[1]
|
Shu, J., Cheng, F., Gong, Z., Ying, L., Wang, C., Yu, C., et al. (2020) Transplantation Strategies for Spinal Cord Injury Based on Microenvironment Modulation. Current Stem Cell Research & Therapy, 15, 522-530. https://doi.org/10.2174/1574888x15666200421112622
|
[2]
|
Alizadeh, A., Dyck, S.M. and Karimi-Abdolrezaee, S. (2019) Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Frontiers in Neurology, 10, Article No. 282. https://doi.org/10.3389/fneur.2019.00282
|
[3]
|
Anjum, A., Yazid, M.D., Fauzi Daud, M., Idris, J., Ng, A.M.H., Selvi Naicker, A., et al. (2020) Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. International Journal of Molecular Sciences, 21, Article No. 7533. https://doi.org/10.3390/ijms21207533
|
[4]
|
Khorasanizadeh, M., Yousefifard, M., Eskian, M., Lu, Y., Chalangari, M., Harrop, J.S., et al. (2019) Neurological Recovery Following Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis. Journal of Neurosurgery: Spine, 30, 683-699. https://doi.org/10.3171/2018.10.spine18802
|
[5]
|
Nakhjavan-Shahraki, B., Yousefifard, M., Rahimi-Movaghar, V., Baikpour, M., Nasirinezhad, F., Safari, S., et al. (2018) Transplantation of Olfactory Ensheathing Cells on Functional Recovery and Neuropathic Pain after Spinal Cord Injury; Systematic Review and Meta-Analysis. Scientific Reports, 8, Article No. 325. https://doi.org/10.1038/s41598-017-18754-4
|
[6]
|
Martin-Lopez, M., Fernandez-Muñoz, B. and Canovas, S. (2021) Pluripotent Stem Cells for Spinal Cord Injury Repair. Cells, 10, Article No. 3334. https://doi.org/10.3390/cells10123334
|
[7]
|
Wilson, J.R., Tetreault, L.A., Kwon, B.K., Arnold, P.M., Mroz, T.E., Shaffrey, C., et al. (2017) Timing of Decompression in Patients with Acute Spinal Cord Injury: A Systematic Review. Global Spine Journal, 7, 95S-115S. https://doi.org/10.1177/2192568217701716
|
[8]
|
Liu, Z., Yang, Y., He, L., Pang, M., Luo, C., Liu, B., et al. (2019) High-Dose Methylprednisolone for Acute Traumatic Spinal Cord Injury. Neurology, 93, e841-e850. https://doi.org/10.1212/wnl.0000000000007998
|
[9]
|
Sheerin, F. (2004) Spinal Cord Injury: Anatomy and Physiology of the Spinal Cord. Emergency Nurse, 12, 30-36. https://doi.org/10.7748/en2004.12.12.8.30.c1178
|
[10]
|
O’Shea, T.M., Burda, J.E. and Sofroniew, M.V. (2017) Cell Biology of Spinal Cord Injury and Repair. Journal of Clinical Investigation, 127, 3259-3270. https://doi.org/10.1172/jci90608
|
[11]
|
Guest, J., Datta, N., Jimsheleishvili, G. and Gater, D.R. (2022) Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. Journal of Personalized Medicine, 12, Article No. 1126. https://doi.org/10.3390/jpm12071126
|
[12]
|
El Masri, J., Fadlallah, H., Al Sabsabi, R., Afyouni, A., Al-Sayegh, M. and Abou-Kheir, W. (2024) Adipose-Derived Stem Cell Therapy in Spinal Cord Injury. Cells, 13, Article No. 1505. https://doi.org/10.3390/cells13171505
|
[13]
|
Oyinbo, C. (2011) Secondary Injury Mechanisms in Traumatic Spinal Cord Injury: A Nugget of This Multiply Cascade. Acta Neurobiologiae Experimentalis, 71, 281-299. https://doi.org/10.55782/ane-2011-1848
|
[14]
|
Eli, I., Lerner, D.P. and Ghogawala, Z. (2021) Acute Traumatic Spinal Cord Injury. Neurologic Clinics, 39, 471-488. https://doi.org/10.1016/j.ncl.2021.02.004
|
[15]
|
Gordh, T., Chu, H. and Sharma, H.S. (2006) Spinal Nerve Lesion Alters Blood-Spinal Cord Barrier Function and Activates Astrocytes in the Rat. Pain, 124, 211-221. https://doi.org/10.1016/j.pain.2006.05.020
|
[16]
|
Deng, L., Lv, J.Q. and Sun, L. (2022) Experimental Treatments to Attenuate Blood Spinal Cord Barrier Rupture in Rats with Traumatic Spinal Cord Injury: A Meta-Analysis and Systematic Review. Frontiers in Pharmacology, 13, Article ID: 950368. https://doi.org/10.3389/fphar.2022.950368
|
[17]
|
Fan, B., Wei, Z., Yao, X., Shi, G., Cheng, X., Zhou, X., et al. (2018) Microenvironment Imbalance of Spinal Cord Injury. Cell Transplantation, 27, 853-866. https://doi.org/10.1177/0963689718755778
|
[18]
|
Hawryluk, G., Whetstone, W., Saigal, R., Ferguson, A., Talbott, J., Bresnahan, J., et al. (2015) Mean Arterial Blood Pressure Correlates with Neurological Recovery after Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data. Journal of Neurotrauma, 32, 1958-1967. https://doi.org/10.1089/neu.2014.3778
|
[19]
|
Karimi‐Abdolrezaee, S., Eftekharpour, E. and Fehlings, M.G. (2004) Temporal and Spatial Patterns of Kv1.1 and Kv1.2 Protein and Gene Expression in Spinal Cord White Matter after Acute and Chronic Spinal Cord Injury in Rats: Implications for Axonal Pathophysiology after Neurotrauma. European Journal of Neuroscience, 19, 577-589. https://doi.org/10.1111/j.0953-816x.2004.03164.x
|
[20]
|
Khan, S.I., Ahmed, N., Ahsan, K., Abbasi, M., Maugeri, R., Chowdhury, D., et al. (2023) An Insight into the Prospects and Drawbacks of Stem Cell Therapy for Spinal Cord Injuries: Ongoing Trials and Future Directions. Brain Sciences, 13, Article No. 1697. https://doi.org/10.3390/brainsci13121697
|
[21]
|
Tator, C.H. and Koyanagi, I. (1997) Vascular Mechanisms in the Pathophysiology of Human Spinal Cord Injury. Journal of Neurosurgery, 86, 483-492. https://doi.org/10.3171/jns.1997.86.3.0483
|
[22]
|
Vanzulli, I. and Butt, A.M. (2015) Mglur5 Protect Astrocytes from Ischemic Damage in Postnatal CNS White Matter. Cell Calcium, 58, 423-430. https://doi.org/10.1016/j.ceca.2015.06.010
|
[23]
|
Jha, R.M., Kochanek, P.M. and Simard, J.M. (2019) Pathophysiology and Treatment of Cerebral Edema in Traumatic Brain Injury. Neuropharmacology, 145, 230-246. https://doi.org/10.1016/j.neuropharm.2018.08.004
|
[24]
|
Sharma, H.S. (2010) Early Microvascular Reactions and Blood-spinal Cord Barrier Disruption Are Instrumental in Pathophysiology of Spinal Cord Injury and Repair: Novel Therapeutic Strategies Including Nanowired Drug Delivery to Enhance Neuroprotection. Journal of Neural Transmission, 118, 155-176. https://doi.org/10.1007/s00702-010-0514-4
|
[25]
|
Zhou, H., Wang, L., Xu, Q., Fan, Z., Zhu, Y., Jiang, H., et al. (2016) Downregulation of miR-199b Promotes the Acute Spinal Cord Injury through IKKβ-NF-κB Signaling Pathway Activating Microglial Cells. Experimental Cell Research, 349, 60-67. https://doi.org/10.1016/j.yexcr.2016.09.020
|
[26]
|
Fu, H., Zhao, Y., Hu, D., Wang, S., Yu, T. and Zhang, L. (2020) Depletion of Microglia Exacerbates Injury and Impairs Function Recovery after Spinal Cord Injury in Mice. Cell Death & Disease, 11, Article No. 528. https://doi.org/10.1038/s41419-020-2733-4
|
[27]
|
Kjell, J. and Olson, L. (2016) Rat Models of Spinal Cord Injury: From Pathology to Potential Therapies. Disease Models & Mechanisms, 9, 1125-1137. https://doi.org/10.1242/dmm.025833
|
[28]
|
Kettenmann, H., Hanisch, U., Noda, M. and Verkhratsky, A. (2011) Physiology of Microglia. Physiological Reviews, 91, 461-553. https://doi.org/10.1152/physrev.00011.2010
|
[29]
|
Salter, M.W. and Stevens, B. (2017) Microglia Emerge as Central Players in Brain Disease. Nature Medicine, 23, 1018-1027. https://doi.org/10.1038/nm.4397
|
[30]
|
Colton, C.A. (2009) Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain. Journal of Neuroimmune Pharmacology, 4, 399-418. https://doi.org/10.1007/s11481-009-9164-4
|
[31]
|
Orihuela, R., McPherson, C.A. and Harry, G.J. (2015) Microglial M1/M2 Polarization and Metabolic States. British Journal of Pharmacology, 173, 649-665. https://doi.org/10.1111/bph.13139
|
[32]
|
Kobashi, S., Terashima, T., Katagi, M., Nakae, Y., Okano, J., Suzuki, Y., et al. (2020) Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice. Molecular Therapy, 28, 254-265. https://doi.org/10.1016/j.ymthe.2019.09.004
|
[33]
|
Dong, L., Dongzhi, Z., Jin, Y., Kim, Y., Lee, D., Huang, S., et al. (2020) Taraxacum officinale Wigg. Attenuates Inflammatory Responses in Murine Microglia through the Nrf2/HO-1 and NF-κB Signaling Pathways. The American Journal of Chinese Medicine, 48, 445-462. https://doi.org/10.1142/s0192415x20500238
|
[34]
|
Balla, G., Jacob, H.S., Balla, J., Rosenberg, M., Nath, K., Apple, F., et al. (1992) Ferritin: A Cytoprotective Antioxidant Strategem of Endothelium. Journal of Biological Chemistry, 267, 18148-18153. https://doi.org/10.1016/s0021-9258(19)37165-0
|
[35]
|
Sofroniew, M.V. and Vinters, H.V. (2009) Astrocytes: Biology and Pathology. Acta Neuropathologica, 119, 7-35. https://doi.org/10.1007/s00401-009-0619-8
|
[36]
|
Cregg, J.M., DePaul, M.A., Filous, A.R., Lang, B.T., Tran, A. and Silver, J. (2014) Functional Regeneration beyond the Glial Scar. Experimental Neurology, 253, 197-207. https://doi.org/10.1016/j.expneurol.2013.12.024
|
[37]
|
Kamakura, S., Oishi, K., Yoshimatsu, T., Nakafuku, M., Masuyama, N. and Gotoh, Y. (2004) Hes Binding to STAT3 Mediates Crosstalk between Notch and JAK-STAT Signalling. Nature Cell Biology, 6, 547-554. https://doi.org/10.1038/ncb1138
|
[38]
|
Liddelow, S.A. and Barres, B.A. (2017) Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity, 46, 957-967. https://doi.org/10.1016/j.immuni.2017.06.006
|
[39]
|
Diniz, L.P., Matias, I.C.P., Garcia, M.N. and Gomes, F.C.A. (2014) Astrocytic Control of Neural Circuit Formation: Highlights on Tgf-Beta Signaling. Neurochemistry International, 78, 18-27. https://doi.org/10.1016/j.neuint.2014.07.008
|
[40]
|
Sabelström, H., Stenudd, M., Réu, P., Dias, D.O., Elfineh, M., Zdunek, S., et al. (2013) Resident Neural Stem Cells Restrict Tissue Damage and Neuronal Loss after Spinal Cord Injury in Mice. Science, 342, 637-640. https://doi.org/10.1126/science.1242576
|
[41]
|
Pekny, M. and Nilsson, M. (2005) Astrocyte Activation and Reactive Gliosis. Glia, 50, 427-434. https://doi.org/10.1002/glia.20207
|
[42]
|
Xie, C., Shen, X., Xu, X., Liu, H., Li, F., Lu, S., et al. (2020) Astrocytic YAP Promotes the Formation of Glia Scars and Neural Regeneration after Spinal Cord Injury. The Journal of Neuroscience, 40, 2644-2662. https://doi.org/10.1523/jneurosci.2229-19.2020
|
[43]
|
Alessi, D.R., James, S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R.J., Reese, C.B., et al. (1997) Characterization of a 3-Phosphoinositide-Dependent Protein Kinase Which Phosphorylates and Activates Protein Kinase Bα. Current Biology, 7, 261-269. https://doi.org/10.1016/s0960-9822(06)00122-9
|
[44]
|
Sarbassov, D.D., Guertin, D.A., Ali, S.M. and Sabatini, D.M. (2005) Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. Science, 307, 1098-1101. https://doi.org/10.1126/science.1106148
|
[45]
|
Hara, M., Kobayakawa, K., Ohkawa, Y., Kumamaru, H., Yokota, K., Saito, T., et al. (2017) Interaction of Reactive Astrocytes with Type I Collagen Induces Astrocytic Scar Formation through the Integrin-n-Cadherin Pathway after Spinal Cord Injury. Nature Medicine, 23, 818-828. https://doi.org/10.1038/nm.4354
|
[46]
|
Yan, L., Li, Z., Li, C., Chen, J., Zhou, X., Cui, J., et al. (2024) Hspb1 and Lgals3 in Spinal Neurons Are Closely Associated with Autophagy Following Excitotoxicity Based on Machine Learning Algorithms. PLOS ONE, 19, e0303235. https://doi.org/10.1371/journal.pone.0303235
|
[47]
|
Taoka, Y., Okajima, K., Uchiba, M., Murakami, K., Kushimoto, S., Johno, M., et al. (1997) Role of Neutrophils in Spinal Cord Injury in the Rat. Neuroscience, 79, 1177-1182. https://doi.org/10.1016/s0306-4522(97)00011-0
|
[48]
|
Bao, F., Chen, Y., Dekaban, G.A. and Weaver, L.C. (2004) Early Anti‐Inflammatory Treatment Reduces Lipid Peroxidation and Protein Nitration after Spinal Cord Injury in Rats. Journal of Neurochemistry, 88, 1335-1344. https://doi.org/10.1046/j.1471-4159.2003.02240.x
|
[49]
|
Bains, M. and Hall, E.D. (2012) Antioxidant Therapies in Traumatic Brain and Spinal Cord Injury. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1822, 675-684. https://doi.org/10.1016/j.bbadis.2011.10.017
|
[50]
|
Feng, Z., Min, L., Liang, L., Chen, B., Chen, H., Zhou, Y., et al. (2021) Neutrophil Extracellular Traps Exacerbate Secondary Injury via Promoting Neuroinflammation and Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury. Frontiers in Immunology, 12, Article ID: 698249. https://doi.org/10.3389/fimmu.2021.698249
|
[51]
|
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535. https://doi.org/10.1126/science.1092385
|
[52]
|
Kurimoto, T., Yin, Y., Habboub, G., Gilbert, H., Li, Y., Nakao, S., et al. (2013) Neutrophils Express Oncomodulin and Promote Optic Nerve Regeneration. The Journal of Neuroscience, 33, 14816-14824. https://doi.org/10.1523/jneurosci.5511-12.2013
|
[53]
|
Sas, A.R., Carbajal, K.S., Jerome, A.D., Menon, R., Yoon, C., Kalinski, A.L., et al. (2020) A New Neutrophil Subset Promotes CNS Neuron Survival and Axon Regeneration. Nature Immunology, 21, 1496-1505. https://doi.org/10.1038/s41590-020-00813-0
|
[54]
|
Stirling, D.P., Liu, S., Kubes, P. and Yong, V.W. (2009) Depletion of Ly6g/Gr-1 Leukocytes after Spinal Cord Injury in Mice Alters Wound Healing and Worsens Neurological Outcome. The Journal of Neuroscience, 29, 753-764. https://doi.org/10.1523/jneurosci.4918-08.2009
|
[55]
|
Silva, M.T. (2009) When Two Is Better than One: Macrophages and Neutrophils Work in Concert in Innate Immunity as Complementary and Cooperative Partners of a Myeloid Phagocyte System. Journal of Leukocyte Biology, 87, 93-106. https://doi.org/10.1189/jlb.0809549
|
[56]
|
Wang, X., Cao, K., Sun, X., Chen, Y., Duan, Z., Sun, L., et al. (2014) Macrophages in Spinal Cord Injury: Phenotypic and Functional Change from Exposure to Myelin Debris. Glia, 63, 635-651. https://doi.org/10.1002/glia.22774
|
[57]
|
Kigerl, K.A., Gensel, J.C., Ankeny, D.P., Alexander, J.K., Donnelly, D.J. and Popovich, P.G. (2009) Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing Either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. The Journal of Neuroscience, 29, 13435-13444. https://doi.org/10.1523/jneurosci.3257-09.2009
|
[58]
|
Kroner, A., Greenhalgh, A.D., Zarruk, J.G., Passos dos Santos, R., Gaestel, M. and David, S. (2014) TNF and Increased Intracellular Iron Alter Macrophage Polarization to a Detrimental M1 Phenotype in the Injured Spinal Cord. Neuron, 83, 1098-1116. https://doi.org/10.1016/j.neuron.2014.07.027
|
[59]
|
Madalena, K.M., Brennan, F.H. and Popovich, P.G. (2022) Genetic Deletion of the Glucocorticoid Receptor in Cx3Cr1+ Myeloid Cells Is Neuroprotective and Improves Motor Recovery after Spinal Cord Injury. Experimental Neurology, 355, Article ID: 114114. https://doi.org/10.1016/j.expneurol.2022.114114
|
[60]
|
Zhu, Y., Lyapichev, K., Lee, D.H., Motti, D., Ferraro, N.M., Zhang, Y., et al. (2017) Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. The Journal of Neuroscience, 37, 2362-2376. https://doi.org/10.1523/jneurosci.2751-16.2017
|
[61]
|
Hall, E.D. (1989) Pathophysiology of Spinal Cord Injury. Current and Future Therapies. Minerva Anestesiologica, 55, 63-66.
|
[62]
|
Dumont, R.J., Okonkwo, D.O., Verma, S., Hurlbert, R.J., Boulos, P.T., Ellegala, D.B., et al. (2001) Acute Spinal Cord Injury, Part I: Pathophysiologic Mechanisms. Clinical Neuropharmacology, 24, 254-264. https://doi.org/10.1097/00002826-200109000-00002
|
[63]
|
Tran, A.P., Warren, P.M. and Silver, J. (2018) The Biology of Regeneration Failure and Success after Spinal Cord Injury. Physiological Reviews, 98, 881-917. https://doi.org/10.1152/physrev.00017.2017
|
[64]
|
Quinones, C., Wilson, J.P., Kumbhare, D., Guthikonda, B. and Hoang, S. (2024) Clinical Assessment and Management of Acute Spinal Cord Injury. Journal of Clinical Medicine, 13, Article No. 5719. https://doi.org/10.3390/jcm13195719
|
[65]
|
Hurlbert, R.J., Hadley, M.N., Walters, B.C., Aarabi, B., Dhall, S.S., Gelb, D.E., et al. (2015) Pharmacological Therapy for Acute Spinal Cord Injury. Neurosurgery, 76, S71-S83. https://doi.org/10.1227/01.neu.0000462080.04196.f7
|
[66]
|
Suberviola, B., González-Castro, A., Llorca, J., Ortiz-Melón, F. and Miñambres, E. (2008) Early Complications of High-Dose Methylprednisolone in Acute Spinal Cord Injury Patients. Injury, 39, 748-752. https://doi.org/10.1016/j.injury.2007.12.005
|
[67]
|
Lambrechts, M.J. and Cook, J.L. (2020) Nonsteroidal Anti-Inflammatory Drugs and Their Neuroprotective Role after an Acute Spinal Cord Injury: A Systematic Review of Animal Models. Global Spine Journal, 11, 365-377. https://doi.org/10.1177/2192568220901689
|
[68]
|
Sterner, R.C. and Sterner, R.M. (2023) Immune Response Following Traumatic Spinal Cord Injury: Pathophysiology and Therapies. Frontiers in Immunology, 13, Article ID: 1084101. https://doi.org/10.3389/fimmu.2022.1084101
|
[69]
|
Casha, S., Zygun, D., McGowan, M.D., Bains, I., Yong, V.W. and John Hurlbert, R. (2012) Results of a Phase II Placebo-Controlled Randomized Trial of Minocycline in Acute Spinal Cord Injury. Brain, 135, 1224-1236. https://doi.org/10.1093/brain/aws072
|
[70]
|
Geisler, F.H., Dorsey, F.C. and Coleman, W.P. (1991) Recovery of Motor Function after Spinal-Cord Injury—A Randomized, Placebo-Controlled Trial with GM-1 Ganglioside. New England Journal of Medicine, 324, 1829-1838. https://doi.org/10.1056/nejm199106273242601
|
[71]
|
Fehlings, M.G., Vaccaro, A., Wilson, J.R., Singh, A., W. Cadotte, D., Harrop, J.S., et al. (2012) Early versus Delayed Decompression for Traumatic Cervical Spinal Cord Injury: Results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLOS ONE, 7, e32037. https://doi.org/10.1371/journal.pone.0032037
|
[72]
|
Dimar, J.R., Glassman, S.D., Raque, G.H., Zhang, Y.P. and Shields, C.B. (1999) The Influence of Spinal Canal Narrowing and Timing of Decompression on Neurologic Recovery after Spinal Cord Contusion in a Rat Model. Spine, 24, Article No. 1623. https://doi.org/10.1097/00007632-199908150-00002
|
[73]
|
Fehlings, M.G., Sekhon, L.H.S. and Tator, C. (2001) The Role and Timing of Decompression in Acute Spinal Cord Injury: What Do We Know? What Should We Do? Spine, 26, S101-S110. https://doi.org/10.1097/00007632-200112151-00017
|
[74]
|
Jug, M., Komadina, R., Wendt, K., Pape, H.C., Bloemers, F. and Nau, C. (2024) Thoracolumbar Spinal Cord Injury: Management, Techniques, Timing. European Journal of Trauma and Emergency Surgery, 50, 1969-1975. https://doi.org/10.1007/s00068-024-02595-8
|
[75]
|
Glinsky, J.V. and Harvey, L.A. (2024) Physiotherapy Management of People with Spinal Cord Injuries: An Update. Journal of Physiotherapy, 70, 256-264. https://doi.org/10.1016/j.jphys.2024.09.008
|
[76]
|
Sunshine, M.D., Bindi, V.E., Nguyen, B.L., Doerr, V., Boeno, F.P., Chandran, V., et al. (2023) Oxygen Therapy Attenuates Neuroinflammation after Spinal Cord Injury. Journal of Neuroinflammation, 20, Article No. 303. https://doi.org/10.1186/s12974-023-02985-6
|
[77]
|
Huang, T., Mu, J., Wu, J., Cao, J., Zhang, X., Guo, J., et al. (2024) A Functionalized Scaffold Facilitates Neurites Extension for Spinal Cord Injury Therapy. Small, 20, e2401020. https://doi.org/10.1002/smll.202401020
|
[78]
|
Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S.M., Li, B., et al. (2001) Bone Marrow Cells Regenerate Infarcted Myocardium. Nature, 410, 701-705. https://doi.org/10.1038/35070587
|
[79]
|
Araujo, T.P.F., Cristante, A.F., Marcon, R.M., Santos, G.B.d., Nicola, M.H.A., Araujo, A.O.d., et al. (2024) Improvement of Motor Function in Mice after Implantation of Mononuclear Stem Cells from Human Umbilical Cord and Placenta Blood after 3 and 6 Weeks of Experimental Spinal Cord Injury. Clinics, 79, Article ID: 100509. https://doi.org/10.1016/j.clinsp.2024.100509
|
[80]
|
Macêdo, C.T., de Freitas Souza, B.S., Villarreal, C.F., Silva, D.N., da Silva, K.N., de Souza, C.L.e.M., et al. (2024) Transplantation of Autologous Mesenchymal Stromal Cells in Complete Cervical Spinal Cord Injury: A Pilot Study. Frontiers in Medicine, 11, Article ID: 1451297. https://doi.org/10.3389/fmed.2024.1451297
|
[81]
|
Deokate, N., Acharya, S., Patil, R., Shaikh, S.M. and Karwa, V. (2024) A Comprehensive Review of the Role of Stem Cells in Neuroregeneration: Potential Therapies for Neurological Disorders. Cureus, 16, e67506. https://doi.org/10.7759/cureus.67506
|
[82]
|
Mili, B. and Choudhary, O.P. (2024) Advancements and Mechanisms of Stem Cell-Based Therapies for Spinal Cord Injury in Animals. International Journal of Surgery, 110, 6182-6197. https://doi.org/10.1097/js9.0000000000001074
|
[83]
|
Zaripova, L.N., Midgley, A., Christmas, S.E., Beresford, M.W., Pain, C., Baildam, E.M., et al. (2023) Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases. International Journal of Molecular Sciences, 24, Article No. 16040. https://doi.org/10.3390/ijms242216040
|
[84]
|
Evans, M.J. and Kaufman, M.H. (1981) Establishment in Culture of Pluripotential Cells from Mouse Embryos. Nature, 292, 154-156. https://doi.org/10.1038/292154a0
|
[85]
|
Hussen, B.M., Taheri, M., Yashooa, R.K., Abdullah, G.H., Abdullah, S.R., Kheder, R.K., et al. (2024) Revolutionizing Medicine: Recent Developments and Future Prospects in Stem-Cell Therapy. International Journal of Surgery, 110, 8002-8024. https://doi.org/10.1097/js9.0000000000002109
|
[86]
|
Zeng, C. (2023) Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. International Journal of Molecular Sciences, 24, Article No. 14349. https://doi.org/10.3390/ijms241814349
|
[87]
|
Singh, V.K., Kumar, N., Kalsan, M., Saini, A. and Chandra, R. (2015) Mechanism of Induction: Induced Pluripotent Stem Cells (iPSCs). Journal of Stem Cells, 10, 43-62.
|
[88]
|
Nori, S., Okada, Y., Yasuda, A., Tsuji, O., Takahashi, Y., Kobayashi, Y., et al. (2011) Grafted Human-Induced Pluripotent Stem-Cell-Derived Neurospheres Promote Motor Functional Recovery after Spinal Cord Injury in Mice. Proceedings of the National Academy of Sciences, 108, 16825-16830. https://doi.org/10.1073/pnas.1108077108
|
[89]
|
Kobayashi, Y., Okada, Y., Itakura, G., Iwai, H., Nishimura, S., Yasuda, A., et al. (2012) Pre-Evaluated Safe Human IPSC-Derived Neural Stem Cells Promote Functional Recovery after Spinal Cord Injury in Common Marmoset without Tumorigenicity. PLOS ONE, 7, e52787. https://doi.org/10.1371/journal.pone.0052787
|
[90]
|
Gong, Z., Xia, K., Xu, A., Yu, C., Wang, C., Zhu, J., et al. (2020) Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury. Current Stem Cell Research & Therapy, 15, 321-331. https://doi.org/10.2174/1574888x14666190823144424
|
[91]
|
Morshead, C.M., Reynolds, B.A., Craig, C.G., McBurney, M.W., Staines, W.A., Morassutti, D., et al. (1994) Neural Stem Cells in the Adult Mammalian Forebrain: A Relatively Quiescent Subpopulation of Subependymal Cells. Neuron, 13, 1071-1082. https://doi.org/10.1016/0896-6273(94)90046-9
|
[92]
|
Gage, F.H. (2000) Mammalian Neural Stem Cells. Science, 287, 1433-1438. https://doi.org/10.1126/science.287.5457.1433
|
[93]
|
Butruille, L., Batailler, M., Cateau, M., Sharif, A., Leysen, V., Prévot, V., et al. (2022) Selective Depletion of Adult GFAP-Expressing Tanycytes Leads to Hypogonadotropic Hypogonadism in Males. Frontiers in Endocrinology, 13, Article ID: 869019. https://doi.org/10.3389/fendo.2022.869019
|
[94]
|
Emgård, M., Piao, J., Aineskog, H., Liu, J., Calzarossa, C., Odeberg, J., et al. (2014) Neuroprotective Effects of Human Spinal Cord-Derived Neural Precursor Cells after Transplantation to the Injured Spinal Cord. Experimental Neurology, 253, 138-145. https://doi.org/10.1016/j.expneurol.2013.12.022
|
[95]
|
Iwanami, A., Kaneko, S., Nakamura, M., Kanemura, Y., Mori, H., Kobayashi, S., et al. (2005) Transplantation of Human Neural Stem Cells for Spinal Cord Injury in Primates. Journal of Neuroscience Research, 80, 182-190. https://doi.org/10.1002/jnr.20436
|
[96]
|
Ma, Z., Liu, T., Liu, L., Pei, Y., Wang, T., Wang, Z., et al. (2024) Epidermal Neural Crest Stem Cell Conditioned Medium Enhances Spinal Cord Injury Recovery via PI3K/AKT-Mediated Neuronal Apoptosis Suppression. Neurochemical Research, 49, 2854-2870. https://doi.org/10.1007/s11064-024-04207-8
|
[97]
|
Karimi-Haghighi, S., Chavoshinezhad, S., Safari, A., Razeghian-Jahromi, I., jamhiri, I., Khodabandeh, Z., et al. (2022) Preconditioning with Secretome of Neural Crest-Derived Stem Cells Enhanced Neurotrophic Expression in Mesenchymal Stem Cells. Neuroscience Letters, 773, Article ID: 136511. https://doi.org/10.1016/j.neulet.2022.136511
|
[98]
|
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., et al. (2006) Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. the International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315-317. https://doi.org/10.1080/14653240600855905
|
[99]
|
Yuan, X., Wu, Q., Wang, P., Jing, Y., Yao, H., Tang, Y., et al. (2019) Exosomes Derived from Pericytes Improve Microcirculation and Protect Blood-Spinal Cord Barrier after Spinal Cord Injury in Mice. Frontiers in Neuroscience, 13, Article No. 319. https://doi.org/10.3389/fnins.2019.00319
|
[100]
|
Cofano, F., Boido, M., Monticelli, M., Zenga, F., Ducati, A., Vercelli, A., et al. (2019) Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. International Journal of Molecular Sciences, 20, Article No. 2698. https://doi.org/10.3390/ijms20112698
|
[101]
|
Zhang, W., Zhang, F., Shi, H., Tan, R., Han, S., Ye, G., et al. (2014) Comparisons of Rabbit Bone Marrow Mesenchymal Stem Cell Isolation and Culture Methods in Vitro. PLOS ONE, 9, e88794. https://doi.org/10.1371/journal.pone.0088794
|
[102]
|
Moviglia, G.A., Varela, G., Brizuela, J.A., Moviglia Brandolino, M.T., Farina, P., Etchegaray, G., et al. (2009) Case Report on the Clinical Results of a Combined Cellular Therapy for Chronic Spinal Cord Injured Patients. Spinal Cord, 47, 499-503. https://doi.org/10.1038/sc.2008.164
|
[103]
|
Sorrell, J.M., Baber, M.A. and Caplan, A.I. (2009) Influence of Adult Mesenchymal Stem Cells Onin Vitro Vascular Formation. Tissue Engineering Part A, 15, 1751-1761. https://doi.org/10.1089/ten.tea.2008.0254
|
[104]
|
Kadoya, K., Lu, P., Nguyen, K., Lee-Kubli, C., Kumamaru, H., Yao, L., et al. (2016) Spinal Cord Reconstitution with Homologous Neural Grafts Enables Robust Corticospinal Regeneration. Nature Medicine, 22, 479-487. https://doi.org/10.1038/nm.4066
|
[105]
|
Forostyak, S., Jendelova, P. and Sykova, E. (2013) The Role of Mesenchymal Stromal Cells in Spinal Cord Injury, Regenerative Medicine and Possible Clinical Applications. Biochimie, 95, 2257-2270. https://doi.org/10.1016/j.biochi.2013.08.004
|
[106]
|
Uccelli, A., Benvenuto, F., Laroni, A. and Giunti, D. (2011) Neuroprotective Features of Mesenchymal Stem Cells. Best Practice & Research Clinical Haematology, 24, 59-64. https://doi.org/10.1016/j.beha.2011.01.004
|
[107]
|
Hwang, J., Jang, S., Kim, C., Lee, S. and Jeong, H. (2023) Role of Stem Cell-Derived Exosomes and MicroRNAs in Spinal Cord Injury. International Journal of Molecular Sciences, 24, Article No. 13849. https://doi.org/10.3390/ijms241813849
|
[108]
|
Lee, S.Y., Kwon, B., Lee, K., Son, Y.H. and Chung, S.G. (2017) Therapeutic Mechanisms of Human Adipose-Derived Mesenchymal Stem Cells in a Rat Tendon Injury Model. The American Journal of Sports Medicine, 45, 1429-1439. https://doi.org/10.1177/0363546517689874
|
[109]
|
Silva, N.A., Sousa, N., Reis, R.L. and Salgado, A.J. (2014) From Basics to Clinical: A Comprehensive Review on Spinal Cord Injury. Progress in Neurobiology, 114, 25-57. https://doi.org/10.1016/j.pneurobio.2013.11.002
|
[110]
|
Ahuja, C.S., Wilson, J.R., Nori, S., Kotter, M.R.N., Druschel, C., Curt, A., et al. (2017) Traumatic Spinal Cord Injury. Nature Reviews Disease Primers, 3, Article No. 17018. https://doi.org/10.1038/nrdp.2017.18
|
[111]
|
Lo Sicco, C., Reverberi, D., Balbi, C., Ulivi, V., Principi, E., Pascucci, L., et al. (2017) Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. Stem Cells Translational Medicine, 6, 1018-1028. https://doi.org/10.1002/sctm.16-0363
|
[112]
|
Michelo, C.M., Fasse, E., van Cranenbroek, B., Linda, K., van der Meer, A., Abdelrazik, H., et al. (2016) Added Effects of Dexamethasone and Mesenchymal Stem Cells on Early Natural Killer Cell Activation. Transplant Immunology, 37, 1-9. https://doi.org/10.1016/j.trim.2016.04.008
|
[113]
|
Lu, Y., Liu, J., Liu, Y., Qin, Y., Luo, Q., Wang, Q., et al. (2015) TLR4 Plays a Crucial Role in MSC-Induced Inhibition of NK Cell Function. Biochemical and Biophysical Research Communications, 464, 541-547. https://doi.org/10.1016/j.bbrc.2015.07.002
|
[114]
|
Zurita, M., Vaquero, J., Bonilla, C., Santos, M., De Haro, J., Oya, S., et al. (2008) Functional Recovery of Chronic Paraplegic Pigs after Autologous Transplantation of Bone Marrow Stromal Cells. Transplantation, 86, 845-853. https://doi.org/10.1097/tp.0b013e318186198f
|
[115]
|
Ide, C., Nakai, Y., Nakano, N., Seo, T., Yamada, Y., Endo, K., et al. (2010) Bone Marrow Stromal Cell Transplantation for Treatment of Sub-Acute Spinal Cord Injury in the Rat. Brain Research, 1332, 32-47. https://doi.org/10.1016/j.brainres.2010.03.043
|
[116]
|
Zhou, Z., Tian, X., Mo, B., Xu, H., Zhang, L., Huang, L., et al. (2020) Adipose Mesenchymal Stem Cell Transplantation Alleviates Spinal Cord Injury-Induced Neuroinflammation Partly by Suppressing the Jagged1/notch Pathway. Stem Cell Research & Therapy, 11, Article No. 212. https://doi.org/10.1186/s13287-020-01724-5
|
[117]
|
Hur, J.W., Cho, T., Park, D., Lee, J., Park, J. and Chung, Y. (2015) Intrathecal Transplantation of Autologous Adipose-Derived Mesenchymal Stem Cells for Treating Spinal Cord Injury: A Human Trial. The Journal of Spinal Cord Medicine, 39, 655-664. https://doi.org/10.1179/2045772315y.0000000048
|
[118]
|
Bydon, M., Qu, W., Moinuddin, F.M., Hunt, C.L., Garlanger, K.L., Reeves, R.K., et al. (2024) Intrathecal Delivery of Adipose-Derived Mesenchymal Stem Cells in Traumatic Spinal Cord Injury: Phase I Trial. Nature Communications, 15, Article No. 2201. https://doi.org/10.1038/s41467-024-46259-y
|
[119]
|
Wang, L., Zhao, H., Han, M., Yang, H., Lei, M., Wang, W., et al. (2024) Electromagnetic Cellularized Patch with Wirelessly Electrical Stimulation for Promoting Neuronal Differentiation and Spinal Cord Injury Repair. Advanced Science, 11, e2307527. https://doi.org/10.1002/advs.202307527
|
[120]
|
Liu, J., Han, D., Wang, Z., Xue, M., Zhu, L., Yan, H., et al. (2013) Clinical Analysis of the Treatment of Spinal Cord Injury with Umbilical Cord Mesenchymal Stem Cells. Cytotherapy, 15, 185-191. https://doi.org/10.1016/j.jcyt.2012.09.005
|
[121]
|
Okano, H., Ogawa, Y., Nakamura, M., Kaneko, S., Iwanami, A. and Toyama, Y. (2003) Transplantation of Neural Stem Cells into the Spinal Cord after Injury. Seminars in Cell & Developmental Biology, 14, 191-198. https://doi.org/10.1016/s1084-9521(03)00011-9
|
[122]
|
Rodriguez, R., Rubio, R. and Menendez, P. (2011) Modeling Sarcomagenesis Using Multipotent Mesenchymal Stem Cells. Cell Research, 22, 62-77. https://doi.org/10.1038/cr.2011.157
|
[123]
|
Shen, Y., Wang, Y., Cheng, X., Yang, X. and Wang, G. (2023) Autophagy Regulation Combined with Stem Cell Therapy for Treatment of Spinal Cord Injury. Neural Regeneration Research, 18, 1629-1636. https://doi.org/10.4103/1673-5374.363189
|
[124]
|
Quertainmont, R., Cantinieaux, D., Botman, O., Sid, S., Schoenen, J. and Franzen, R. (2012) Mesenchymal Stem Cell Graft Improves Recovery after Spinal Cord Injury in Adult Rats through Neurotrophic and Pro-Angiogenic Actions. PLOS ONE, 7, e39500. https://doi.org/10.1371/journal.pone.0039500
|
[125]
|
Li, C., Luo, Y. and Li, S. (2024) The Roles of Neural Stem Cells in Myelin Regeneration and Repair Therapy after Spinal Cord Injury. Stem Cell Research & Therapy, 15, Article No. 204. https://doi.org/10.1186/s13287-024-03825-x
|
[126]
|
Phinney, D.G. and Pittenger, M.F. (2017) Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells, 35, 851-858. https://doi.org/10.1002/stem.2575
|
[127]
|
Riazifar, M., Pone, E.J., Lötvall, J. and Zhao, W. (2017) Stem Cell Extracellular Vesicles: Extended Messages of Regeneration. Annual Review of Pharmacology and Toxicology, 57, 125-154. https://doi.org/10.1146/annurev-pharmtox-061616-030146
|
[128]
|
Park, H., Chugh, R.M., Seok, J., Cetin, E., Mohammed, H., Siblini, H., et al. (2023) Comparison of the Therapeutic Effects between Stem Cells and Exosomes in Primary Ovarian Insufficiency: As Promising as Cells but Different Persistency and Dosage. Stem Cell Research & Therapy, 14, Article No. 165. https://doi.org/10.1186/s13287-023-03397-2
|
[129]
|
Luo, Y., He, Y., Wang, Y., Xu, Y. and Yang, L. (2023) Adipose-Derived Mesenchymal Stem Cell Exosomes Ameliorate Spinal Cord Injury in Rats by Activating the Nrf2/ ho-1 Pathway and Regulating Microglial Polarization. Folia Neuropathologica, 61, 326-335. https://doi.org/10.5114/fn.2023.130455
|
[130]
|
Akhlaghpasand, M., Tavanaei, R., Hosseinpoor, M., Yazdani, K.O., Soleimani, A., Zoshk, M.Y., et al. (2024) Safety and Potential Effects of Intrathecal Injection of Allogeneic Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes in Complete Subacute Spinal Cord Injury: A First-in-Human, Single-Arm, Open-Label, Phase I Clinical Trial. Stem Cell Research & Therapy, 15, Article No. 264. https://doi.org/10.1186/s13287-024-03868-0
|
[131]
|
Chen, M., Lin, Y., Guo, W. and Chen, L. (2024) BMSC-Derived Exosomes Carrying miR-26a-5p Ameliorate Spinal Cord Injury via Negatively Regulating EZH2 and Activating the BDNF-TrkB-CREB Signaling. Molecular Neurobiology, 61, 8156-8174. https://doi.org/10.1007/s12035-024-04082-y
|
[132]
|
Chang, Q., Hao, Y., Wang, Y., Zhou, Y., Zhuo, H. and Zhao, G. (2021) Bone Marrow Mesenchymal Stem Cell-Derived Exosomal Microrna-125a Promotes M2 Macrophage Polarization in Spinal Cord Injury by Downregulating Irf5. Brain Research Bulletin, 170, 199-210. https://doi.org/10.1016/j.brainresbull.2021.02.015
|
[133]
|
Wang, L., Pei, S., Han, L., Guo, B., Li, Y., Duan, R., et al. (2018) Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NF-κB P65 Subunit in Spinal Cord Injury. Cellular Physiology and Biochemistry, 50, 1535-1559. https://doi.org/10.1159/000494652
|
[134]
|
Abbas, A., Huang, X., Ullah, A., Luo, L., Xi, W., Qiao, Y., et al. (2024) Enhanced Spinal Cord Repair Using Bioengineered Induced Pluripotent Stem Cell-Derived Exosomes Loaded with miRNA. Molecular Medicine, 30, Article No. 168. https://doi.org/10.1186/s10020-024-00940-6
|
[135]
|
Zhang, T., Gao, K., Yan, T., Lyu, C. and Lyu, C. (2021) Potential Therapeutic Mechanism of Traditional Chinese Medicine Monomers on Neurological Recovery after Spinal Cord Injury. Chinese Medical Journal, 134, 1681-1683. https://doi.org/10.1097/cm9.0000000000001476
|
[136]
|
Luo, D., Li, X., Hou, Y., Hou, Y., Luan, J., Weng, J., et al. (2021) Sodium Tanshinone IIA Sulfonate Promotes Spinal Cord Injury Repair by Inhibiting Blood Spinal Cord Barrier Disruption in Vitro and in Vivo. Drug Development Research, 83, 669-679. https://doi.org/10.1002/ddr.21898
|
[137]
|
Tang, H., Guo, Y., Zhao, Y., Wang, S., Wang, J., Li, W., et al. (2020) Effects and Mechanisms of Acupuncture Combined with Mesenchymal Stem Cell Transplantation on Neural Recovery after Spinal Cord Injury: Progress and Prospects. Neural Plasticity, 2020, Article ID: 8890655. https://doi.org/10.1155/2020/8890655
|
[138]
|
Zhang, X.-F., Zou, Y., Zhao, Y., Wang, T.-H. and Zhang, W. (2012) Effects of Electroacupuncture of “Governor Vessel” Acupoints on Changes of BDNF in the Cortical Motor Area of Mice with Spinal Cord Transection. Journal of Sichuan University. Medical Science Edition, 43, 250-253.
|
[139]
|
Huang, Y., Zhu, N., Chen, T., Chen, W., Kong, J., Zheng, W., et al. (2019) Triptolide Suppressed the Microglia Activation to Improve Spinal Cord Injury through miR-96/IKKβ/NF-κB Pathway. Spine, 44, E707-E714. https://doi.org/10.1097/brs.0000000000002989
|
[140]
|
Li, X., Wu, P., Yao, J., Zhang, K. and Jin, G. (2022) Genistein Protects against Spinal Cord Injury in Mice by Inhibiting Neuroinflammation via Tlr4-Mediated Microglial Polarization. Applied Bionics and Biomechanics, 2022, Article ID: 4790344. https://doi.org/10.1155/2022/4790344
|
[141]
|
Yang, P., Chen, A., Qin, Y., Yin, J., Cai, X., Fan, Y., et al. (2019) Buyang Huanwu Decoction Combined with BMSCs Transplantation Promotes Recovery after Spinal Cord Injury by Rescuing Axotomized Red Nucleus Neurons. Journal of Ethnopharmacology, 228, 123-131. https://doi.org/10.1016/j.jep.2018.09.028
|
[142]
|
Ding, Y., Yan, Q., Ruan, J., Zhang, Y., Li, W., Zeng, X., et al. (2011) Bone Marrow Mesenchymal Stem Cells and Electroacupuncture Downregulate the Inhibitor Molecules and Promote the Axonal Regeneration in the Transected Spinal Cord of Rats. Cell Transplantation, 20, 475-491. https://doi.org/10.3727/096368910x528102
|
[143]
|
Liu, H., Yang, K., Xin, T., Wu, W. and Chen, Y. (2012) Implanted Electro-Acupuncture Electric Stimulation Improves Outcome of Stem Cells’ Transplantation in Spinal Cord Injury. Artificial Cells, Blood Substitutes, and Biotechnology, 40, 331-337. https://doi.org/10.3109/10731199.2012.659350
|
[144]
|
Yu, X., Chen, J., Liu, M., Li, Y., Jia, Y., Zhan, H., et al. (2024) Meta-Analysis of the Curative Effect of Sacral Nerve Magnetic Stimulation on Neurogenic Bladder after Spinal Cord Injury. Medicine, 103, e40150. https://doi.org/10.1097/md.0000000000040150
|
[145]
|
Ning, G., Song, W., Xu, H., Zhu, R., Wu, Q., Wu, Y., et al. (2018) Bone Marrow Mesenchymal Stem Cells Stimulated with Low‐Intensity Pulsed Ultrasound: Better Choice of Transplantation Treatment for Spinal Cord Injury: Treatment for SCI by LIPUS-BMSCs Transplantation. CNS Neuroscience & Therapeutics, 25, 496-508. https://doi.org/10.1111/cns.13071
|
[146]
|
Liao, Y., Chen, M., Chen, S., Luo, K., Wang, B., Ao, L., et al. (2022) Low-Intensity Focused Ultrasound Alleviates Spasticity and Increases Expression of the Neuronal K-Cl Cotransporter in the L4-L5 Sections of Rats Following Spinal Cord Injury. Frontiers in Cellular Neuroscience, 16, Article ID: 882127. https://doi.org/10.3389/fncel.2022.882127
|
[147]
|
Jeon, J., Park, S.H., Choi, J., Han, S.M., Kim, H., Shim, S.R., et al. (2024) Association between Neural Stem/progenitor Cells and Biomaterials in Spinal Cord Injury Therapies: A Systematic Review and Network Meta-analysis. Acta Biomaterialia, 183, 50-60. https://doi.org/10.1016/j.actbio.2024.06.011
|
[148]
|
Chen, M., Xu, G., Guo, W., Lin, Y. and Yao, Z. (2024) Bilobalide Activates Autophagy and Enhances the Efficacy of Bone Marrow Mesenchymal Stem Cells on Spinal Cord Injury via Upregulating FMRP to Promote WNK1 mRNA Decay. Neurochemical Research, 50, Article No. 33. https://doi.org/10.1007/s11064-024-04287-6
|
[149]
|
Pai, V., Singh, B.N. and Singh, A.K. (2024) Insights into Advances and Applications of Biomaterials for Nerve Tissue Injuries and Neurodegenerative Disorders. Macromolecular Bioscience, 24, e2400150. https://doi.org/10.1002/mabi.202400150
|
[150]
|
Tang, Z., Ye, Y., Yang, K., Guo, X., Gao, X., Wu, C., et al. (2024) Experimental Study of cbmmsc Based on Nanosilver Hydrogel Nerve Conduit for Repairing Spinal Cord Injury. Journal of Cellular and Molecular Medicine, 28, e70149. https://doi.org/10.1111/jcmm.70149
|
[151]
|
Xu, J., Cheng, S., Jiao, Z., Zhao, Z., Cai, Z., Su, N., et al. (2019) Fire Needle Acupuncture Regulates Wnt/ERK Multiple Pathways to Promote Neural Stem Cells to Differentiate into Neurons in Rats with Spinal Cord Injury. CNS & Neurological Disorders—Drug Targets, 18, 245-255. https://doi.org/10.2174/1871527318666190204111701
|
[152]
|
Bradshaw, K.J. and Leipzig, N.D. (2024) Applications of Regenerative Tissue-Engineered Scaffolds for Treatment of Spinal Cord Injury. Tissue Engineering Part A. https://doi.org/10.1089/ten.tea.2024.0194
|