[1]
|
Cantwell, R. (2021) Mental Disorder in Pregnancy and the Early Postpartum. Anaesthesia, 76, 76-83. https://doi.org/10.1111/anae.15424
|
[2]
|
Rusner, M., Berg, M. and Begley, C. (2016) Bipolar Disorder in Pregnancy and Childbirth: A Systematic Review of Outcomes. BMC Pregnancy and Childbirth, 16, Article No. 331. https://doi.org/10.1186/s12884-016-1127-1
|
[3]
|
Meltzer-Brody, S., Howard, L.M., Bergink, V., Vigod, S., Jones, I., Munk-Olsen, T., et al. (2018) Postpartum Psychiatric Disorders. Nature Reviews Disease Primers, 4, Article No. 18022. https://doi.org/10.1038/nrdp.2018.22
|
[4]
|
Paschetta, E., Berrisford, G., Coccia, F., Whitmore, J., Wood, A.G., Pretlove, S., et al. (2014) Perinatal Psychiatric Disorders: An Overview. American Journal of Obstetrics and Gynecology, 210, 501-509.e6. https://doi.org/10.1016/j.ajog.2013.10.009
|
[5]
|
Oyebode, F., Rastogi, A., Berrisford, G. and Coccia, F. (2012) Psychotropics in Pregnancy: Safety and Other Considerations. Pharmacology & Therapeutics, 135, 71-77. https://doi.org/10.1016/j.pharmthera.2012.03.008
|
[6]
|
Erdeljić, V., Francetić, I., Makar-Aušperger, K., Likić, R. and Radačić-Aumiler, M. (2010) Clinical Pharmacology Consultation: A Better Answer to Safety Issues of Drug Therapy during Pregnancy? European Journal of Clinical Pharmacology, 66, 1037-1046. https://doi.org/10.1007/s00228-010-0867-5
|
[7]
|
Eberhard-Gran, M., Eskild, A. and Opjordsmoen, S. (2005) Treating Mood Disorders during Pregnancy. Drug Safety, 28, 695-706. https://doi.org/10.2165/00002018-200528080-00004
|
[8]
|
Redfern, W.S., Wakefield, I.D., Prior, H., Pollard, C.E., Hammond, T.G. and Valentin, J. (2002) Safety Pharmacology—A Progressive Approach. Fundamental & Clinical Pharmacology, 16, 161-173. https://doi.org/10.1046/j.1472-8206.2002.00098.x
|
[9]
|
Schaefer, C., Peters, P.W.J. and Miller, R.K. (2014) Drugs during Pregnancy and Lactation: Treatment Options and Risk Assessment. Academic Press.
|
[10]
|
Nguyen, T., Seiler, N., Brown, E. and O’Donoghue, B. (2020) The Effect of Clinical Practice Guidelines on Prescribing Practice in Mental Health: A Systematic Review. Psychiatry Research, 284, Article ID: 112671. https://doi.org/10.1016/j.psychres.2019.112671
|
[11]
|
Galbally, M., Frayne, J., Watson, S.J. and Snellen, M. (2019) Psychopharmacological Prescribing Practices in Pregnancy for Women with Severe Mental Illness: A Multicentre Study. European Neuropsychopharmacology, 29, 57-65. https://doi.org/10.1016/j.euroneuro.2018.11.1103
|
[12]
|
Yonkers, K.A., Wisner, K.L., Stewart, D.E., Oberlander, T.F., Dell, D.L., Stotland, N., et al. (2009) The Management of Depression during Pregnancy: A Report from the American Psychiatric Association and the American College of Obstetricians and Gynecologists. General Hospital Psychiatry, 31, 403-413. https://doi.org/10.1016/j.genhosppsych.2009.04.003
|
[13]
|
McAllister-Williams, R.H., Baldwin, D.S., Cantwell, R., Easter, A., Gilvarry, E., Glover, V., et al. (2017) British Association for Psychopharmacology Consensus Guidance on the Use of Psychotropic Medication Preconception, in Pregnancy and Postpartum 2017. Journal of Psychopharmacology, 31, 519-552. https://doi.org/10.1177/0269881117699361
|
[14]
|
Ortega, V.E. and Meyers, D.A. (2014) Pharmacogenetics: Implications of Race and Ethnicity on Defining Genetic Profiles for Personalized Medicine. Journal of Allergy and Clinical Immunology, 133, 16-26. https://doi.org/10.1016/j.jaci.2013.10.040
|
[15]
|
Ette, E.I. and Williams, P.J. (2004) Population Pharmacokinetics I: Background, Concepts, and Models. Annals of Pharmacotherapy, 38, 1702-1706. https://doi.org/10.1345/aph.1d374
|
[16]
|
Diekstra, M., Fritsch, A., Kanefendt, F., Swen, J., Moes, D., Sörgel, F., et al. (2017) Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients with Sunitinib-Treated Cancer. CPT: Pharmacometrics & Systems Pharmacology, 6, 604-613. https://doi.org/10.1002/psp4.12210
|
[17]
|
Kantae, V., Krekels, E.H.J., Esdonk, M.J.V., Lindenburg, P., Harms, A.C., Knibbe, C.A.J., et al. (2016) Integration of Pharmacometabolomics with Pharmacokinetics and Pharmacodynamics: Towards Personalized Drug Therapy. Metabolomics, 13, Article No. 9. https://doi.org/10.1007/s11306-016-1143-1
|
[18]
|
Weathers, S.S. and Gilbert, M.R. (2017) Toward Personalized Targeted Therapeutics: An Overview. Neurotherapeutics, 14, 256-264. https://doi.org/10.1007/s13311-016-0496-5
|
[19]
|
Marques, L., Costa, B., Pereira, M., Silva, A., Santos, J., Saldanha, L., et al. (2024) Advancing Precision Medicine: A Review of Innovative in Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics, 16, Article 332. https://doi.org/10.3390/pharmaceutics16030332
|
[20]
|
Espinosa, C., Becker, M., Marić, I., Wong, R.J., Shaw, G.M., Gaudilliere, B., et al. (2021) Data-Driven Modeling of Pregnancy-Related Complications. Trends in Molecular Medicine, 27, 762-776. https://doi.org/10.1016/j.molmed.2021.01.007
|
[21]
|
Taherdoost, H. and Ghofrani, A. (2024) AI and the Evolution of Personalized Medicine in Pharmacogenomics. Intelligent Pharmacy, 2, 643-650.
|
[22]
|
Primorac, D., Bach-Rojecky, L., Vađunec, D., Juginović, A., Žunić, K., Matišić, V., et al. (2020) Pharmacogenomics at the Center of Precision Medicine: Challenges and Perspective in an Era of Big Data. Pharmacogenomics, 21, 141-156. https://doi.org/10.2217/pgs-2019-0134
|
[23]
|
Xiao, C., Choi, E. and Sun, J. (2018) Opportunities and Challenges in Developing Deep Learning Models Using Electronic Health Records Data: A Systematic Review. Journal of the American Medical Informatics Association, 25, 1419-1428. https://doi.org/10.1093/jamia/ocy068
|
[24]
|
Ahmed, Z., Mohamed, K., Zeeshan, S. and Dong, X. (2020) Artificial Intelligence with Multi-Functional Machine Learning Platform Development for Better Healthcare and Precision Medicine. Database, 2020, baaa010. https://doi.org/10.1093/database/baaa010
|
[25]
|
Jena, O.P., Bhushan, B. and Kose, U. (2022) Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications. CRC Press.
|
[26]
|
Zafar, I., Anwar, S., kanwal, F., Yousaf, W., Un Nisa, F., Kausar, T., et al. (2023) Reviewing Methods of Deep Learning for Intelligent Healthcare Systems in Genomics and Biomedicine. Biomedical Signal Processing and Control, 86, Article ID: 105263. https://doi.org/10.1016/j.bspc.2023.105263
|
[27]
|
Bennett, R., Hemmati, M., Ramesh, R. and Razzaghi, T. (2024) Artificial Intelligence and Machine Learning in Precision Health: An Overview of Methods, Challenges, and Future Directions. In: Kotsireas, I.S., Nagurney, A., Pardalos, P.M., Pickl, S.W. and Vogiatzis, C., Eds., Dynamics of Disasters, Springer, 15-53. https://doi.org/10.1007/978-3-031-74006-0_2
|
[28]
|
Sharmila, K.S. and Chandra, K.R. (2024) Predicting Adverse Interactions: A Comprehensive Review of Ai-Driven Drug-Drug Interaction Models for Enhanced Patient Safety. 2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS), Bengaluru, 17-18 December 2024, 1098-1102. https://doi.org/10.1109/icicnis64247.2024.10823221
|
[29]
|
Iqbal, A.B., Shah, I.A., Injila, Assad, A., Ahmed, M. and Shah, S.Z. (2024) A Review of Deep Learning Algorithms for Modeling Drug Interactions. Multimedia Systems, 30, Article No. 124. https://doi.org/10.1007/s00530-024-01325-9
|
[30]
|
Ibrahim, A.A., Mohammed, T.A. and Dara, O.N. (2024) Predicting Big Data Drug Interactions and Associated Side Effects by Using Artificial Neural Networks (ANN) over Traditional Graph Convolutional Networks (GCNs). https://doi.org/10.21203/rs.3.rs-3997856/v1
|
[31]
|
Mak, K., Wong, Y. and Pichika, M.R. (2024) Artificial Intelligence in Drug Discovery and Development. In: Hock, F.J. and Pugsley, M.K., Eds., Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays, Springer, 1461-1498. https://doi.org/10.1007/978-3-031-35529-5_92
|
[32]
|
Shastry, B.S. (2005) Pharmacogenetics and the Concept of Individualized Medicine. The Pharmacogenomics Journal, 6, 16-21. https://doi.org/10.1038/sj.tpj.6500338
|
[33]
|
Ilan, Y. (2022) Next-Generation Personalized Medicine: Implementation of Variability Patterns for Overcoming Drug Resistance in Chronic Diseases. Journal of Personalized Medicine, 12, Article 1303. https://doi.org/10.3390/jpm12081303
|
[34]
|
Pittman, J., Huang, E., Dressman, H., Horng, C., Cheng, S.H., Tsou, M., et al. (2004) Integrated Modeling of Clinical and Gene Expression Information for Personalized Prediction of Disease Outcomes. Proceedings of the National Academy of Sciences of the United States of America, 101, 8431-8436. https://doi.org/10.1073/pnas.0401736101
|
[35]
|
Chen, Y., Hsiao, T., Lin, C. and Fann, Y.C. (2025) Unlocking Precision Medicine: Clinical Applications of Integrating Health Records, Genetics, and Immunology through Artificial Intelligence. Journal of Biomedical Science, 32, Article No. 16. https://doi.org/10.1186/s12929-024-01110-w
|
[36]
|
Boehm, K.M., Khosravi, P., Vanguri, R., Gao, J. and Shah, S.P. (2021) Harnessing Multimodal Data Integration to Advance Precision Oncology. Nature Reviews Cancer, 22, 114-126. https://doi.org/10.1038/s41568-021-00408-3
|
[37]
|
Castaneda, C., Nalley, K., Mannion, C., Bhattacharyya, P., Blake, P., Pecora, A., et al. (2015) Clinical Decision Support Systems for Improving Diagnostic Accuracy and Achieving Precision Medicine. Journal of Clinical Bioinformatics, 5, Article No. 4. https://doi.org/10.1186/s13336-015-0019-3
|
[38]
|
Samson Enitan, S., Ngozi Adejumo, E., Osaigbovoh Imaralu, J., Ademola Adelakun, A., Anike Ladipo, O. and Bosede Enitan, C. (2023) Personalized Medicine Approach to Osteoporosis Management in Women: Integrating Genetics, Pharmacogenomics, and Precision Treatments. Clinical Research Communications, 6, Article 18. https://doi.org/10.53388/crc2023018
|
[39]
|
von Dadelszen, P., Magee, L.A., Payne, B.A., Dunsmuir, D.T., Drebit, S., Dumont, G.A., et al. (2015) Moving Beyond Silos: How Do We Provide Distributed Personalized Medicine to Pregnant Women Everywhere at Scale? Insights from Pre-Empt. International Journal of Gynecology & Obstetrics, 131, S10-S15. https://doi.org/10.1016/j.ijgo.2015.02.008
|
[40]
|
Delanerolle, G., Yang, X., Shetty, S., Raymont, V., Shetty, A., Phiri, P., et al. (2021) Artificial Intelligence: A Rapid Case for Advancement in the Personalization of Gynaecology/Obstetric and Mental Health Care. Women’s Health, 17. https://doi.org/10.1177/17455065211018111
|
[41]
|
Ghanem, M., Ghaith, A.K. and Bydon, M. (2024) Artificial Intelligence and Personalized Medicine: Transforming Patient Care. In: Bydon, M., Ed., The New Era of Precision Medicine, Elsevier, 131-142. https://doi.org/10.1016/b978-0-443-13963-5.00012-1
|
[42]
|
Schork, N.J. (2019) Artificial Intelligence and Personalized Medicine. In: Von Hoff, D. and Han, H., Eds., Precision Medicine in Cancer Therapy, Springer, 265-283. https://doi.org/10.1007/978-3-030-16391-4_11
|
[43]
|
Sahu, M., Gupta, R., Ambasta, R.K. and Kumar, P. (2022) Artificial Intelligence and Machine Learning in Precision Medicine: A Paradigm Shift in Big Data Analysis. Progress in Molecular Biology and Translational Science, 190, 57-100. https://doi.org/10.1016/bs.pmbts.2022.03.002
|
[44]
|
Costa, B. and Vale, N. (2024) Advances in Psychotropic Treatment for Pregnant Women: Efficacy, Adverse Outcomes, and Therapeutic Monitoring. Journal of Clinical Medicine, 13, Article 4398. https://doi.org/10.3390/jcm13154398
|
[45]
|
Edinoff, A.N., Sathivadivel, N., McNeil, S.E., Ly, A.I., Kweon, J., Kelkar, N., et al. (2022) Antipsychotic Use in Pregnancy: Patient Mental Health Challenges, Teratogenicity, Pregnancy Complications, and Postnatal Risks. Neurology International, 14, 62-74. https://doi.org/10.3390/neurolint14010005
|
[46]
|
Porter, I., Gonçalves-Bradley, D., Ricci-Cabello, I., Gibbons, C., Gangannagaripalli, J., Fitzpatrick, R., et al. (2016) Framework and Guidance for Implementing Patient-Reported Outcomes in Clinical Practice: Evidence, Challenges and Opportunities. Journal of Comparative Effectiveness Research, 5, 507-519. https://doi.org/10.2217/cer-2015-0014
|
[47]
|
Kent, D.M., Steyerberg, E. and van Klaveren, D. (2018) Personalized Evidence Based Medicine: Predictive Approaches to Heterogeneous Treatment Effects. BMJ, 363, k4245. https://doi.org/10.1136/bmj.k4245
|
[48]
|
Cohen, A.M., Stavri, P.Z. and Hersh, W.R. (2004) A Categorization and Analysis of the Criticisms of Evidence-Based Medicine. International Journal of Medical Informatics, 73, 35-43. https://doi.org/10.1016/j.ijmedinf.2003.11.002
|
[49]
|
Weiner, S.J., Schwartz, A., Weaver, F., Goldberg, J., Yudkowsky, R., Sharma, G., et al. (2010) Contextual Errors and Failures in Individualizing Patient Care. Annals of Internal Medicine, 153, 69-75. https://doi.org/10.7326/0003-4819-153-2-201007200-00002
|
[50]
|
Chekroud, A.M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., Cohen, Z., et al. (2021) The Promise of Machine Learning in Predicting Treatment Outcomes in Psychiatry. World Psychiatry, 20, 154-170. https://doi.org/10.1002/wps.20882
|
[51]
|
de Pablo, S., et al. (2021) Implementing Precision Psychiatry: A Systematic Review of Individualized Prediction Models for Clinical Practice. Schizophrenia Bulletin, 47, 284-297. https://doi.org/10.1093/schbul/sbaa120
|
[52]
|
Garriga, R., Mas, J., et al. (2022) Machine Learning Model to Predict Mental Health Crises from Electronic Health Records. Nature Medicine, 28, 1240-1248. https://doi.org/10.1038/s41591-022-01811-5
|
[53]
|
Shickel, B., Tighe, P.J., Bihorac, A. and Rashidi, P. (2018) Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE Journal of Biomedical and Health Informatics, 22, 1589-1604. https://doi.org/10.1109/jbhi.2017.2767063
|
[54]
|
Tong, L., Shi, W., Isgut, M., Zhong, Y., Lais, P., Gloster, L., et al. (2024) Integrating Multi-Omics Data with EHR for Precision Medicine Using Advanced Artificial Intelligence. IEEE Reviews in Biomedical Engineering, 17, 80-97. https://doi.org/10.1109/rbme.2023.3324264
|
[55]
|
Ross, N.E., Webster, T.G., et al. (2022) Reproductive Decision-Making Capacity in Women with Psychiatric Illness: A Systematic Review. Journal of the Academy of Consultation-Liaison Psychiatry, 63, 61-70. https://doi.org/10.1016/j.jaclp.2021.08.007
|
[56]
|
Hippman, C.L. (2020) Promoting Perinatal Mental Health: Personalizing Treatment Decision Making Strategies through Decision-Making Support and Pharmacogenetics. Ph.D. Thesis, University of British Columbia.
|
[57]
|
Wisner, K.L., Zarin, D.A., Holmboe, E.S., Appelbaum, P.S., Gelenberg, A.J., Leonard, H.L., et al. (2000) Risk-Benefit Decision Making for Treatment of Depression during Pregnancy. American Journal of Psychiatry, 157, 1933-1940. https://doi.org/10.1176/appi.ajp.157.12.1933
|
[58]
|
Carlin, A. and Alfirevic, Z. (2008) Physiological Changes of Pregnancy and Monitoring. Best Practice & Research Clinical Obstetrics & Gynaecology, 22, 801-823. https://doi.org/10.1016/j.bpobgyn.2008.06.005
|
[59]
|
Gaiser, R. (2009) Physiologic Changes of Pregnancy. Chestnut’s Obstetric Anesthesia: Principles and Practice, 4, 15-36. https://doi.org/10.1016/b978-0-323-05541-3.00002-8
|
[60]
|
Tobore, I., Li, J., Yuhang, L., Al-Handarish, Y., Kandwal, A., Nie, Z., et al. (2019) Deep Learning Intervention for Health Care Challenges: Some Biomedical Domain Considerations. JMIR mHealth and uHealth, 7, e11966. https://doi.org/10.2196/11966
|
[61]
|
Morid, M.A., Sheng, O.R.L. and Dunbar, J. (2023) Time Series Prediction Using Deep Learning Methods in Healthcare. ACM Transactions on Management Information Systems, 14, 1-29. https://doi.org/10.1145/3531326
|
[62]
|
Wang, Y., Liu, L. and Wang, C. (2023) Trends in Using Deep Learning Algorithms in Biomedical Prediction Systems. Frontiers in Neuroscience, 17, Article 1256351. https://doi.org/10.3389/fnins.2023.1256351
|
[63]
|
Howard, L.M. and Khalifeh, H. (2020) Perinatal Mental Health: A Review of Progress and Challenges. World Psychiatry, 19, 313-327. https://doi.org/10.1002/wps.20769
|
[64]
|
Brockington, I., Butterworth, R. and Glangeaud-Freudenthal, N. (2016) An International Position Paper on Mother-Infant (Perinatal) Mental Health, with Guidelines for Clinical Practice. Archives of Women’s Mental Health, 20, 113-120. https://doi.org/10.1007/s00737-016-0684-7
|
[65]
|
Epstein, R., Moore, K. and Bobo, W. (2014) Treatment of Bipolar Disorders during Pregnancy: Maternal and Fetal Safety and Challenges. Drug, Healthcare and Patient Safety, 7, 7-29. https://doi.org/10.2147/dhps.s50556
|
[66]
|
Fisher, J. and Stocky, A. (2003) Maternal Perinatal Mental Health and Multiple Births: Implications for Practice. Twin Research, 6, 506-513. https://doi.org/10.1375/136905203322686509
|