[1]
|
Cooper, I.D., Brookler, K.H. and Crofts, C.A.P. (2021) Rethinking Fragility Fractures in Type 2 Diabetes: The Link between Hyperinsulinaemia and Osteofragilitas. Biomedicines, 9, Article No. 1165. https://doi.org/10.3390/biomedicines9091165
|
[2]
|
Romero-Díaz, C., Duarte-Montero, D., Gutiérrez-Romero, S.A. and Mendivil, C.O. (2020) Diabetes and Bone Fragility. Diabetes Therapy, 12, 71-86. https://doi.org/10.1007/s13300-020-00964-1
|
[3]
|
Britton, M., Monahan, G.E., Murphy, C.G., Kearns, S.R., Devitt, A.T., Okwieka, A., et al. (2024) An Investigation of Composition, Morphology, Mechanical Properties, and Microdamage Accumulation of Human Type 2 Diabetic Bone. Bone, 187, Article ID: 117190. https://doi.org/10.1016/j.bone.2024.117190
|
[4]
|
Lekkala, S., Taylor, E.A., Hunt, H.B. and Donnelly, E. (2019) Effects of Diabetes on Bone Material Properties. Current Osteoporosis Reports, 17, 455-464. https://doi.org/10.1007/s11914-019-00538-6
|
[5]
|
Arakawa, S., Suzuki, R., Kurosaka, D., Ikeda, R., Hayashi, H., Kayama, T., et al. (2020) Mass Spectrometric Quantitation of AGEs and Enzymatic Crosslinks in Human Cancellous Bone. Scientific Reports, 10, Article ID: 18774. https://doi.org/10.1038/s41598-020-75923-8
|
[6]
|
Deeba, F., Younis, S., Qureshi, N., Mustafa, T., Iqbal, N. and Hussain, S. (2021) Effect of Diabetes Mellitus and Anti-Diabetic Drugs on Bone Health—A Review. Journal of Bioresource Management, 8, 131-148. https://doi.org/10.35691/jbm.1202.0187
|
[7]
|
Chen, Y., Yu, L., Wang, Y., Wei, Y., Xu, Y., He, T., et al. (2019) D-Ribose Contributes to the Glycation of Serum Protein. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 2285-2292. https://doi.org/10.1016/j.bbadis.2019.05.005
|
[8]
|
Wang, B. and Vashishth, D. (2023) Advanced Glycation and Glycoxidation End Products in Bone. Bone, 176, Article ID: 116880. https://doi.org/10.1016/j.bone.2023.116880
|
[9]
|
Cavati, G., Pirrotta, F., Merlotti, D., Ceccarelli, E., Calabrese, M., Gennari, L., et al. (2023) Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification. Antioxidants, 12, Article No. 928. https://doi.org/10.3390/antiox12040928
|
[10]
|
Gao, Q., Jiang, Y., Zhou, D., Li, G., Han, Y., Yang, J., et al. (2024) Advanced Glycation End Products Mediate Biomineralization Disorder in Diabetic Bone Disease. Cell Reports Medicine, 5, Article ID: 101694. https://doi.org/10.1016/j.xcrm.2024.101694
|
[11]
|
Semba, R.D., Beck, J., Sun, K., Egan, J.M., Carlson, O.D., Varadhan, R., et al. (2010) Relationship of a Dominant Advanced Glycation End Product, Serum Carboxymethyl-Lysine, and Abnormal Glucose Metabolism in Adults: The Baltimore Longitudinal Study of Aging. The Journal of nutrition, health and aging, 14, 507-513. https://doi.org/10.1007/s12603-010-0105-y
|
[12]
|
Mossad, O., Batut, B., Yilmaz, B., Dokalis, N., Mezö, C., Nent, E., et al. (2022) Gut Microbiota Drives Age-Related Oxidative Stress and Mitochondrial Damage in Microglia via the Metabolite N6-carboxymethyllysine. Nature Neuroscience, 25, 295-305. https://doi.org/10.1038/s41593-022-01027-3
|
[13]
|
Nerlich, A. and Schleicher, E.D. (1999) Nɛ-(carboxymethyl)lysine in Atherosclerotic Vascular Lesions as a Marker for Local Oxidative Stress. Atherosclerosis, 144, 41-47. https://doi.org/10.1016/s0021-9150(99)00038-6
|
[14]
|
Ni, J., Yuan, X., Gu, J., Yue, X., Gu, X., Nagaraj, R.H., et al. (2009) Plasma Protein Pentosidine and Carboxymethyllysine, Biomarkers for Age-Related Macular Degeneration. Molecular & Cellular Proteomics, 8, 1921-1933. https://doi.org/10.1074/mcp.m900127-mcp200
|
[15]
|
Boesten, D.M.P.H.J., Elie, A.G.I.M., Drittij-Reijnders, M., den Hartog, G.J.M. and Bast, A. (2014) Effect of Nɛ-Carboxymethyllysine on Oxidative Stress and the Glutathione System in Beta Cells. Toxicology Reports, 1, 973-980. https://doi.org/10.1016/j.toxrep.2014.06.003
|
[16]
|
Kondapi, K., Silambanan, S., Kumar, L. and Moorthy, S. (2021) Does N-Carboxymethyl Lysine Serve as a Prognostic Biomarker of Diabetic Nephropathy? Journal of Clinical and Diagnostic Research, 15, OC42-OC47. https://doi.org/10.7860/jcdr/2021/46489.14575
|
[17]
|
Aroni, A., Detopoulou, P., Presvelos, D., Kostopoulou, E., Ioannidis, A., Panoutsopoulos, G.I., et al. (2024) A One-Month Advanced Glycation End Products—Restricted Diet Improves CML, RAGE, Metabolic and Inflammatory Profile in Patients with End-Stage Renal Disease Undergoing Haemodialysis. International Journal of Molecular Sciences, 25, Article No. 8893. https://doi.org/10.3390/ijms25168893
|
[18]
|
Turki Jalil, A., Alameri, A.A., Iqbal Doewes, R., El-Sehrawy, A.A., Ahmad, I., Ramaiah, P., et al. (2022) Circulating and Dietary Advanced Glycation End Products and Obesity in an Adult Population: A Paradox of Their Detrimental Effects in Obesity. Frontiers in Endocrinology, 13, Article ID: 966590. https://doi.org/10.3389/fendo.2022.966590
|
[19]
|
Senatus, L., MacLean, M., Arivazhagan, L., Egana-Gorrono, L., Lopez-Diez, R., Manigrasso, M.B., et al. (2021) Inflammation Meets Metabolism Roles: For the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. Immunometabolism, 3, e210024. https://doi.org/10.20900/immunometab20210024
|
[20]
|
Gaens, K.H.J., Goossens, G.H., Niessen, P.M., van Greevenbroek, M.M., van der Kallen, C.J.H., Niessen, H.W., et al. (2014) Nε-(carboxymethyl)lysine-Receptor for Advanced Glycation End Product Axis Is a Key Modulator of Obesity-Induced Dysregulation of Adipokine Expression and Insulin Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 1199-1208. https://doi.org/10.1161/atvbaha.113.302281
|
[21]
|
Dong, H., Zhang, Y., Huang, Y. and Deng, H. (2022) Pathophysiology of RAGE in Inflammatory Diseases. Frontiers in Immunology, 13, Article ID: 931473. https://doi.org/10.3389/fimmu.2022.931473
|
[22]
|
Taguchi, K. and Fukami, K. (2023) RAGE Signaling Regulates the Progression of Diabetic Complications. Frontiers in Pharmacology, 14, Article ID: 1128872. https://doi.org/10.3389/fphar.2023.1128872
|
[23]
|
Adeshara, K.A., Bangar, N., Diwan, A.G. and Tupe, R.S. (2022) Plasma Glycation Adducts and Various RAGE Isoforms Are Intricately Associated with Oxidative Stress and Inflammatory Markers in Type 2 Diabetes Patients with Vascular Complications. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 16, Article ID: 102441. https://doi.org/10.1016/j.dsx.2022.102441
|
[24]
|
Dhaliwal, R., Ewing, S.K., Vashishth, D., Semba, R.D. and Schwartz, A.V. (2020) Greater Carboxy-Methyl-Lysine Is Associated with Increased Fracture Risk in Type 2 Diabetes. Journal of Bone and Mineral Research, 37, 265-272. https://doi.org/10.1002/jbmr.4466
|
[25]
|
Sroga, G.E. and Vashishth, D. (2024) In Vivo Glycation—Interplay between Oxidant and Carbonyl Stress in Bone. JBMR Plus, 8, ziae110. https://doi.org/10.1093/jbmrpl/ziae110
|
[26]
|
Araújo, R., Páscoa, R.N.M.J., Bernardino, R. and Gomes, P.S. (2025) Impact of High Glucose on Bone Collagenous Matrix Composition, Structure, and Organization: An Integrative Analysis Using an ex Vivo Model. Cells, 14, Article No. 130. https://doi.org/10.3390/cells14020130
|
[27]
|
Sihota, P., Yadav, R.N., Dhaliwal, R., Bose, J.C., Dhiman, V., Neradi, D., et al. (2021) Investigation of Mechanical, Material, and Compositional Determinants of Human Trabecular Bone Quality in Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 106, e2271-e2289. https://doi.org/10.1210/clinem/dgab027
|
[28]
|
Poundarik, A.A., Wu, P., Evis, Z., Sroga, G.E., Ural, A., Rubin, M., et al. (2015) A Direct Role of Collagen Glycation in Bone Fracture. Journal of the Mechanical Behavior of Biomedical Materials, 52, 120-130. https://doi.org/10.1016/j.jmbbm.2015.08.012
|
[29]
|
Karim, L., Tang, S.Y., Sroga, G.E. and Vashishth, D. (2013) Differences in Non-Enzymatic Glycation and Collagen Cross-Links between Human Cortical and Cancellous Bone. Osteoporosis International, 24, 2441-2447. https://doi.org/10.1007/s00198-013-2319-4
|
[30]
|
Hunt, H.B., Torres, A.M., Palomino, P.M., Marty, E., Saiyed, R., Cohn, M., et al. (2019) Altered Tissue Composition, Microarchitecture, and Mechanical Performance in Cancellous Bone from Men with Type 2 Diabetes Mellitus. Journal of Bone and Mineral Research, 34, 1191-1206. https://doi.org/10.1002/jbmr.3711
|
[31]
|
Vaidya, R., Rezaee, T., Edwards, T., Bender, R., Vickneswaran, A., Chalivendra, V., et al. (2022) Accumulation of Fluorescent Advanced Glycation End Products and Carboxymethyl-Lysine in Human Cortical and Trabecular Bone. Bone Reports, 17, Article ID: 101634. https://doi.org/10.1016/j.bonr.2022.101634
|
[32]
|
Yan, S.F., Ramasamy, R. and Schmidt, A.M. (2009) Receptor for AGE (RAGE) and Its Ligands—Cast into Leading Roles in Diabetes and the Inflammatory Response. Journal of Molecular Medicine, 87, 235-247. https://doi.org/10.1007/s00109-009-0439-2
|
[33]
|
Wu, X., Shi, X., Chen, X. and Yin, Z. (2023) Advanced Glycation End Products Regulate the Receptor of Ages Epigenetically. Frontiers in Cell and Developmental Biology, 11, Article ID: 1062229. https://doi.org/10.3389/fcell.2023.1062229
|
[34]
|
Ding, K., Wang, Z., Hamrick, M.W., Deng, Z., Zhou, L., Kang, B., et al. (2006) Disordered Osteoclast Formation in Rage-Deficient Mouse Establishes an Essential Role for RAGE in Diabetes Related Bone Loss. Biochemical and Biophysical Research Communications, 340, 1091-1097. https://doi.org/10.1016/j.bbrc.2005.12.107
|
[35]
|
Hamada, Y., Kitazawa, S., Kitazawa, R., Kono, K., Goto, S., Komaba, H., et al. (2010) The Effects of the Receptor for Advanced Glycation End Products (RAGE) on Bone Metabolism under Physiological and Diabetic Conditions. Endocrine, 38, 369-376. https://doi.org/10.1007/s12020-010-9390-9
|
[36]
|
Lalla, E., Lamster, I.B., Feit, M., Huang, L., Spessot, A., Qu, W., et al. (2000) Blockade of RAGE Suppresses Periodontitis-Associated Bone Loss in Diabetic Mice. Journal of Clinical Investigation, 105, 1117-1124. https://doi.org/10.1172/jci8942
|
[37]
|
Teissier, T., Temkin, V., Pollak, R.D. and Cox, L.S. (2022) Crosstalk between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility during Chronological Age and in Diabetes. Frontiers in Physiology, 13, Article ID: 812157. https://doi.org/10.3389/fphys.2022.812157
|
[38]
|
Zhou, J., Liu, S., Bi, S., Kong, W., Qian, R., Xie, X., et al. (2023) The RAGE Signaling in Osteoporosis. Biomedicine & Pharmacotherapy, 165, Article ID: 115044. https://doi.org/10.1016/j.biopha.2023.115044
|
[39]
|
Shi, P., Gong, H., Lyu, L., Liu, S., Jia, S., Li, C., et al. (2024) Low Bone Turnover Is Associated with Advanced Glycation End‐Products, Oxidative Stress, and Inflammation Induced by Type 2 Diabetes Mellitus. The FASEB Journal, 38, e23871. https://doi.org/10.1096/fj.202400790r
|
[40]
|
Gong, Y., Liu, Z., Zhang, Y., Zhang, J., Zheng, Y. and Wu, Z. (2023) AGER1 Deficiency-Triggered Ferroptosis Drives Fibrosis Progression in Nonalcoholic Steatohepatitis with Type 2 Diabetes Mellitus. Cell Death Discovery, 9, Article No. 178. https://doi.org/10.1038/s41420-023-01477-z
|
[41]
|
Zhou, M., Zhang, Y., Shi, L., Li, L., Zhang, D., Gong, Z., et al. (2024) Activation and Modulation of the Ages-Rage Axis: Implications for Inflammatory Pathologies and Therapeutic Interventions—A Review. Pharmacological Research, 206, Article ID: 107282. https://doi.org/10.1016/j.phrs.2024.107282
|
[42]
|
Bellido, T. (2013) Osteocyte-Driven Bone Remodeling. Calcified Tissue International, 94, 25-34. https://doi.org/10.1007/s00223-013-9774-y
|
[43]
|
Bonewald, L.F. (2010) The Amazing Osteocyte. Journal of Bone and Mineral Research, 26, 229-238. https://doi.org/10.1002/jbmr.320
|
[44]
|
Chen, H., Senda, T. and Kubo, K. (2015) The Osteocyte Plays Multiple Roles in Bone Remodeling and Mineral Homeostasis. Medical Molecular Morphology, 48, 61-68. https://doi.org/10.1007/s00795-015-0099-y
|
[45]
|
Bonewald, L.F. (2006) Mechanosensation and Transduction in Osteocytes. BoneKEy Osteovision, 3, 7-15.
|
[46]
|
Xiong, J., Piemontese, M., Onal, M., Campbell, J., Goellner, J.J., Dusevich, V., et al. (2015) Osteocytes, Not Osteoblasts or Lining Cells, Are the Main Source of the RANKL Required for Osteoclast Formation in Remodeling Bone. PLOS ONE, 10, e0138189. https://doi.org/10.1371/journal.pone.0138189
|
[47]
|
Nakashima, T., Hayashi, M., Fukunaga, T., Kurata, K., Oh-hora, M., Feng, J.Q., et al. (2011) Evidence for Osteocyte Regulation of Bone Homeostasis through RANKL Expression. Nature Medicine, 17, 1231-1234. https://doi.org/10.1038/nm.2452
|
[48]
|
Yuan, J., Gao, Y., Liu, D., Pang Tai, A.C., Zhou, H., Papadimitriou, J.M., et al. (2023) Pink1-Mediated Mitophagy Contributes to Glucocorticoid-Induced Cathepsin K Production in Osteocytes. Journal of Orthopaedic Translation, 38, 229-240. https://doi.org/10.1016/j.jot.2022.11.003
|
[49]
|
Lotinun, S., Ishihara, Y., Nagano, K., Kiviranta, R., Carpentier, V.T., Neff, L., et al. (2019) Cathepsin K-Deficient Osteocytes Prevent Lactation-Induced Bone Loss and Parathyroid Hormone Suppression. Journal of Clinical Investigation, 129, 3058-3071. https://doi.org/10.1172/jci122936
|
[50]
|
Weivoda, M.M., Youssef, S.J. and Oursler, M.J. (2017) Sclerostin Expression and Functions Beyond the Osteocyte. Bone, 96, 45-50. https://doi.org/10.1016/j.bone.2016.11.024
|
[51]
|
Poole, K.E.S., Van Bezooijen, R.L., Loveridge, N., Hamersma, H., Papapoulos, S.E., Löwik, C.W., et al. (2005) Sclerostin Is a Delayed Secreted Product of Osteocytes That Inhibits Bone Formation. The FASEB Journal, 19, 1842-1844. https://doi.org/10.1096/fj.05-4221fje
|
[52]
|
Piccoli, A., Cannata, F., Strollo, R., Pedone, C., Leanza, G., Russo, F., et al. (2020) Sclerostin Regulation, Microarchitecture, and Advanced Glycation End-Products in the Bone of Elderly Women with Type 2 Diabetes. Journal of Bone and Mineral Research, 35, 2415-2422. https://doi.org/10.1002/jbmr.4153
|
[53]
|
Gaudio, A., Privitera, F., Battaglia, K., Torrisi, V., Sidoti, M.H., Pulvirenti, I., et al. (2012) Sclerostin Levels Associated with Inhibition of the Wnt/β-Catenin Signaling and Reduced Bone Turnover in Type 2 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 97, 3744-3750. https://doi.org/10.1210/jc.2012-1901
|
[54]
|
Tanaka, K., Yamaguchi, T., Kanazawa, I. and Sugimoto, T. (2015) Effects of High Glucose and Advanced Glycation End Products on the Expressions of Sclerostin and RANKL as Well as Apoptosis in Osteocyte-Like MLO-Y4-A2 Cells. Biochemical and Biophysical Research Communications, 461, 193-199. https://doi.org/10.1016/j.bbrc.2015.02.091
|
[55]
|
García-Martín, A., Rozas-Moreno, P., Reyes-García, R., Morales-Santana, S., García-Fontana, B., García-Salcedo, J.A., et al. (2012) Circulating Levels of Sclerostin Are Increased in Patients with Type 2 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 97, 234-241. https://doi.org/10.1210/jc.2011-2186
|
[56]
|
Yu, O.H.Y., Richards, B., Berger, C., Josse, R.G., Leslie, W.D., Goltzman, D., et al. (2017) The Association between Sclerostin and Incident Type 2 Diabetes Risk: A Cohort Study. Clinical Endocrinology, 86, 520-525. https://doi.org/10.1111/cen.13300
|
[57]
|
Schaffler, M.B. and Kennedy, O.D. (2012) Osteocyte Signaling in Bone. Current Osteoporosis Reports, 10, 118-125. https://doi.org/10.1007/s11914-012-0105-4
|
[58]
|
Robling, A.G. and Bonewald, L.F. (2020) The Osteocyte: New Insights. Annual Review of Physiology, 82, 485-506. https://doi.org/10.1146/annurev-physiol-021119-034332
|
[59]
|
Mulcahy, L.E., Taylor, D., Lee, T.C. and Duffy, G.P. (2011) RANKL and OPG Activity Is Regulated by Injury Size in Networks of Osteocyte-Like Cells. Bone, 48, 182-188. https://doi.org/10.1016/j.bone.2010.09.014
|
[60]
|
Yang, X., Liu, C., Wang, Z., Ding, D., Shi, J., Wu, X., et al. (2021) Effects of Advanced Glycation End Products on Osteocytes Mechanosensitivity. Biochemical and Biophysical Research Communications, 568, 151-157. https://doi.org/10.1016/j.bbrc.2021.06.074
|
[61]
|
Sakamoto, E., Kido, J., Takagi, R., Inagaki, Y., Naruishi, K., Nagata, T., et al. (2019) Advanced Glycation End-Product 2 and Porphyromonas gingivalis Lipopolysaccharide Increase Sclerostin Expression in Mouse Osteocyte-Like Cells. Bone, 122, 22-30. https://doi.org/10.1016/j.bone.2019.02.001
|
[62]
|
Notsu, M., Kanazawa, I., Takeno, A., Yokomoto-Umakoshi, M., Tanaka, K., Yamaguchi, T., et al. (2017) Advanced Glycation End Product 3 (AGE3) Increases Apoptosis and the Expression of Sclerostin by Stimulating TGF-β Expression and Secretion in Osteocyte-Like MLO-Y4-A2 Cells. Calcified Tissue International, 100, 402-411. https://doi.org/10.1007/s00223-017-0243-x
|
[63]
|
Chen, H., Liu, W., Wu, X., Gou, M., Shen, J. and Wang, H. (2017) Advanced Glycation End Products Induced IL-6 and VEGF-A Production and Apoptosis in Osteocyte-Like MLO-Y4 Cells by Activating RAGE and ERK1/2, P38 and STAT3 Signalling Pathways. International Immunopharmacology, 52, 143-149. https://doi.org/10.1016/j.intimp.2017.09.004
|
[64]
|
Daniele, G., Guardado Mendoza, R., Winnier, D., Fiorentino, T.V., Pengou, Z., Cornell, J., et al. (2013) The Inflammatory Status Score Including IL-6, TNF-α, Osteopontin, Fractalkine, MCP-1 and Adiponectin Underlies Whole-Body Insulin Resistance and Hyperglycemia in Type 2 Diabetes Mellitus. Acta Diabetologica, 51, 123-131. https://doi.org/10.1007/s00592-013-0543-1
|
[65]
|
Rachoń, D., Myśliwska, J., Suchecka‐Rachoń, K., Semetkowska‐Jurkiewicz, B., Zorena, K. and Łysiak‐Szydłowska, W. (2003) Serum Interleukin‐6 Levels and Bone Mineral Density at the Femoral Neck in Post‐Menopausal Women with Type 1 Diabetes. Diabetic Medicine, 20, 475-480. https://doi.org/10.1046/j.1464-5491.2003.00953.x
|
[66]
|
Marahleh, A., Kitaura, H., Ohori, F., Kishikawa, A., Ogawa, S., Shen, W., et al. (2019) TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Frontiers in Immunology, 10, Article No. 2925. https://doi.org/10.3389/fimmu.2019.02925
|
[67]
|
Takagi, M., Kasayama, S., Yamamoto, T., Motomura, T., Hashimoto, K., Yamamoto, H., et al. (1997) Advanced Glycation Endproducts Stimulate Interleukin-6 Production by Human Bone-Derived Cells. Journal of Bone and Mineral Research, 12, 439-446. https://doi.org/10.1359/jbmr.1997.12.3.439
|
[68]
|
Jara, N., et al. (2012) Dietary Intake Increases Serum Levels of Carboxymethyl-lysine (CML) in Diabetic Patients. Nutrición Hospitalaria, 27, 1272-1278. https://doi.org/10.3305/nh.2012.27.4.5861
|
[69]
|
Pacicca, D.M., Brown, T., Watkins, D., Kover, K., Yan, Y., Prideaux, M., et al. (2019) Elevated Glucose Acts Directly on Osteocytes to Increase Sclerostin Expression in Diabetes. Scientific Reports, 9, Article No. 17353. https://doi.org/10.1038/s41598-019-52224-3
|
[70]
|
Sisay, M., Abdela, J. and Molla, Y. (2016) The Molecular Triad System Involving RANK/RANKL/OPG as Therapeutic Targets for Metabolic Bone Diseases. Journal of Drug Delivery and Therapeutics, 6, 31-39. https://doi.org/10.22270/jddt.v6i6.1341
|
[71]
|
Diaz, M.C., et al. (2012) Gene Study (OPG, RANKL, Runx2 and AGE Receptors) in Human Osteoblast Cultures from Patients with Type 2 Diabetes Mellitus and Hip Fracture. Influence of Levels of Glucose and AGEs. Revista de Osteoporosis Y Metabolismo Mineral, 4, 7-14.
|
[72]
|
Kilhovd, B.K., Berg, T.J., Birkeland, K.I., Thorsby, P. and Hanssen, K.F. (1999) Serum Levels of Advanced Glycation End Products Are Increased in Patients with Type 2 Diabetes and Coronary Heart Disease. Diabetes Care, 22, 1543-1548. https://doi.org/10.2337/diacare.22.9.1543
|
[73]
|
Kilhovd, B.K., Giardino, I., Torjesen, P.A., Birkeland, K.I., Berg, T.J., Thornalley, P.J., et al. (2003) Increased Serum Levels of the Specific Age-Compound Methylglyoxal-Derived Hydroimidazolone in Patients with Type 2 Diabetes. Metabolism, 52, 163-167. https://doi.org/10.1053/meta.2003.50035
|
[74]
|
Kilhovd, B.K., Juutilainen, A., Lehto, S., Rönnemaa, T., Torjesen, P.A., Hanssen, K.F., et al. (2007) Increased Serum Levels of Advanced Glycation Endproducts Predict Total, Cardiovascular and Coronary Mortality in Women with Type 2 Diabetes: A Population-Based 18 Year Follow-Up Study. Diabetologia, 50, 1409-1417. https://doi.org/10.1007/s00125-007-0687-z
|
[75]
|
Feng, L., et al. (2013) N-Epsilon-(carboxymethyl)lysine Is Unable to Induce Endothelial Dysfunction but Is Able to Attenuate AGEs-Induced Endothelium Damage in Human Umbilical Vein Endothelial Cells. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 68, 251-256.
|
[76]
|
Ramya, R., Coral, K. and Bharathidevi, S.R. (2021) RAGE Silencing Deters CML-AGE Induced Inflammation and TLR4 Expression in Endothelial Cells. Experimental Eye Research, 206, Article ID: 108519. https://doi.org/10.1016/j.exer.2021.108519
|
[77]
|
Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., et al. (1999) Nε-(carboxymethyl)lysine Adducts of Proteins Are Ligands for Receptor for Advanced Glycation End Products That Activate Cell Signaling Pathways and Modulate Gene Expression. Journal of Biological Chemistry, 274, 31740-31749. https://doi.org/10.1074/jbc.274.44.31740
|
[78]
|
Li, G., Xu, J. and Li, Z. (2012) Receptor for Advanced Glycation End Products Inhibits Proliferation in Osteoblast through Suppression of Wnt, PI3K and ERK Signaling. Biochemical and Biophysical Research Communications, 423, 684-689. https://doi.org/10.1016/j.bbrc.2012.06.015
|
[79]
|
Cortizo, A.M., Lettieri, M.G., Barrio, D.A., Mercer, N., Etcheverry, S.B. and McCarthy, A.D. (2003) Advanced Glycation End-Products (AGEs) Induce Concerted Changes in the Osteoblastic Expression of Their Receptor RAGE and in the Activation of Extracellular Signal-Regulated Kinases (ERK). Molecular and Cellular Biochemistry, 250, 1-10. https://doi.org/10.1023/a:1024934008982
|
[80]
|
Hammes, H.P., et al. (1999) N(epsilon)(carboxymethyl)lysin and the AGE Receptor RAGE Colocalize in Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 40, 1855-1859.
|
[81]
|
Howes, K.A., Liu, Y., Dunaief, J.L., Milam, A., Frederick, J.M., Marks, A., et al. (2004) Receptor for Advanced Glycation End Products and Age-Related Macular Degeneration. Investigative Opthalmology & Visual Science, 45, 3713-3720. https://doi.org/10.1167/iovs.04-0404
|
[82]
|
Naudí, A., Jové, M., Cacabelos, D., Ayala, V., Cabre, R., Caro, P., et al. (2012) Formation of S-(carboxymethyl)-Cysteine in Rat Liver Mitochondrial Proteins: Effects of Caloric and Methionine Restriction. Amino Acids, 44, 361-371. https://doi.org/10.1007/s00726-012-1339-2
|
[83]
|
Eckhardt, B.A., Rowsey, J.L., Thicke, B.S., Fraser, D.G., O’Grady, K.L., Bondar, O.P., et al. (2020) Accelerated Osteocyte Senescence and Skeletal Fragility in Mice with Type 2 Diabetes. JCI Insight, 5, e135236. https://doi.org/10.1172/jci.insight.135236
|