[1]
|
Li, Z.C., Cheng, N., Xing, J.B., et al. (2024) Stellate Ganglion Block as an Adjunctive Intervention for Chronic Subjective Tinnitus Distress: Preliminary Analysis of Efficacy and Predictors. Journal of Sun Yat-sen University (Medical Sciences), 45, 276-282.
|
[2]
|
Saeed, S. and Khan, Q.U. (2021) The Pathological Mechanisms and Treatments of Tinnitus. Discoveries, 9, e137. https://doi.org/10.15190/d.2021.16
|
[3]
|
Wang, K., Tang, D., Ma, J. and Sun, S. (2020) Auditory Neural Plasticity in Tinnitus Mechanisms and Management. Neural Plasticity, 2020, Article ID: 7438461. https://doi.org/10.1155/2020/7438461
|
[4]
|
Vijayakumar, K.A., Cho, G., Maharajan, N. and Jang, C.H. (2022) A Review on Peripheral Tinnitus, Causes, and Treatments from the Perspective of Autophagy. Experimental Neurobiology, 31, 232-242. https://doi.org/10.5607/en22002
|
[5]
|
Shao, N., Jiang, S., Younger, D., Chen, T., Brown, M., Rao, K.V.R., et al. (2021) Central and Peripheral Auditory Abnormalities in Chinchilla Animal Model of Blast-Injury. Hearing Research, 407, Article ID: 108273. https://doi.org/10.1016/j.heares.2021.108273
|
[6]
|
Chen, X.L., Song, F., Qin, Z.B., et al. (2021) Correlation between Tinnitus Severity and Anxiety, Depression, and Personality Traits. Journal of Audiology and Speech Pathology, 29, 444-446.
|
[7]
|
Shi, M.Q., Zhang, W.X., Ni, T.Y., et al. (2024) Analysis of Related Factors of Anxiety and Anxiety Tendency in Tinnitus Patients. National Medical Journal of China, 104, 3392-3396.
|
[8]
|
Langguth, B., de Ridder, D., Schlee, W. and Kleinjung, T. (2024) Tinnitus: Clinical Insights in Its Pathophysiology-A Perspective. Journal of the Association for Research in Otolaryngology, 25, 249-258. https://doi.org/10.1007/s10162-024-00939-0
|
[9]
|
Wójcik, J., Kochański, B., Cieśla, K., Lewandowska, M., Karpiesz, L., Niedziałek, I., et al. (2023) An MR Spectroscopy Study of Temporal Areas Excluding Primary Auditory Cortex and Frontal Regions in Subjective Bilateral and Unilateral Tinnitus. Scientific Reports, 13, Article No. 18417. https://doi.org/10.1038/s41598-023-45024-3
|
[10]
|
Hu, J., Xu, J., Shang, S., Chen, H., Yin, X., Qi, J., et al. (2021) Cerebral Blood Flow Difference between Acute and Chronic Tinnitus Perception: A Perfusion Functional Magnetic Resonance Imaging Study. Frontiers in Neuroscience, 15, Article 752419. https://doi.org/10.3389/fnins.2021.752419
|
[11]
|
Wei, X., Yi, X., Liu, J., Sui, X., Li, L., Li, M., et al. (2024) Circ-Phkb Promotes Cell Apoptosis and Inflammation in LPS-Induced Alveolar Macrophages via the TLR4/MyD88/NF-κB/CCL2 Axis. Respiratory Research, 25, Article No. 62. https://doi.org/10.1186/s12931-024-02677-6
|
[12]
|
Mou, Y., Du, Y., Zhou, L., Yue, J., Hu, X., Liu, Y., et al. (2022) Gut Microbiota Interact with the Brain through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Frontiers in Immunology, 13, Article 796288. https://doi.org/10.3389/fimmu.2022.796288
|
[13]
|
Kang, C., Sang, Q., Liu, D., Wang, L., Li, J. and Liu, X. (2024) Polyphyllin I Alleviates Neuroinflammation after Cerebral Ischemia-Reperfusion Injury via Facilitating Autophagy-Mediated M2 Microglial Polarization. Molecular Medicine, 30, Article No. 59. https://doi.org/10.1186/s10020-024-00828-5
|
[14]
|
Xia, Q. and Zhang, J.N. (2024) Research Progress on M1/M2 Microglia in the Central Pathogenesis of Acute Tinnitus. Journal of Audiology and Speech Pathology, 32, 470-473.
|
[15]
|
Yin, C., Zhang, M., Cheng, L., Ding, L., Lv, Q., Huang, Z., et al. (2024) Melatonin Modulates TLR4/MyD88/NF-κB Signaling Pathway to Ameliorate Cognitive Impairment in Sleep-Deprived Rats. Frontiers in Pharmacology, 15, Article 1430599. https://doi.org/10.3389/fphar.2024.1430599
|
[16]
|
Steinacher, C., Chacko, L.J., Liu, W., Rask-Andersen, H., Bader, W., Dudas, J., et al. (2022) Visualization of Macrophage Subsets in the Development of the Fetal Human Inner Ear. Frontiers in Immunology, 13, Article 965196. https://doi.org/10.3389/fimmu.2022.965196
|
[17]
|
Fang, J., Li, Z., Wang, P., Zhang, X., Mao, S., Li, Y., et al. (2025) Inhibition of the NLRP3 Inflammasome Attenuates Spiral Ganglion Neuron Degeneration in Aminoglycoside-Induced Hearing Loss. Neural Regeneration Research, 20, 3025-3039. https://doi.org/10.4103/nrr.nrr-d-23-01879
|
[18]
|
Ren, Y., Wu, K., He, Y., Zhang, H., Ma, J., Li, C., et al. (2024) The Role of NLRP3 Inflammasome-Mediated Neuroinflammation in Chronic Noise-Induced Impairment of Learning and Memory Ability. Ecotoxicology and Environmental Safety, 286, Article ID: 117183. https://doi.org/10.1016/j.ecoenv.2024.117183
|
[19]
|
Fan, Y.M., Yang, L.H., Liu, S.Q., et al. (2011) Minocycline Inhibits Hippocampal Microglia in Epileptic Rats. Chinese Journal of Neuromedicine, 10, 865-868.
|
[20]
|
Zhu, F.R., Zhao, J.P., Zheng, Y.J., et al. (2015) Effects of Minocycline on Behavioral Abnormalities and Microglial Activity in a Rat Model of Schizophrenia. Chinese Journal of Psychiatry, 48, 27-31.
|
[21]
|
Chen, L.J., Yang, X.H., Wang, C.Y., et al. (2018) Effect of N-Acetylcysteine on Toll-Like Receptor 4 Pathway in Microglia under High Glucose and Hypoxia-Ischemia Conditions. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 20, 981-985.
|
[22]
|
Zhong, L.Q.Y., Miao, D., Zhang, Y.F., et al. (2023) N-Acetylcysteine Inhibits Brain Inflammation in Mice with Periodontitis and Alzheimer’s Disease. Journal of Xi’an Jiaotong University (Medical Sciences), 44, 229-235.
|
[23]
|
Li, B.J., Zhang, X.T., Fu, Y.B., et al. (2023) Advances in Functional MRI Studies on Idiopathic Tinnitus Mechanisms. Chinese Journal of Medical Imaging Technology, 39, 113-116.
|
[24]
|
Zhang, W., Peng, Z. and Gong, S.S. (2017) Research Progress on the Mechanism of Salicylate-Induced Tinnitus. Journal of Audiology and Speech Pathology, 25, 85-90.
|
[25]
|
Zhao, C.Y., Yang, J.Y., Wang, W.Q., et al. (2023) Susceptibility to Noise-Induced Hearing Loss in a Mouse Model of Hidden Hearing Loss. Chinese Journal of Otology, 21, 367-371.
|
[26]
|
Wang, Y.Y., Sun, Y.H., Liu, K., et al. (2019) Effects of Moderate-to-Low Intensity Noise Exposure on Cochlear Ribbon Synapses. Chinese Journal of Otology, 17, 203-208.
|
[27]
|
Fernandez, K.A., Guo, D., Micucci, S., De Gruttola, V., Liberman, M.C. and Kujawa, S.G. (2020) Noise-Induced Cochlear Synaptopathy with and without Sensory Cell Loss. Neuroscience, 427, 43-57. https://doi.org/10.1016/j.neuroscience.2019.11.051
|
[28]
|
Wang, J., Serratrice, N., Lee, C.J., François, F., Sweedler, J.V., Puel, J., et al. (2021) Physiopathological Relevance of D-Serine in the Mammalian Cochlea. Frontiers in Cellular Neuroscience, 15, Article 733004. https://doi.org/10.3389/fncel.2021.733004
|
[29]
|
Ma, Z.X., Fang, Y.J., Zhao, J.S., et al. (2020) BOLD-fMRI Study of Auditory Activation Areas in Tinnitus Patients. Journal of Imaging Research and Medical Applications, 4, 23-24.
|
[30]
|
Isler, B., von Burg, N., Kleinjung, T., Meyer, M., Stämpfli, P., Zölch, N., et al. (2022) Lower Glutamate and GABA Levels in Auditory Cortex of Tinnitus Patients: A 2D-JPRESS MR Spectroscopy Study. Scientific Reports, 12, Article No. 4068. https://doi.org/10.1038/s41598-022-07835-8
|
[31]
|
Shan, M., Lin, S., Li, S., Du, Y., Zhao, H., Hong, H., et al. (2017) TIR-Domain-Containing Adapter-Inducing Interferon-β (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Frontiers in Cellular Neuroscience, 11, Article 35. https://doi.org/10.3389/fncel.2017.00035
|
[32]
|
Ma, K., Guo, J., Wang, G., Ni, Q. and Liu, X. (2020) Toll-Like Receptor 2—Mediated Autophagy Promotes Microglial Cell Death by Modulating the Microglial M1/M2 Phenotype. Inflammation, 43, 701-711. https://doi.org/10.1007/s10753-019-01152-5
|
[33]
|
Liu, L., Liu, J., Bao, J., Bai, Q. and Wang, G. (2020) Interaction of Microglia and Astrocytes in the Neurovascular Unit. Frontiers in Immunology, 11, Article 499. https://doi.org/10.3389/fimmu.2020.01024
|
[34]
|
Lyu, J., Xie, D., Bhatia, T.N., Leak, R.K., Hu, X. and Jiang, X. (2021) Microglial/Macrophage Polarization and Function in Brain Injury and Repair after Stroke. CNS Neuroscience & Therapeutics, 27, 515-527. https://doi.org/10.1111/cns.13620
|
[35]
|
Mao, M., Xu, Y., Zhang, X., Yang, L., An, X., Qu, Y., et al. (2020) Microrna-195 Prevents Hippocampal Microglial/Macrophage Polarization towards the M1 Phenotype Induced by Chronic Brain Hypoperfusion through Regulating CX3CL1/CX3CR1 Signaling. Journal of Neuroinflammation, 17, Article No. 244. https://doi.org/10.1186/s12974-020-01919-w
|
[36]
|
Xu, X., Piao, H., Aosai, F., Zeng, X., Cheng, J., Cui, Y., et al. (2020) Arctigenin Protects against Depression by Inhibiting Microglial Activation and Neuroinflammation via HMGB1/TLR4/NF‐κB and TNF‐α/TNFR1/NF‐κB Pathways. British Journal of Pharmacology, 177, 5224-5245. https://doi.org/10.1111/bph.15261
|
[37]
|
Molagoda, I.M.N., Lee, K.T., Choi, Y.H., Jayasingha, J.A.C.C. and Kim, G. (2021) Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-κB‐ and ER Stress‐Induced Ca2+ Accumulation and Mitochondrial ROS Production. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 1246491. https://doi.org/10.1155/2021/1246491
|
[38]
|
Liu, Y.C. and Yin, S.H. (2021) Research Progress on Inflammatory Factors and Related Signaling Pathways in Inner Ear Diseases. Chinese Journal of Otology, 19, 506-510.
|
[39]
|
Boecking, B., Klasing, S., Walter, M., Brueggemann, P., Nyamaa, A., Rose, M., et al. (2022) Vascular-Metabolic Risk Factors and Psychological Stress in Patients with Chronic Tinnitus. Nutrients, 14, Article 2256. https://doi.org/10.3390/nu14112256
|
[40]
|
Themann, C.L. and Masterson, E.A. (2019) Occupational Noise Exposure: A Review of Its Effects, Epidemiology, and Impact with Recommendations for Reducing Its Burden. The Journal of the Acoustical Society of America, 146, 3879-3905. https://doi.org/10.1121/1.5134465
|
[41]
|
Dai, C.Y., Lin, Y., Su, T.H., et al. (2023) Effects of Low-Intensity Noise Exposure on Temporal Resolution in Guinea Pigs. Chinese Journal of Otology, 21, 378-384.
|
[42]
|
Tang, W., Ling, S.Y., Xiang, P., et al. (2023) Comparison of Different White Noise Intensities in Establishing Animal Models of Noise-Induced Tinnitus and Effects on GAP-43 Expression in Auditory Cortex. Journal of Youjiang Medical University for Nationalities, 4, 259-262, 286.
|
[43]
|
Deng, A.C., Sun, W., Li, Q., et al. (2018) Effects of Noise Exposure on Auditory Cortex Excitability and Expression of GABA and NMDA Receptors in Rats. Journal of Audiology and Speech Pathology, 26, 513-517.
|
[44]
|
Liu, Y.H., Jiang, Y.H., Zhang, Z.R., et al. (2022) Establishment and Evaluation of an Animal Model of Military Aviation Noise-Induced Hidden Hearing Loss. Chinese Journal of Otology, 20, 620-625.
|
[45]
|
Fernandez, K.A., Guo, D., Micucci, S., De Gruttola, V., Liberman, M.C. and Kujawa, S.G. (2020) Noise-Induced Cochlear Synaptopathy with and without Sensory Cell Loss. Neuroscience, 427, 43-57. https://doi.org/10.1016/j.neuroscience.2019.11.051
|
[46]
|
Lin, S.T., Luo, L.X., Hu, Y.L., et al. (2024) Effects of Roflupram on NLRP3, Caspase-1, IL-1β, and TNF-α in Hippocampus of Noise-Induced Tinnitus Mice. China Medical Herald, 21, 1-5.
|
[47]
|
Peng, X., Mao, Y., Liu, Y., Dai, Q., Tai, Y., Luo, B., et al. (2024) Microglial Activation in the Lateral Amygdala Promotes Anxiety‐Like Behaviors in Mice with Chronic Moderate Noise Exposure. CNS Neuroscience & Therapeutics, 30, e14674. https://doi.org/10.1111/cns.14674
|
[48]
|
Xu, M.Y. (2021) Semi-Quantitative Study of Cerebral Oxygen Metabolism in Mice Using Relaxation-Calibrated Functional MRI. Ph.D. Thesis, University of Chinese Academy of Sciences.
|
[49]
|
Longenecker, R.J., Gu, R., Homan, J. and Kil, J. (2020) A Novel Mouse Model of Aminoglycoside-Induced Hyperacusis and Tinnitus. Frontiers in Neuroscience, 14, Article 561185. https://doi.org/10.3389/fnins.2020.561185
|
[50]
|
Longenecker, R.J., Gu, R., Homan, J. and Kil, J. (2021) Development of Tinnitus and Hyperacusis in a Mouse Model of Tobramycin Cochleotoxicity. Frontiers in Molecular Neuroscience, 14, Article 715952. https://doi.org/10.3389/fnmol.2021.715952
|
[51]
|
Song, A., Cho, G., Vijayakumar, K.A., Moon, C., Ang, M.J., Kim, J., et al. (2021) Neuroprotective Effect of Valproic Acid on Salicylate-Induced Tinnitus. International Journal of Molecular Sciences, 23, Article 23. https://doi.org/10.3390/ijms23010023
|
[52]
|
Zhang, W., Peng, Z., Yu, S., Song, Q., Qu, T., He, L., et al. (2020) Loss of Cochlear Ribbon Synapse Is a Critical Contributor to Chronic Salicylate Sodium Treatment-Induced Tinnitus without Change Hearing Threshold. Neural Plasticity, 2020, Article ID: 3949161. https://doi.org/10.1155/2020/3949161
|
[53]
|
Cui, W., Wang, H., Cheng, Y., Ma, X., Lei, Y., Ruan, X., et al. (2019) Long-Term Treatment with Salicylate Enables NMDA Receptors and Impairs AMPA Receptors in C57BL/6J Mice Inner Hair Cell Ribbon Synapse. Molecular Medicine Reports, 19, 51-58. https://doi.org/10.3892/mmr.2018.9624
|
[54]
|
Zuo, J., Li, T., Li, Y.L., et al. (2021) Changes of GABARAP Expression in Auditory Cortex of Rats Induced by Sodium Salicylate. Chinese Journal of Otology, 19, 630-635.
|
[55]
|
Wu, C., Bao, W., Yi, B., Wang, Q., Wu, X., Qian, M., et al. (2019) Increased Metabolic Activity and Hysteretic Enhanced GABAA Receptor Binding in a Rat Model of Salicylate-Induced Tinnitus. Behavioural Brain Research, 364, 348-355. https://doi.org/10.1016/j.bbr.2019.02.037
|
[56]
|
Witkin, J.M., Lippa, A., Smith, J.L., Cook, J.M. and Cerne, R. (2022) Can Gabakines Quiet the Noise? The GABAA Receptor Neurobiology and Pharmacology of Tinnitus. Biochemical Pharmacology, 201, Article ID: 115067. https://doi.org/10.1016/j.bcp.2022.115067
|
[57]
|
Xiao, Q.W., Zuo, J., Ge, J.L., et al. (2020) Expression of TNF-α and IL-1β in Hippocampus of Rats with Salicylate-Induced Tinnitus. Journal of Audiology and Speech Pathology, 28, 540-544.
|
[58]
|
Kenmochi, M., Ochi, K., Kinoshita, H., Miyamoto, Y. and Koizuka, I. (2021) The Effect of Systemic Administration of Salicylate on the Auditory Cortex of Guinea Pigs. PLOS ONE, 16, e0259055. https://doi.org/10.1371/journal.pone.0259055
|
[59]
|
Ponsaerts, L., Alders, L., Schepers, M., de Oliveira, R.M.W., Prickaerts, J., Vanmierlo, T., et al. (2021) Neuroinflammation in Ischemic Stroke: Inhibition of cAMP-Specific Phosphodiesterases (PDEs) to the Rescue. Biomedicines, 9, Article 703. https://doi.org/10.3390/biomedicines9070703
|
[60]
|
Ma, D.X., Yan, X.J., Liu, F.G., et al. (2024) Construction of Curcumin and EGCG co-Delivery Liposomes and Their Effects on Neuroinflammation. Journal of Food Science and Technology, 42, 32-45.
|
[61]
|
Yan, M., Zhang, L., Zhang, L.L., et al. (2023) Effects of Intranasal Administration of Triptolide Liposomes on Cognitive Impairment Caused by Central Neuroinflammation in Mice. China Journal of Chinese Materia Medica, 48, 2426-2434.
|
[62]
|
Zhang, Z.J. (2020) Neuroprotective Effects and Mechanisms of Activating GABAergic Neurons by Optogenetics in AD Models. Ph.D. Thesis, Zhengzhou University.
|
[63]
|
Xu, J., Guo, S., Xue, R., Xiao, L., Kou, J., Liu, Y., et al. (2021) Adalimumab Ameliorates Memory Impairments and Neuroinflammation in Chronic Cerebral Hypoperfusion Rats. Aging, 13, 14001-14014. https://doi.org/10.18632/aging.203009
|
[64]
|
Liu, Y., Zhang, F., Sun, Q. and Liang, L. (2023) Adalimumab Combined with Erythropoietin Improves Recovery from Spinal Cord Injury by Suppressing Microglial M1 Polarization-Mediated Neural Inflammation and Apoptosis. Inflammopharmacology, 31, 887-897. https://doi.org/10.1007/s10787-022-01090-z
|
[65]
|
Li, Y., Fan, H., Ni, M., Zhang, W., Fang, F., Sun, J., et al. (2022) Etanercept Reduces Neuron Injury and Neuroinflammation via Inactivating C-Jun N-Terminal Kinase and Nuclear Factor-κB Pathways in Alzheimer’s Disease: An in Vitro and in Vivo Investigation. Neuroscience, 484, 140-150. https://doi.org/10.1016/j.neuroscience.2021.11.001
|
[66]
|
Gocmez, S.S., Yazir, Y., Gacar, G., Demirtaş Şahin, T., Arkan, S., Karson, A., et al. (2020) Etanercept Improves Aging-Induced Cognitive Deficits by Reducing Inflammation and Vascular Dysfunction in Rats. Physiology & Behavior, 224, Article ID: 113019. https://doi.org/10.1016/j.physbeh.2020.113019
|
[67]
|
Ou, W., Yang, J., Simanauskaite, J., Choi, M., Castellanos, D.M., Chang, R., et al. (2021) Biologic TNF-α Inhibitors Reduce Microgliosis, Neuronal Loss, and Tau Phosphorylation in a Transgenic Mouse Model of Tauopathy. Journal of Neuroinflammation, 18, Article No. 312. https://doi.org/10.1186/s12974-021-02332-7
|
[68]
|
Foiadelli, T., Santangelo, A., Costagliola, G., Costa, E., Scacciati, M., Riva, A., et al. (2023) Neuroinflammation and Status Epilepticus: A Narrative Review Unraveling a Complex Interplay. Frontiers in Pediatrics, 11, Article 1251914. https://doi.org/10.3389/fped.2023.1251914
|
[69]
|
Sönmez, H.E., Savaş, M., Aliyeva, B., Deniz, A., Güngör, M., Anık, Y., et al. (2023) The Effect of Interleukin-1 Antagonists on Brain Volume and Cognitive Function in Two Patients with Megalencephalic Leukoencephalopathy with Subcortical Cysts. Pediatric Neurology, 144, 72-77. https://doi.org/10.1016/j.pediatrneurol.2023.04.008
|
[70]
|
Thaler, F.S., Zimmermann, L., Kammermeier, S., et al. (2021) Rituximab Treatment and Long-Term Outcome of Patients with Autoimmune Encephalitis: Real-World Evidence from the Generate Registry. Neurology Neuroimmunology & Neuroinflammation, 8, e1088.
|
[71]
|
Bennett, J.L., Fujihara, K., Kim, H.J., Marignier, R., O’Connor, K.C., Sergott, R.C., et al. (2023) SAkuraBONSAI: Protocol Design of a Novel, Prospective Study to Explore Clinical, Imaging, and Biomarker Outcomes in Patients with AQP4-IgG-Seropositive Neuromyelitis Optica Spectrum Disorder Receiving Open-Label Satralizumab. Frontiers in Neurology, 14, Article 1114667. https://doi.org/10.3389/fneur.2023.1114667
|