[1]
|
WHO (2023) World Malaria Report. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
|
[2]
|
Ministère de la Santé (2023) Annuaire Statistique 2022. https://www.insd.bf/sites/default/files/2023-12/Annuaire_statistique_national_2022.pdf
|
[3]
|
WHO (2023) Guidelines for Malaria. https://reliefweb.int/report/world/who-guidelines-malaria-16-october-2023
|
[4]
|
Gansane, A., Nébié, I., Soulama, I., Tiono, A., Diarra, A., Konaté, A., et al. (2009) Change of Antimalarial First-Line Treatment in Burkina Faso in 2005. Bulletin de la Societe de Pathologie Exotique, 102, 1-5.
|
[5]
|
Bassat, Q., Mulenga, M., Tinto, H., Piola, P., Borrmann, S., Menéndez, C., et al. (2009) Dihydroartemisinin-piperaquine and Artemether-Lumefantrine for Treating Uncomplicated Malaria in African Children: A Randomised, Non-Inferiority Trial. PLOS ONE, 4, e7871. https://doi.org/10.1371/journal.pone.0007871
|
[6]
|
Zongo, I., Somé, F.A., Somda, S.A.M., Parikh, S., Rouamba, N., Rosenthal, P.J., et al. (2014) Efficacy and Day 7 Plasma Piperaquine Concentrations in African Children Treated for Uncomplicated Malaria with Dihydroartemisinin-Piperaquine. PLOS ONE, 9, e103200. https://doi.org/10.1371/journal.pone.0103200
|
[7]
|
Zongo, I., Milligan, P., Compaore, Y.D., Some, A.F., Greenwood, B., Tarning, J., et al. (2015) Randomized Noninferiority Trial of Dihydroartemisinin-Piperaquine Compared with Sulfadoxine-Pyrimethamine Plus Amodiaquine for Seasonal Malaria Chemoprevention in Burkina Faso. Antimicrobial Agents and Chemotherapy, 59, 4387-4396. https://doi.org/10.1128/aac.04923-14
|
[8]
|
Parobek, C.M., Parr, J.B., Brazeau, N.F., Lon, C., Chaorattanakawee, S., Gosi, P., et al. (2017) Partner-Drug Resistance and Population Substructuring of Artemisinin-Resistant Plasmodium Falciparum in Cambodia. Genome Biology and Evolution, 9, 1673-1686. https://doi.org/10.1093/gbe/evx126
|
[9]
|
Ashley, E.A., Dhorda, M., Fairhurst, R.M., Amaratunga, C., Lim, P., Suon, S., et al. (2014) Spread of Artemisinin Resistance in Plasmodium falciparum Malaria. New England Journal of Medicine, 371, 411-423. https://doi.org/10.1056/nejmoa1314981
|
[10]
|
Gansané, A., Moriarty, L.F., Ménard, D., Yerbanga, I., Ouedraogo, E., Sondo, P., et al. (2021) Anti-Malarial Efficacy and Resistance Monitoring of Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine Shows Inadequate Efficacy in Children in Burkina Faso, 2017-2018. Malaria Journal, 20, Article No. 48. https://doi.org/10.1186/s12936-021-03585-6
|
[11]
|
Dhorda, M., Amaratunga, C. and Dondorp, A.M. (2021) Artemisinin and Multidrug-Resistant Plasmodium Falciparum—A Threat for Malaria Control and Elimination. Current Opinion in Infectious Diseases, 34, 432-439. https://doi.org/10.1097/qco.0000000000000766
|
[12]
|
Uwimana, A., Legrand, E., Stokes, B.H., Ndikumana, J.M., Warsame, M., Umulisa, N., et al. (2020) Emergence and Clonal Expansion of in Vitro Artemisinin-Resistant Plasmodium Falciparum Kelch13 R561H Mutant Parasites in Rwanda. Nature Medicine, 26, 1602-1608. https://doi.org/10.1038/s41591-020-1005-2
|
[13]
|
Tumwebaze, P.K., Conrad, M.D., Okitwi, M., Orena, S., Byaruhanga, O., Katairo, T., et al. (2022) Decreased Susceptibility of Plasmodium Falciparum to Both Dihydroartemisinin and Lumefantrine in Northern Uganda. Nature Communications, 13, Article No. 6353. https://doi.org/10.1038/s41467-022-33873-x
|
[14]
|
Fola, A.A., Feleke, S.M., Mohammed, H., Brhane, B.G., Hennelly, C.M., Assefa, A., et al. (2023) Plasmodium Falciparum Resistant to Artemisinin and Diagnostics Have Emerged in Ethiopia. Nature Microbiology, 8, 1911-1919. https://doi.org/10.1038/s41564-023-01461-4
|
[15]
|
WHO (2021) Global Technical Strategy for Malaria 2016-2030. https://apps.who.int/iris/rest/bitstreams/1357541/retrieve
|
[16]
|
Bekono, B.D., Ntie-Kang, F., Onguéné, P.A., Lifongo, L.L., Sippl, W., Fester, K., et al. (2020) The Potential of Anti-Malarial Compounds Derived from African Medicinal Plants: A Review of Pharmacological Evaluations from 2013 to 2019. Malaria Journal, 19, Article No. 183. https://doi.org/10.1186/s12936-020-03231-7
|
[17]
|
Amoa Onguéné, P., Ntie-Kang, F., Lifongo, L.L., Ndom, J.C., Sippl, W. and Mbaze, L.M. (2013) The Potential of Anti-Malarial Compounds Derived from African Medicinal Plants. Part I: A Pharmacological Evaluation of Alkaloids and Terpenoids. Malaria Journal, 12, Article No. 449. https://doi.org/10.1186/1475-2875-12-449
|
[18]
|
Agbodeka, K., Gbekley, H.E., Karou, S.D., Anani, K. and Simplice, J. (2017) Activité antiplas-modiale des plantes médicinales d’Afrique de l’Ouest: Revue de la littérature. International Journal of Innovation and Scientific Research, 28, 121-129.
|
[19]
|
WHO (2013) WHO Traditional Medicine Strategy: 2014-2023. https://www.who.int/publications/i/item/9789241506096
|
[20]
|
Abdullahi, A. (2011) Trends and Challenges of Traditional Medicine in Africa. African Journal of Traditional, Complementary and Alternative Medicines, 8, 115-123. https://doi.org/10.4314/ajtcam.v8i5ss.5
|
[21]
|
Aina, O., Gautam, L., Simkhada, P. and Hall, S. (2020) Prevalence, Determinants and Knowledge about Herbal Medicine and Non-Hospital Utilisation in Southwest Nigeria: A Cross-Sectional Study. BMJ Open, 10, e040769. https://doi.org/10.1136/bmjopen-2020-040769
|
[22]
|
Gyasi, R., Buor, D., Adu-Gyamfi, S., Adjei, P.O. and Amoah, P.A. (2017) Sociocultural Hegemony, Gendered Identity, and Use of Traditional and Complementary Medicine in Ghana. Women & Health, 58, 598-615. https://doi.org/10.1080/03630242.2017.1321608
|
[23]
|
Ouoba, K., Lehmann, H., Zongo, A., Pabst, J. and Semdé, R. (2022) Prevalence of Traditional Medicines Use and Adverse Events: A Population-Based Cross-Sectional Survey in Burkina Faso. European Journal of Integrative Medicine, 51, Article 102129. https://doi.org/10.1016/j.eujim.2022.102129
|
[24]
|
Kabre, Z., Yerbanga, R.S., Fofana, A., Meda, R.N., Some, A.F., Haro, A., et al. (2024) Traditional Healer’s Medicinal Practice Survey and Clinical Evidence Assessment of “YIKI”: An Antimalarial Phytomedicine Recipe from Bobo-Dioulasso, Burkina Faso. Pharmacology & Pharmacy, 15, 248-267. https://doi.org/10.4236/pp.2024.157015
|
[25]
|
INSD (2022) Cinquième Recensement Général de la Population et de L’Habitation: Monographie de la Region des Hauts Bassins. https://www.insd.bf/sites/default/files/2023-02/MONOGRAPHIE%20DES%20HAUTS-BASSINS%205E%20RGPH.pdf
|
[26]
|
Segda, A., Meda, R.N., Bangou, M.J., Koama, B.K., Ouoba, H.Y., Kagambega, W., et al. (2023) Ethnobotany of Medicinal Plants for Diabetes and Antioxidant Activity of Selected Phyllanthus amarus Schum and Thonn., Chrysanthellum americanum (L.) Vatke. and Striga hermonthica (Delile) Benth. of Burkina Faso. Natural Products Chemistry and Research, 11, 1-7.
|
[27]
|
Tardío, J. and Pardo-de-Santayana, M. (2008) Cultural Importance Indices: A Comparative Analysis Based on the Useful Wild Plants of Southern Cantabria (Northern Spain)1. Economic Botany, 62, 24-39. https://doi.org/10.1007/s12231-007-9004-5
|
[28]
|
Kam, S.E., Meda, R.N., Kabre, Z. and Koama, B.K. (2020) Ethnobotanical Survey of Plants Used by Traditional Healers for Treatment of Urinary Infections in Hauts-Bassins Areas of Burkina Faso. International Journal of Scientific Research, 9, 1113-1118.
|
[29]
|
Zongo, E., Meda, R.N.-T., Kam, S.E., Koama, B.K., Ouoba, H.Y. and Ouedraogo, G.A. (2021) Ethnobotanical Study of Medicinal Plants Used for Viral Hepatitis Treatment in Hauts-Bassins Areas of Burkina Faso. World Journal Pharmacy and Pharmaceutical Science, 10, 76-92.
|
[30]
|
Masango, C.A. (2019) Indigenous Knowledge Codification of African Traditional Medicine: Inhibited by Status Quo Based on Secrecy? Information Development, 36, 327-338. https://doi.org/10.1177/0266666919853007
|
[31]
|
Adekannbi, J., Olatokun, W.M. and Ajiferuke, I. (2014) Preserving Traditional Medical Knowledge through Modes of Transmission: A Post-Positivist Enquiry. SA Journal of Information Management, 16, a598. https://doi.org/10.4102/sajim.v16i1.598
|
[32]
|
OOAS (2016) Manuel de Formation des Tradipraticiens. https://www.wahooas.org/web-ooas/sites/default/files/publications/2192/manuel-de-formation-des-tradipraticiensok.pdf
|
[33]
|
Bonkian, L., Yerbanga, R., Coulibaly, M.T., Sangaré, I., Ouédraogo, T., Traore, O., et al. (2017) Plants against Malaria and Mosquitoes in Sahel region of Burkina Faso: An Ethno-Botanical Survey. International Journal of Herbal Medicine, 5, 82-87.
|
[34]
|
Diarra, N., Klooster, C.v., Togola, A., Diallo, D., Willcox, M. and de Jong, J. (2015) Ethnobotanical Study of Plants Used against Malaria in Sélingué Subdistrict, Mali. Journal of Ethnopharmacology, 166, 352-360. https://doi.org/10.1016/j.jep.2015.02.054
|
[35]
|
Sylla, Y., Silue, D.K., Ouattara, K. and Kone, M.W. (2018) Etude ethnobotanique des plantes utilisées contre le paludisme par les tradithérapeutes et herboristes dans le district d’Abidjan (Côte d’Ivoire). International Journal of Biological and Chemical Sciences, 12, 1380-1400. https://doi.org/10.4314/ijbcs.v12i3.25
|
[36]
|
Salam, U., Ullah, S., Tang, Z., Elateeq, A.A., Khan, Y., Khan, J., et al. (2023) Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life, 13, Article 706. https://doi.org/10.3390/life13030706
|
[37]
|
Pant, P., Pandey, S. and Dall’Acqua, S. (2021) The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry & Biodiversity, 18, e2100345. https://doi.org/10.1002/cbdv.202100345
|
[38]
|
Yang, L., Wen, K., Ruan, X., Zhao, Y., Wei, F. and Wang, Q. (2018) Response of Plant Secondary Metabolites to Environmental Factors. Molecules, 23, Article 762. https://doi.org/10.3390/molecules23040762
|
[39]
|
Akula, R. and Ravishankar, G.A. (2011) Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signaling & Behavior, 6, 1720-1731. https://doi.org/10.4161/psb.6.11.17613
|
[40]
|
Prinsloo, G. and Nogemane, N. (2018) The Effects of Season and Water Availability on Chemical Composition, Secondary Metabolites and Biological Activity in Plants. Phytochemistry Reviews, 17, 889-902. https://doi.org/10.1007/s11101-018-9567-z
|
[41]
|
Haidara, M., Bourdy, G., De Tommasi, N., Braca, A., Traore, K., Giani, S., et al. (2016) Medicinal Plants Used in Mali for the Treatment of Malaria and Liver Diseases. Natural Product Communications, 11. https://doi.org/10.1177/1934578x1601100309
|
[42]
|
Tibiri, A., Sawadogo, W.R., Dao, A., Elkington, B.G., Ouedraogo, N. and Guissou, I.P. (2015) Indigenous Knowledge of Medicinal Plants among Dozo Hunters: An Ethnobotanical Survey in Niamberla Village, Burkina Faso. The Journal of Alternative and Complementary Medicine, 21, 294-303. https://doi.org/10.1089/acm.2014.0016
|
[43]
|
Nadembega, P., Boussim, J.I., Nikiema, J.B., Poli, F. and Antognoni, F. (2011) Medicinal Plants in Baskoure, Kourittenga Province, Burkina Faso: An Ethnobotanical Study. Journal of Ethnopharmacology, 133, 378-395. https://doi.org/10.1016/j.jep.2010.10.010
|
[44]
|
Lamien-Meda, A., Kiendrebeogo, M., Compaoré, M., Meda, R.N.T., Bacher, M., Koenig, K., et al. (2015) Quality Assessment and Antiplasmodial Activity of West African Cochlospermum Species. Phytochemistry, 119, 51-61. https://doi.org/10.1016/j.phytochem.2015.09.006
|
[45]
|
Gansané, A., Sanon, S., Ouattara, L.P., Traoré, A., Hutter, S., Ollivier, E., et al. (2009) Antiplasmodial Activity and Toxicity of Crude Extracts from Alternatives Parts of Plants Widely Used for the Treatment of Malaria in Burkina Faso: Contribution for Their Preservation. Parasitology Research, 106, 335-340. https://doi.org/10.1007/s00436-009-1663-y
|
[46]
|
Nascimento, L.E.S., Arriola, N.D.A., da Silva, L.A.L., Faqueti, L.G., Sandjo, L.P., de Araújo, C.E.S., et al. (2020) Phytochemical Profile of Different Anatomical Parts of Jambu (Acmella oleracea (L.) R.K. Jansen): A Comparison between Hydroponic and Conventional Cultivation Using PCA and Cluster Analysis. Food Chemistry, 332, Article 127393. https://doi.org/10.1016/j.foodchem.2020.127393
|
[47]
|
Jin, D., Dai, K., Xie, Z. and Chen, J. (2020) Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Scientific Reports, 10, Article No. 3309. https://doi.org/10.1038/s41598-020-60172-6
|
[48]
|
Farag, M.A., Baky, M.H., Morgan, I., Khalifa, M.R., Rennert, R., Mohamed, O.G., et al. (2023) Comparison of Balanites aegyptiaca Parts: Metabolome Providing Insights into Plant Health Benefits and Valorization Purposes as Analyzed Using Multiplex GC-MS, LC-MS, NMR-Based Metabolomics, and Molecular Networking. RSC Advances, 13, 21471-21493. https://doi.org/10.1039/d3ra03141a
|
[49]
|
Zizka, A., Thiombiano, A., Dressler, S., Nacoulma, B.M., Ouédraogo, A., Ouédraogo, I., et al. (2015) Traditional Plant Use in Burkina Faso (West Africa): A National-Scale Analysis with Focus on Traditional Medicine. Journal of Ethnobiology and Ethnomedicine, 11, Article No. 9. https://doi.org/10.1186/1746-4269-11-9
|
[50]
|
Fasola, T.R. and Iyamah P.C. (2014) Comparing the Phytochemical Composition of Some Plant Parts Commonly Used in the Treatment of Malaria. International Journal of Pure and Applied Sciences and Technology, 21, 1-11.
|
[51]
|
Abera, B. (2014) Medicinal Plants Used in Traditional Medicine by Oromo People, Ghimbi District, Southwest Ethiopia. Journal of Ethnobiology and Ethnomedicine, 10, Article No. 40. https://doi.org/10.1186/1746-4269-10-40
|
[52]
|
Nn, A. (2015) A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Medicinal and Aromatic Plants, 4, 3-8.
|
[53]
|
Mwamatope, B., Tembo, D., Kampira, E., Maliwichi-Nyirenda, C. and Ndolo, V. (2021) Seasonal Variation of Phytochemicals in Four Selected Medicinal Plants. Pharmacognosy Research, 13, 218-226. https://doi.org/10.5530/pres.13.4.14
|
[54]
|
Liebelt, D.J., Jordan, J.T. and Doherty, C.J. (2019) Only a Matter of Time: The Impact of Daily and Seasonal Rhythms on Phytochemicals. Phytochemistry Reviews, 18, 1409-1433. https://doi.org/10.1007/s11101-019-09617-z
|
[55]
|
Gomes, M.A., de Magalhães, B.E.A., Dos Santos, W.N.L. and da Silva Almeida, J.R.G. (2022) Influence of Seasonality on Phytochemical Composition, Phenolic Content and Antioxidant Activity of Neoglaziovia variegata (Bromeliaceae). Biointerface Research in Applied Chemistry, 12, 2889-2904.
|
[56]
|
Lafaurie, M. and Despas, F. (2023) Voies d’administration et formes pharmaceutiques. In: Collège National de Pharmacologie Médicale (CNPM), Bardou, M. and Goirand F., Eds., Pharmacologie, Elsevier, 19-25. https://www.elsevier-masson.fr/media/wysiwyg/PDF/FR/9782294774201.pdf
|
[57]
|
Basu, S. and Sahi, P.K. (2017) Malaria: An Update. The Indian Journal of Pediatrics, 84, 521-528. https://doi.org/10.1007/s12098-017-2332-2
|
[58]
|
Nureye, D. and Assefa, S. (2020) Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethiopia. The Scientific World Journal, 2020, Article ID: 1295381. https://doi.org/10.1155/2020/1295381
|
[59]
|
Trivedi, V., Balaji, S. and Deshmukh, R. (2020) Severe Malaria: Biology, Clinical Manifestation, Pathogenesis and Consequences. Journal of Vector Borne Diseases, 57, 1-13. https://doi.org/10.4103/0972-9062.308793
|