[1]
|
Byerly, M.J., Weber, M.T., Brooks, D.L., Snow, L.R., Worley, M.A. and Lescouflair, E. (2001) Antipsychotic Medications and the Elderly. Drugs & Aging, 18, 45-61. https://doi.org/10.2165/00002512-200118010-00004
|
[2]
|
McShane, R., Keene, J., Gedling, K., Fairburn, C., Jacoby, R. and Hope, T. (1997) Do Neuroleptic Drugs Hasten Cognitive Decline in Dementia? Prospective Study with Necropsy Follow Up. British Medical Journal, 314, 266-266. https://doi.org/10.1136/bmj.314.7076.266
|
[3]
|
Jeste, D.V., Blazer, D., Casey, D., Meeks, T., Salzman, C., Schneider, L., et al. (2007) ACNP White Paper: Update on Use of Antipsychotic Drugs in Elderly Persons with Dementia. Neuropsychopharmacology, 33, 957-970. https://doi.org/10.1038/sj.npp.1301492
|
[4]
|
Liperoti, R., Sganga, F., Landi, F., Topinkova, E., Denkinger, M.D., van der Roest, H.G., et al. (2017) Antipsychotic Drug Interactions and Mortality among Nursing Home Residents with Cognitive Impairment. The Journal of Clinical Psychiatry, 78, e76-e82. https://doi.org/10.4088/jcp.15m10303
|
[5]
|
Marcinkowska, M., Śniecikowska, J., Fajkis, N., Paśko, P., Franczyk, W. and Kołaczkowski, M. (2020) Management of Dementia-Related Psychosis, Agitation and Aggression: A Review of the Pharmacology and Clinical Effects of Potential Drug Candidates. CNS Drugs, 34, 243-268. https://doi.org/10.1007/s40263-020-00707-7
|
[6]
|
Sharma, B., Das, S., Mazumder, A., Rautela, D.S., Tyagi, P.K. and Khurana, N. (2024) The Role of Neurotransmitter Receptors in Antipsychotic Medication Efficacy for Alzheimer’s-Related Psychosis. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 60, Article No. 75. https://doi.org/10.1186/s41983-024-00848-2
|
[7]
|
Bernardo, C.G., Singh, V. and Thompson, P.M. (2008) Safety and Efficacy of Psychopharmacological Agents Used to Treat the Psychiatric Sequelae of Common Neurological Disorders. Expert Opinion on Drug Safety, 7, 435-445. https://doi.org/10.1517/14740338.7.4.435
|
[8]
|
Gareri, P., De Fazio, P., Manfredi, V.G.L. and De Sarro, G. (2014) Use and Safety of Antipsychotics in Behavioral Disorders in Elderly People with Dementia. Journal of Clinical Psychopharmacology, 34, 109-123. https://doi.org/10.1097/jcp.0b013e3182a6096e
|
[9]
|
Klinkenberg, I., Sambeth, A. and Blokland, A. (2011) Acetylcholine and Attention. Behavioural Brain Research, 221, 430-442. https://doi.org/10.1016/j.bbr.2010.11.033
|
[10]
|
Wallace, T.L. and Bertrand, D. (2013) Importance of the Nicotinic Acetylcholine Receptor System in the Prefrontal Cortex. Biochemical Pharmacology, 85, 1713-1720. https://doi.org/10.1016/j.bcp.2013.04.001
|
[11]
|
Potter, A.S., Newhouse, P.A. and Bucci, D.J. (2006) Central Nicotinic Cholinergic Systems: A Role in the Cognitive Dysfunction in Attention-Deficit/Hyperactivity Disorder? Behavioural Brain Research, 175, 201-211. https://doi.org/10.1016/j.bbr.2006.09.015
|
[12]
|
Floresco, S.B. and Jentsch, J.D. (2010) Pharmacological Enhancement of Memory and Executive Functioning in Laboratory Animals. Neuropsychopharmacology, 36, 227-250. https://doi.org/10.1038/npp.2010.158
|
[13]
|
Collamati, A., Martone, A.M., Poscia, A., Brandi, V., Celi, M., Marzetti, E., et al. (2015) Anticholinergic Drugs and Negative Outcomes in the Older Population: From Biological Plausibility to Clinical Evidence. Aging Clinical and Experimental Research, 28, 25-35. https://doi.org/10.1007/s40520-015-0359-7
|
[14]
|
Attoh-Mensah, E., Loggia, G., Schumann-Bard, P., Morello, R., Descatoire, P., Marcelli, C., et al. (2020) Adverse Effects of Anticholinergic Drugs on Cognition and Mobility: Cutoff for Impairment in a Cross-Sectional Study in Young–Old and Old–Old Adults. Drugs & Aging, 37, 301-310. https://doi.org/10.1007/s40266-019-00743-z
|
[15]
|
Cardwell, K., Hughes, C.M. and Ryan, C. (2015) The Association between Anticholinergic Medication Burden and Health Related Outcomes in the ‘Oldest Old’: A Systematic Review of the Literature. Drugs & Aging, 32, 835-848. https://doi.org/10.1007/s40266-015-0310-9
|
[16]
|
Green, A.R., Reifler, L.M., Bayliss, E.A., Weffald, L.A. and Boyd, C.M. (2019) Drugs Contributing to Anticholinergic Burden and Risk of Fall or Fall-Related Injury among Older Adults with Mild Cognitive Impairment, Dementia and Multiple Chronic Conditions: A Retrospective Cohort Study. Drugs & Aging, 36, 289-297. https://doi.org/10.1007/s40266-018-00630-z
|
[17]
|
Carrière, I., Fourrier-Reglat, A., Dartigues, J., Rouaud, O., Pasquier, F., Ritchie, K., et al. (2009) Drugs with Anticholinergic Properties, Cognitive Decline, and Dementia in an Elderly General Population. Archives of Internal Medicine, 169, 1317-1324. https://doi.org/10.1001/archinternmed.2009.229
|
[18]
|
Mehta, R.S., Kochar, B.D., Kennelty, K., Ernst, M.E. and Chan, A.T. (2021) Emerging Approaches to Polypharmacy among Older Adults. Nature Aging, 1, 347-356. https://doi.org/10.1038/s43587-021-00045-3
|
[19]
|
Mair, A., Wilson, M. and Dreischulte, T. (2020) Addressing the Challenge of Polypharmacy. Annual Review of Pharmacology and Toxicology, 60, 661-681. https://doi.org/10.1146/annurev-pharmtox-010919-023508
|
[20]
|
Alhozim, B.M.A., Almutairi, E.T., Albutyan, Z.Y., Alzahrani, N.A., Alonizy, M.M., Albutyan, L.Y., et al. (2024) The Impact of Polypharmacy on Drug Efficacy and Safety in Geriatric Populations. Egyptian Journal of Chemistry, 67, 1533-1540. https://doi.org/10.21608/ejchem.2024.337875.10834
|
[21]
|
Edelman, E.J., Gordon, K.S., Glover, J., McNicholl, I.R., Fiellin, D.A. and Justice, A.C. (2013) The Next Therapeutic Challenge in HIV: Polypharmacy. Drugs & Aging, 30, 613-628. https://doi.org/10.1007/s40266-013-0093-9
|
[22]
|
Keine, D., Zelek, M., Walker, J.Q. and Sabbagh, M.N. (2019) Polypharmacy in an Elderly Population: Enhancing Medication Management through the Use of Clinical Decision Support Software Platforms. Neurology and Therapy, 8, 79-94. https://doi.org/10.1007/s40120-019-0131-6
|
[23]
|
Foluke, E. (2024) Machine Learning for Chronic Kidney Disease Progression Modelling: Leveraging Data Science to Optimize Patient Management. World Journal of Advanced Research and Reviews, 24, 453-475. https://doi.org/10.30574/wjarr.2024.24.3.3730
|
[24]
|
Levy, J.J., Lima, J.F., Miller, M.W., Freed, G.L., O'Malley, A.J. and Emeny, R.T. (2022) Machine Learning Approaches for Hospital Acquired Pressure Injuries: A Retrospective Study of Electronic Medical Records. Frontiers in Medical Technology, 4, Article 926667. https://doi.org/10.3389/fmedt.2022.926667
|
[25]
|
Filippis, R.D. and Foysal, A.A. (2025) A Machine Learning Approach to Predicting Treatment Outcomes in Bipolar Depression with OCD Comorbidity. Open Access Library, 12, 1-20. https://doi.org/10.4236/oalib.1112894
|
[26]
|
Alaa Ahmed M. and van der Schaar, M. (2017) Deep Multi-Task Gaussian Processes for Survival Analysis with Competing Risks. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 2326-2334.
|
[27]
|
Patra, S.S., Harshvardhan, G.M., Gourisaria, M.K., Mohanty, J.R. and Choudhury, S. (2021) Emerging Healthcare Problems in High-Dimensional Data and Dimension Reduction. In: Lecture Notes on Data Engineering and Communications Technologies, Springer, 25-49. https://doi.org/10.1007/978-981-16-0538-3_2
|
[28]
|
Dinov, I.D. (2016) Methodological Challenges and Analytic Opportunities for Modeling and Interpreting Big Healthcare Data. GigaScience, 5, 1-15. https://doi.org/10.1186/s13742-016-0117-6
|
[29]
|
Wilson, A. and Anwar, M.R. (2024) The Future of Adaptive Machine Learning Algorithms in High-Dimensional Data Processing. International Transactions on Artificial Intelligence, 3, 97-107. https://doi.org/10.33050/italic.v3i1.656
|
[30]
|
Bühlmann, P. and Van De Geer, S. (2011) Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Science & Business Media.
|
[31]
|
Salerno, S. and Li, Y. (2023) High-dimensional Survival Analysis: Methods and Applications. Annual Review of Statistics and Its Application, 10, 25-49. https://doi.org/10.1146/annurev-statistics-032921-022127
|
[32]
|
Dang, M., Xiang, H., Wang, Y., Li, F. and Nguyen, T.N. (2022) Explainable Artificial Intelligence: A Comprehensive Review. Artificial Intelligence Review, 55, 3503-3568.
|
[33]
|
Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., et al. (2023) Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cognitive Computation, 16, 45-74. https://doi.org/10.1007/s12559-023-10179-8
|
[34]
|
Machlev, R., Heistrene, L., Perl, M., Levy, K.Y., Belikov, J., Mannor, S., et al. (2022) Explainable Artificial Intelligence (XAI) Techniques for Energy and Power Systems: Review, Challenges and Opportunities. Energy and AI, 9, Article 100169. https://doi.org/10.1016/j.egyai.2022.100169
|
[35]
|
Adadi, A. and Berrada, M. (2018) Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138-52160. https://doi.org/10.1109/access.2018.2870052
|
[36]
|
Raghunathan, T.E. (2021) Synthetic Data. Annual Review of Statistics and Its Application, 8, 129-140. https://doi.org/10.1146/annurev-statistics-040720-031848
|
[37]
|
de Melo, C.M., Torralba, A., Guibas, L., DiCarlo, J., Chellappa, R. and Hodgins, J. (2022) Next-Generation Deep Learning Based on Simulators and Synthetic Data. Trends in Cognitive Sciences, 26, 174-187. https://doi.org/10.1016/j.tics.2021.11.008
|
[38]
|
Smith, D.M., Clarke, G.P. and Harland, K. (2009) Improving the Synthetic Data Generation Process in Spatial Microsimulation Models. Environment and Planning A: Economy and Space, 41, 1251-1268. https://doi.org/10.1068/a4147
|
[39]
|
Nicolaie, M.A., Füssenich, K., Ameling, C. and Boshuizen, H.C. (2023) Constructing Synthetic Populations in the Age of Big Data. Population Health Metrics, 21, Article No. 19. https://doi.org/10.1186/s12963-023-00319-5
|
[40]
|
Kopec, J.A., Finès, P., Manuel, D.G., Buckeridge, D.L., Flanagan, W.M., Oderkirk, J., et al. (2010) Validation of Population-Based Disease Simulation Models: A Review of Concepts and Methods. BMC Public Health, 10, Article No. 710. https://doi.org/10.1186/1471-2458-10-710
|
[41]
|
Kingston, A., Comas-Herrera, A. and Jagger, C. (2018) Forecasting the Care Needs of the Older Population in England over the Next 20 Years: Estimates from the Population Ageing and Care Simulation (PACSim) Modelling Study. The Lancet Public Health, 3, e447-e455. https://doi.org/10.1016/s2468-2667(18)30118-x
|
[42]
|
Groves-Kirkby, N., Wakeman, E., Patel, S., Hinch, R., Poot, T., Pearson, J., et al. (2023) Large-Scale Calibration and Simulation of COVID-19 Epidemiologic Scenarios to Support Healthcare Planning. Epidemics, 42, Article 100662. https://doi.org/10.1016/j.epidem.2022.100662
|
[43]
|
Badr, H.S., Zaitchik, B.F., Kerr, G.H., Nguyen, N.H., Chen, Y., Hinson, P., et al. (2023) Unified Real-Time Environmental-Epidemiological Data for Multiscale Modeling of the COVID-19 Pandemic. Scientific Data, 10, Article No. 367. https://doi.org/10.1038/s41597-023-02276-y
|
[44]
|
Maringe, C., Benitez Majano, S., Exarchakou, A., Smith, M., Rachet, B., Belot, A., et al. (2020) Reflection on Modern Methods: Trial Emulation in the Presence of Immortal-Time Bias. Assessing the Benefit of Major Surgery for Elderly Lung Cancer Patients Using Observational Data. International Journal of Epidemiology, 49, 1719-1729. https://doi.org/10.1093/ije/dyaa057
|
[45]
|
Lee, J.Y. and Styczynski, M.P. (2018) NS-kNN: A Modified K-Nearest Neighbors Approach for Imputing Metabolomics Data. Metabolomics, 14, Article No. 153. https://doi.org/10.1007/s11306-018-1451-8
|
[46]
|
De Silva, H. and Perera, A.S. (2017) Evolutionary K-Nearest Neighbor Imputation Algorithm for Gene Expression Data. International Journal on Advances in ICT for Emerging Regions, 10, 11-18. https://doi.org/10.4038/icter.v10i1.7183
|
[47]
|
Keerin, P. and Boongoen, T. (2022) Estimation of Missing Values in Astronomical Survey Data: An Improved Local Approach Using Cluster Directed Neighbor Selection. Information Processing & Management, 59, Article 102881. https://doi.org/10.1016/j.ipm.2022.102881
|
[48]
|
Das, C., Bose, S., Chattopadhyay, M. and Chattopadhyay, S. (2016) A Novel Distance-Based Iterative Sequential KNN Algorithm for Estimation of Missing Values in Microarray Gene Expression Data. International Journal of Bioinformatics Research and Applications, 12, Article 312. https://doi.org/10.1504/ijbra.2016.080719
|
[49]
|
Luengo, J., García, S. and Herrera, F. (2011) On the Choice of the Best Imputation Methods for Missing Values Considering Three Groups of Classification Methods. Knowledge and Information Systems, 32, 77-108. https://doi.org/10.1007/s10115-011-0424-2
|
[50]
|
Lakshminarayan, K., Harp, S.A. and Samad, T. (1999) Imputation of Missing Data in Industrial Databases. Applied Intelligence, 11, 259-275. https://doi.org/10.1023/a:1008334909089
|
[51]
|
Aljuaid, T. and Sasi, S. (2016) Proper Imputation Techniques for Missing Values in Data Sets. 2016 International Conference on Data Science and Engineering, Cochin, 23-25 August 2016, 1-5. https://doi.org/10.1109/icdse.2016.7823957
|
[52]
|
Huisman, M. (2009) Imputation of Missing Network Data: Some Simple Procedures. Journal of Social Structure, 10, 1-29.
|
[53]
|
Aubaidan, B.H., Kadir, R.A. and Ijab, M.T. (2024) A Comparative Analysis of Smote and CSSF Techniques for Diabetes Classification Using Imbalanced Data. Journal of Computer Science, 20, 1146-1165. https://doi.org/10.3844/jcssp.2024.1146.1165
|
[54]
|
Veerla, S., Devadasan, A.V., Masum, M., Chowdhury, M. and Shahriar, H. (2024) E-SMOTE: Entropy Based Minority Oversampling for Heart Failure and AIDS Clinical Trails Analysis. 2024 IEEE 48th Annual Computers, Software, and Applications Conference, Osaka, 2-4 July 2024, 1841-1846. https://doi.org/10.1109/compsac61105.2024.00291
|
[55]
|
Gayane, G. (2024) Explainable Artificial Intelligence: Methods and Evaluation. PhD Dissertation, Old Dominion University.
|
[56]
|
Muralidhara, C.K.B. (2024) Interpretability of Classification & Regression Ensemble Models.
|
[57]
|
Tsai, C.P., Yeh, C.-K. and Ravikumar, P. (2023) Faith-Shap: The Faithful Shapley Interaction Index. Journal of Machine Learning Research, 24, 1-42.
|
[58]
|
Alsaleh, M.M., Allery, F., Choi, J.W., Hama, T., McQuillin, A., Wu, H., et al. (2023) Prediction of Disease Comorbidity Using Explainable Artificial Intelligence and Machine Learning Techniques: A Systematic Review. International Journal of Medical Informatics, 175, Article 105088. https://doi.org/10.1016/j.ijmedinf.2023.105088
|
[59]
|
Mohanty, S.D., Lekan, D., McCoy, T.P., Jenkins, M. and Manda, P. (2022) Machine Learning for Predicting Readmission Risk among the Frail: Explainable AI for Healthcare. Patterns, 3, Article 100395. https://doi.org/10.1016/j.patter.2021.100395
|
[60]
|
Bloomingdale, P., Karelina, T., Ramakrishnan, V., Bakshi, S., Véronneau-Veilleux, F., Moye, M., et al. (2022) Hallmarks of Neurodegenerative Disease: A Systems Pharmacology Perspective. Pharmacometrics & Systems Pharmacology, 11, 1399-1429. https://doi.org/10.1002/psp4.12852
|
[61]
|
Mostafavi, S., Gaiteri, C., Sullivan, S.E., White, C.C., Tasaki, S., Xu, J., et al. (2018) A Molecular Network of the Aging Human Brain Provides Insights into the Pathology and Cognitive Decline of Alzheimer’s Disease. Nature Neuroscience, 21, 811-819. https://doi.org/10.1038/s41593-018-0154-9
|
[62]
|
Geerts, H. (2025) Quantitative Systems Pharmacology Development and Application in Neuroscience. In: Handbook of Experimental Pharmacology, Springer, 1-50. https://doi.org/10.1007/164_2024_739
|
[63]
|
Karalis, V.D. (2024) The Integration of Artificial Intelligence into Clinical Practice. Applied Biosciences, 3, 14-44. https://doi.org/10.3390/applbiosci3010002
|
[64]
|
Albahri, A.S., Duhaim, A.M., Fadhel, M.A., Alnoor, A., Baqer, N.S., Alzubaidi, L., et al. (2023) A Systematic Review of Trustworthy and Explainable Artificial Intelligence in Healthcare: Assessment of Quality, Bias Risk, and Data Fusion. Information Fusion, 96, 156-191. https://doi.org/10.1016/j.inffus.2023.03.008
|
[65]
|
de Lange, E.C.M., van den Brink, W., Yamamoto, Y., de Witte, W.E.A. and Wong, Y.C. (2017) Novel CNS Drug Discovery and Development Approach: Model-Based Integration to Predict Neuro-Pharmacokinetics and Pharmacodynamics. Expert Opinion on Drug Discovery, 12, 1207-1218. https://doi.org/10.1080/17460441.2017.1380623
|
[66]
|
Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., et al. (2019) Applications of Machine Learning in Drug Discovery and Development. Nature Reviews Drug Discovery, 18, 463-477. https://doi.org/10.1038/s41573-019-0024-5
|
[67]
|
de Vries, E.G.E., Kist de Ruijter, L., Lub-de Hooge, M.N., Dierckx, R.A., Elias, S.G. and Oosting, S.F. (2018) Integrating Molecular Nuclear Imaging in Clinical Research to Improve Anticancer Therapy. Nature Reviews Clinical Oncology, 16, 241-255. https://doi.org/10.1038/s41571-018-0123-y
|