponding results for the commutator [ b, μ j ] in [2], where bBMO( σ ) and ω A p ρ . In 2020, Xuan et al. introduced weighted generalized Morrey-type spaces associated with Schrödinger operators and established the boundedness of singular integrals in [3]. More researches about the Marcinkiewicz integral operators associated with Schrödinger operators on various function spaces can be seen in [4]-[7]. Building on these results, this paper primarily investigates the weighted boundedness of Marcinkiewicz integral and its commutators associated with Schrödinger operators on the generalized fractional Morrey spaces. Before stating the organization of this paper, we first recall some necessary notation.

The following definition of Laplacican operator is defined by

=Δ+V( x ),x n ,n3.

V is a non-negative potential, and belongs to the inverse Hölder class R H s . For s n 2 , there exists a constant C such that for an arbitray sphere B n . We have

( 1 | B | B V ( y ) s dy ) 1 s C | B | B V( y )dy . (1)

Let VR H s , for any x n , the critical radius function ρ( x ) is dependent on V as follows:

ρ( x ):= sup r>0 { r: 1 n2 B( x,r ) V( y )dy 1 }. (2)

The Marcinkiewicz integral μ j associated with the Schrödinger operator is defined as

μ j ( f )( x )= ( 0 | | xy |h K j ( x,y )f( y )dy | 2 dh h 3 ) 1 2 , (3)

where K j ( x,y )= K j ˜ ( x,y )| xy | is the kernel of j = x j 1 2 for 1jn . Let V=0 and K j ˜ ( x,y ) be the kernel of classical Riesz transform j = x j Δ 1 2 . Then

K j Δ ( x,y )= K j Δ ˜ ( x,y )| xy |= ( x j y j )/ | xy | | xy | n1 .

The following definition of spaces BMO θ,ψ is from [8].

Definition 1.1 In this article, we define

ψ θ ( B ):= ( 1+ r ρ( x ) ) θ ,θ>0,

where B represents a sphere with x as its center and r as its radius.

A new class of BMO spaces is introduced in the literature, that is given a local function b , and

b BMO θ ( ρ ) = sup B n 1 ψ θ ( B )| B | B | b( y ) b B |dy <,

where

b B = 1 | B | B f( y )dy .

The commutator generated by μ j and given function b BMO θ ( ρ ) is defined by

[ b, μ j ]( f )( x )= ( 0 | | xy |h K j ( x,y )( b( y ) b B )f( y )dy | 2 dh h 3 ) 1 2 . (4)

Let 1<p< , weighted function ω( x ) A p ( n ) refers to an arbitrary sphere B in n . There exists a constant C>0 such that

( 1 | B | B ω( x )dx ) ( 1 | B | B ω ( x ) 1 p1 dx ) p1 C.

Weighted function ω( x )R H m ( n ) is refer to the arbitrary sphere B in n . There exists a constant C>0 and m>1 such that the following reverse Hölder inequation sets up

( 1 | B | B ω ( x ) m dx ) 1 m C( 1 | B | B ω( x )dx ).

Let 1<p< , f L p ( n ,ω ) and bBMO( n ) respectively defined as

f L p ( ω ) = ( n | f( y ) | p ω( y )dy ) 1 p <, b * = sup B 1 | B | B | b( x ) b B |dx <,

where b B = 1 | B | B b( y )dy .

Definition 1.2 ([9]) Let φ be a non-negative increasing function on ( 0,+ ) . For any r0 satisfy

φ( 2r ) D φ φ( r ), (5)

where D( φ )1 is independent of r , 0η<n and 1p< n η . The generalized fractional weighted Morry space is defined by

L p,η,φ ( n ,ω )={ f L loc 1 ( n ): f L p,η,φ ( ω ) < },

where

f L p,η,φ ( ω ) = sup x n ,r>0 ( 1 φ ( r ) 1 pη n B( x,r ) | f( y ) | p ω( y )dy ) 1 p ,

B( x,r )={ y n :| xy |<r }.

Definition 1.3 ([10]) Let 1<p< . If B n , there exists a constant C such that

( 1 ψ θ ( B )| B | B ω( y )dy ) ( 1 ψ θ ( B )| B | B ω ( y ) 1 p1 dy ) p1 C. (6)

It is called a non-negative measurable function ω A p ρ,θ , so we have A p p, = U θ>0 A p ρ,θ and A ρ, = U θ>0 A p p, . For ψ θ ( B )1 , it is evident that A p A p ρ,θ where 1p< .

Remark (a): It is evident that when η=0 , the space L p,0,φ ( n ,ω ) coincides with the generalized weighted Morrey space L p,φ ( n ,ω ) introduced by Guliyev in the literature in [11], which extends the classical weighted Morrey space. For φ( r )= r σ , it reduces to the classical Morrey space L p,σ ( n ,ω ) proposed by Komori and Shirai.

(b): When ω=1 , L p,σ ( n ,ω ) corresponds to the classical Morrey space L p,σ ( n ,ω ) in [12], originally introduced by Morrey in the literature to investigate the local behavior of solutions to second-order elliptic partial differential equations. Further advancements and properties of Morrey spaces can be referenced in existing studies in [13] [14], notably for φ( r )=1 , L p,φ ( n ,ω ) simplifies to the weighted Lebesgue space L p,σ ( n ,ω ) as established in prior works in [15]. Our main results are as follows:

Theorem 1.1 Let 1D( φ ) 2 n , m>1 , 0<η< n m , n mη <p< n η and ω( x ) A p ρ,θ . There exists a positive constant C that is independent of f such that

μ j ( f ) L p,η,φ ( ω ) C f L p,η,φ ( ω ) .

Theorem 1.2 Let 1D( φ ) 2 n , and [ b, μ j ] is defined by (1.4), b BMO ρ . If m>1 , 0<η< n m , n mη <p< n η and ω( x ) A p ρ,θ , then there exists a positive constant C that is independent of f such that

[ b, μ j ]( f ) L p,η,φ ( ω ) C f L p,η,φ ( ω ) .

2. Preliminary Knowledge

To prove the main theorems, in this section, we need to recall some necessary lemmas, respectively.

Lemma 2.1 ([2]) Let 1<p< and ω A p ρ . There exists a positive constant C such that

μ j ( f ) L p ( ω ) C f L p ( ω ) .

Lemma 2.2 ([2]) Let 1<p< , b BMO ρ and VR H s . If ω A p ρ , then there exists a positive constant C such that

[ b, μ j ]( f ) L p ( ω ) C b BMO ρ f L p ( ω ) .

Now we state the characterizations of spaces BMO θ,φ ( X ) as follows.

Lemma 2.3 ([16]) Let 1p< . If ω A p ρ such that

1 ψ( B )| B | B | f( y ) |dy C ( 1 ω( 5B ) B | f( y ) | p ω( y )dy ) 1 p ,

where ω( E )= E ω( y )dy .

Lemma 2.4 ([17]) Let 1p< . If ω A p ρ , then there exists positive constant 0<δ<1 , γ and C. For any measurable set E of sphere B, we have

ω( E ) ω( B ) C ( 1+ r ρ( x ) ) γ ( | E | | B | ) δ .

Lemma 2.5 ([18]) Let ωR H m , m1 . For any measurable subset E of an arbitrary sphere B, then there exists constant C>0 such that

ω( E ) ω( B ) C ( | E | | B | ) m1 m .

Lemma 2.6 ([19]) Let VR H s . For any N>0 , we have (1). There exists a constant C such that

| K j ν ( x,y ) | C ( 1+| xy |ρ ( x ) 1 ) N 1 | xy | n1 .

(2) For 0< ρ 0 <1 n q , there exists a constant C such that

| K j ν ( x,y ) K j ν ( y,z ) | C ( 1+| xy |ρ ( x ) 1 ) N | xy | ρ 0 | xz | n1+ ρ 0 ,

where | xy |< 2 3 | xz | .

Lemma 2.7 ([20]) Let 1p< . If f BMO ρ and ω A p ρ , then there exist two normal numbers C and β such that sphere B n . We have

( 1 ω( B ) B | f( y ) f B |ω( y )dy ) 1 p Cψ ( B ) β p f BMO ρ .

Lemma 2.8 ([21]) Let 1p< , where bBMO( n ) . We have

sup ( 1 | B | B | b( x ) b B | p dx ) 1 p C b * .

3. Proofs of Main Theorems

By the aid of some ideas and methods form the proofs, we mainly state the proof of Theorem 1.1 as follows.

Proof of Theorem 1.1. Let f L p,η,φ ( ω ) and a sphere B=B( x 0 , r B ) with x 0 as the center and r B as the radius. Decompose f= f 1 + f 2 , where f 1 =f χ 2B and f 2 =f χ ( 2B ) c . We have

μ j ( f ) L p,η,φ ( ω ) = 1 φ ( r ) 1 p η n μ j ( f ) L p ( ω ) 1 φ ( r ) 1 p η n μ j ( f 1 ) L p ( ω ) + 1 φ ( r ) 1 p η n μ j L ( f 2 ) L p ( ω ) =E+F,

which yields the desired result.

Firstly, we estimate E , from definition 1.1 and Lemma 2.1

EC( φ ( 2 r B ) 1 p η n φ ( r B ) 1 p η n )( 1 φ ( 2 r B ) 1 p η n ) f χ 2B L p ( ω ) C( 1 φ ( 2 r B ) 1 p η n ) f χ 2B L p ( ω ) =C f 1 L p,η,φ ( ω ) C( 1 φ ( r B ) 1 p η n ) f χ B L p ( ω ) =C f L p,η,φ ( ω ) .

For the term F , from Minkowski’s inequality and Lemma 2.6, we can get

μ j ( f 2 )( x )= ( 0 | ( 2B ) c y:| xy |h K j ( x,y )f( y )dy | 2 dh h 3 ) 1 2 C ( 2 B c ) | K j ( x,y ) || f( y ) | ( | xy |h dh h 3 ) 1 2 dy C( ( 2 B c ) ( 1+ | xy | ρ( x ) ) N | f( y ) | | xy | n )dy.

Notice that where xB , y 2 j+1 B\ 2 j B and jN , we have | xy |~ 2 j+1 r . For F , from Lemma 2.3 and Lemma 2.4, we have

μ j ( f 2 )( x )C j=1 ( 1+ 2 j+1 r ρ( x ) ) N 1 ( 2 j+1 r ) n 2 j+1 B | f( y ) |dy .

Combining the inequality (1.6), we know that

( 1+ 2 j+1 r ρ( x ) ) N 1 ( 2 j+1 r ) n 2 j+1 B | f( y ) |dy 1 | 2 j+1 B | ( 1+ 2 j+1 r ρ( x ) ) N ( 2 j+1 B | f( y ) | p ω( y )dy ) 1 p ( 2 j+1 B ω ( y ) p p dy ) 1 p φ ( 2 k+1 r B ) 1 p η n | 2 j+1 B | ( 1 φ ( 2 j+1 r B ) 1 pη n 2 j+1 B | f( y ) | p ω( y )dy ) 1 p

× [ ( 1 ψ N ( 2 j+1 B )| 2 j+1 B | 2 j+1 B ω ( y ) 1 p1 dy ) p1 × ( 1 ψ N ( 2 j+1 B )| 2 j+1 B | 2 j+1 B ω( y )dy ) ] 1 p | 2 j+1 B |ω ( 2 j+1 B ) 1 p C f L p,η,φ ( ω ) φ ( 2 j+1 r B ) 1 p η n ω ( 2 j+1 B ) 1 p .

Thus, we can get

μ j ( f 2 )( x )C f L p,η,φ ( ω ) j=1 φ ( 2 j+1 B ) 1 p η n ω ( 2 j+1 B ) 1 p . (7)

Using (3.1), we can get

FC f L p,η,φ ( ω ) j=1 φ ( 2 j+1 r B ) 1 p η n φ ( r B ) 1 p η n ω ( B ) 1 p ω ( 2 j+1 B ) 1 p .

Because of ω A p , there exists m>1 such that ωR H m . Therefore, use (1.5) and Lemma 2.5 formula, and observe 0<η< n m , n mη <p< n η . we have

j=1 φ ( 2 j+1 r B ) 1 p η n φ ( r B ) 1 p η n ω ( B ) 1 p ω ( 2 j+1 B ) 1 p C j=1 ( | B | | 2 j+1 B | ) m1 pm ( D ( φ ) k+1 φ( r B ) φ( r B ) ) 1 p η n C j=1 ( | B | | 2 j+1 B | ) 1 p η n ( D ( φ ) k+1 φ( r B ) φ( r B ) ) 1 p η n C j=1 ( D( φ ) 2 n ) ( k+1 )( 1 p η n ) .

Observing that ( k+1 )( 1 p η n )>0 , 1D( φ )< 2 n , we have

FC f 2 L p,η,φ ( ω ) .

Combining with the estimates of E and F, we conclude that

μ j ( f ) L p,η,φ ( ω ) C f L p,η,φ ( ω ) .

Hence, the proof of Theorem 1.1 is completed.

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, decompose f= f 1 + f 2 . Among which f 1 =f χ 2B , we note that

1 φ ( r B ) 1 p η n ( B | [ b, μ j ]( f )( x ) | p ω( x )dx ) 1 p 1 φ ( r B ) 1 p η n ( B | [ b, μ j ]( f 1 )( x ) | p ω( x )dx ) 1 p

+ 1 φ ( r B ) 1 p η n ( B | [ b, μ j ]( f 2 )( x ) | p ω( x )dx ) 1 p = I 1 + I 2 .

Similarly, then it follows that I 1 , from Lemma 2.2

I 1 C( φ ( 2 r B ) 1 p η n φ ( r B ) 1 p η n )( 1 φ ( 2 r B ) 1 p η n ) f χ2B L p ( ω ) C f L p,η,φ ( ω ) .

For the term I 2 , it is similar to the argument of F

[ b, μ j ]( f 2 )( x )= ( 0 | | xy |h K j ( x,y )( b( y ) b B ) f 2 ( y )dy | 2 dh h 3 ) 1 2 C| b( x ) b B | ( 0 | ( 2B ) c y:| xy |h K j ( x,y )f( y )dy | 2 dh h 3 ) 1 2 +C ( 0 | ( 2B ) c y:| xy |h K j ( x,y )( b( y ) b B )f( y )dy | 2 dh h 3 ) 1 2 := I 21 + I 22 .

For I 21 , use Hölder’s inequality and the weight condition of A p ρ,θ .

I 21 C| b( x ) b B | j=0 ( 1+ 2 j+1 r ρ( x ) ) N 1 ( 2 j+1 r ) n 2 j+1 B | f( y ) |dy . (8)

Based on the above estimates (3.2), we have

1 φ ( r B ) 1 p η n ( B | I 21 | p ω( x )dx ) 1 p C f L p,η,φ ( ω ) j=1 φ ( 2 j+1 r B ) 1 p η n φ ( r B ) 1 p η n ω ( B ) 1 p ω ( 2 j+1 B ) 1 p ( 1 ω( B ) B | b( x ) b B | p ω( x )dx ) 1 p C f L p,η,φ ( ω ) ( 1 ω( B ) B | b( x ) b B | p ω( x )dx ) 1 p .

Because of ω A p , there exists m>1 such that ωR H m . By the Hölder’s inequality and Lemma 2.8, we can deduce that

( 1 ω( B ) B | b( x ) b B | p ω( x )dx ) 1 p 1 ω ( B ) 1 p ( B | b( x ) b B | p m dx ) 1 p m ( 1 | B | B ω ( x ) m dx ) 1 pm | B | 1 pm

C 1 ω ( B ) 1 p ( B | b( x ) b B | p m dx ) 1 p m ( 1 | B | B ω( x )dx ) 1 p | B | 1 pm C b * .

Obviously, we can get

1 φ ( r B ) 1 p η n ( B | I 21 | p ω( x )dx ) 1 p C b * f L p,η,φ ( ω ) .

Hence, we can divide I 22 into two parts as follows:

I 22 C j=1 ( 1+ 2 j+1 r ρ( x ) ) N 1 ( 2 j+1 r ) n 2 j+1 B | b( y ) b 2 j+1 B || f( y ) |dy +C j=1 ( 1+ 2 j+1 r ρ( x ) ) N | b 2 j+1 B b B | ( 2 j+1 r ) n 2 j+1 B | f( y ) |dy := J 1 + J 2 .

By the Hölder’s inequality, from Lemma 2.7, we have

2 j+1 B | b( y ) b 2 j+1 B || f( y ) |dy ( 2 j+1 B | b( y ) b 2 j+1 B | p ω (y) p p dy ) 1 p ( 2 j+1 B | f( y ) | p ω( y )dy ) 1 p C f L p,η,φ ( ω ) φ ( 2 j+1 r B ) 1 p η n ( 2 j+1 B | b( y ) b 2 j+1 B | p ω ( y ) p p dy ) 1 p .

The similar argument as what we have done in the proof of Theorem 1.1 yields that

1 | 2 j+1 B | ( 1 ω( 2 j+1 B ) ) 1 p ( 1+ 2 j+1 r ρ( x ) ) N ( 2 j+1 B | b( y ) b 2 j+1 B | p ω ( y ) p p dy ) 1 p 1 | 2 j+1 B | ( 1+ 2 j+1 r ρ( x ) ) N ( 1 ω( 2 j+1 B ) ) 1 p ( 2 j+1 B | b( y ) b 2 j+1 B | p ω ( y ) p p dy ) 1 p 1 | 2 j+1 B | ( 1 ω( 2 j+1 B ) ) 1 p ( 2 j+1 B | b( y ) b 2 j+1 B | p m dy ) 1 p m × ( 1+ 2 j+1 r ρ( x ) ) N ( 1 | 2 j+1 B | 2 j+1 B ω ( y ) p p dy ) 1 p | 2 j+1 B | 1 p m C b * .

Combining the above inequality, following estimates are obtained

J 1 C b * f L p,η,φ ( ω ) j=1 φ ( 2 j+1 B ) 1 p η n ω ( 2 j+1 B ) 1 p . (9)

Based on the above estimate (3.3), we can get

1 φ ( r B ) 1 p η n ( B J 1 p ω( x )dx ) 1 p C b * f L p,η,φ ( ω ) j=1 φ ( 2 j+1 r B ) 1 p η n φ ( r B ) 1 p η n ω ( B ) 1 p ω ( 2 j+1 B ) 1 p C b * f L p,η,φ ( ω ) j=1 ( D( φ ) 2 n ) ( k+1 )( 1 p η n ) C b * f L p,η,φ ( ω ) .

For J 2 , note that | b 2 j+1 B b B |C( j+1 ) b * [22]. We can get

J 2 =C j=0 ( 1+ 2 j+1 r ρ( x ) ) N | b 2 j+1 B b B | ( 2 j+1 r ) n 2 j+1 B | f( y ) |dy C b * f L p,η,φ ( ω ) j=1 ( j+1 )φ ( 2 j+1 B ) 1 p η n ω ( 2 j+1 B ) 1 p .

Similar to the argument of J 1 , we have

1 φ ( r B ) 1 p η n ( B J 2 p ω( x )dx ) 1 p C b * f L p,η,φ ( ω ) j=1 ( j+1 ) φ ( 2 j+1 r B ) 1 p η n φ ( r B ) 1 p η n ω ( B ) 1 p ω ( 2 j+1 B ) 1 p C b * f L p,η,φ j=1 ( j+1 ) ( D( φ ) 2 n ) ( j+1 )( 1 p η n ) C b * f L p,η,φ ( ω ) .

Synthesize the above results, we can get

1 φ ( r B ) 1 p η n ( B | I 22 | p ω( x )dx ) 1 p C b * f L p,η,φ ( ω ) . (10)

From (3.4), we conclude that

I 2 C b * f L p,η,φ ( ω ) .

Combined I 1 and I 2 estimates, the proof of Theorem 1.2 is completed.

Acknowledgements

We thank the referees for their time and comments.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Chen, D.X. and Jin, F. (2014) The Boundedness of Marcinkiewicz Integrals Associated with Schrödinger Operator on Morrey Spaces. Journal of Function Spaces, 2014, Article 901267.
https://doi.org/10.1155/2014/901267
[2] Zhang, J., He, Q. and Xue, Q.Y. (2023) On Weighted Boundedness and Compactness of Commutators of Marcinkiewicz Integral Associated with Schrödinger Operators. Annals of Functional Analysis, 14, Article No. 59.
https://doi.org/10.1007/s43034-023-00281-1
[3] Le, X.T., Nguyen, T.N. and Trong, N.N. (2020) On Boundedness Property of Singular Integral Operators Associated to a Schrödinger Operator in a Generalized Morrey Space and Applications. Acta Mathematica Scientia, 40, 1171–1184.
https://doi.org/10.1007/s10473-020-0501-2
[4] Wang, Y. and Wang, K. (2024) Estimates for the Commutators of Riesz Transforms Related to Schrödinger-Type Operators. Georgian Mathematical Journal, 31, 509-526.
https://doi.org/10.1515/gmj-2023-2106
[5] Wen, Y., Shen, Q. and Sun, J. (2023) Weighted Estimates for Square Functions Associated with Operators. Mathematische Nachrichten, 296, 3725-3739.
https://doi.org/10.1002/mana.202100640
[6] Ngoc, T.N., Le Xuan, T. and Duc, D.T. (2021) Boundedness of Second-Order Riesz Transforms on Weighted Hardy and BMO Spaces Associated with Schrödinger Operators. Comptes Rendus. Mathématique, 359, 687-717.
https://doi.org/10.5802/crmath.213
[7] De León-Contreras, M. and Torrea, J.L. (2021) Lipschitz Spaces Adapted to Schrödinger Operators and Regularity Properties, Revista Matemática Complutense, 34, 357-388.
https://doi.org/10.1007/s13163-020-00357-9
[8] Benedek, A., Calderón, A.P. and Panzone, R. (1962) Convolution Operators on Banach Space Valued Functions. Proceedings of the National Academy of Sciences, 48, 356-365.
https://doi.org/10.1073/pnas.48.3.356
[9] Tan, Y. and Liu, L. (2016) Weighted Boundedness of Multilinear Operator Associated to Singular Integral Operator with Variable Calderón-Zygmund Kernel. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111, 931-946.
https://doi.org/10.1007/s13398-016-0337-8
[10] Bongioanni, B., Harboure, E. and Salinas, O. (2011) Classes of Weights Related to Schrödinger Operators. Journal of Mathematical Analysis and Applications, 373, 563-579.
https://doi.org/10.1016/j.jmaa.2010.08.008
[11] Guliyev, V., Akbulut, A. and Mammadov, Y. (2013) Boundedness of Fractional Maximal Operator and Their Higher Order Commutators in Generalized Morrey Spaces on Carnot Groups. Acta Mathematica Scientia, 33, 1329-1346.
https://doi.org/10.1016/s0252-9602(13)60085-5
[12] Morrey, C.B. (1938) On the Solutions of Quasi-Linear Elliptic Partial Differential Equations. Transactions of the American Mathematical Society, 43, 126-166.
https://doi.org/10.1090/s0002-9947-1938-1501936-8
[13] Tao, S. and Shi, J. (2019) Weighted Estimates for the M-Integral with Variable Kernel on Variable Exponent Herz Spaces (in Chinese). Journal of Jilin University, 57, 459-464.
[14] Tao, S. and Li, Q. (2018) Commutators of Bilinear Pseudodifferential Operators with Hörmander Symbils on Generalized Morrey Spaces (in Chinese). Journal of Jilin University, 56, 469-474.
[15] Stepanov, V.D. (1994) Weighted Norm Inequalities for Integral Operators and Related Topics. In Krbec, Miroslav, Kufner, et al., Eds., Function Spaces and Applications, Prometheus Publishing House, 139-175.
[16] Tang, L. (2015) Weighted Norm Inequalities for Schrödinger Type Operators. Forum Mathematicum, 27, 2491-2532.
[17] Zhao, N., Zhou, J. and Liu, Y. (2023) Boundedness for Littlewood-Paley Functions on Weighted Morrey-Type Spaces Related to Certain Nonnegative Potentials. Journal of Pseudo-Differential Operators and Applications, 14, Article No. 45.
https://doi.org/10.1007/s11868-023-00538-2
[18] Gundy, R. and Wheeden, R. (1974) Weighted Integral Inequalities for the Nontangential Maximal Function, Lusin Area Integral, and Walsh-Paley Series. Studia Mathematica, 49, 107-124.
https://doi.org/10.4064/sm-49-2-107-124
[19] Shen, Z. (1995) Lp Estimates for Schrödinger Operators with Certain Potentials. Annales de lInstitut Fourier, 45, 513-546.
https://doi.org/10.5802/aif.1463
[20] Duoandikoetxea, J. (2001) Fourier Analysis. American Mathematical Society.
[21] John, F. and Nirenberg, L. (1961) On Functions of Bounded Mean Oscillation. Communications on Pure and Applied Mathematics, 14, 415-426.
https://doi.org/10.1002/cpa.3160140317
[22] García-Cuerva, J. and Rubio de Francia, J.L. (1985) Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies Notas de Matemática, 116, 104.

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.