[1]
|
Rocklöv, J. and Tozan, Y. (2019) Climate Change and the Rising Infectiousness of Dengue. Emerging Topics in Life Sciences, 3, 133-142. https://doi.org/10.1042/etls20180123
|
[2]
|
Dussart, P., Cesaire, R. and Sall, A. (2012) Dengue, Fièvre jaune et autres arboviroses. EMC—Maladies Infectieuses, 9, 1-24. https://doi.org/10.1016/s1166-8598(12)50186-9
|
[3]
|
Naish, S., Dale, P., Mackenzie, J.S., McBride, J., Mengersen, K. and Tong, S. (2014) Climate Change and Dengue: A Critical and Systematic Review of Quantitative Modelling Approaches. BMC Infectious Diseases, 14, Article No. 167. https://doi.org/10.1186/1471-2334-14-167
|
[4]
|
Carneiro, M.A.F., Alves, B.D.C.A., Gehrke, F.D.S., Domingues, J.N., Sá, N., Paixão, S., et al. (2017) Environmental Factors Can Influence Dengue Reported Cases. Revista da Associação Médica Brasileira, 63, 957-961. https://doi.org/10.1590/1806-9282.63.11.957
|
[5]
|
Baldacchino, F., Caputo, B., Chandre, F., Drago, A., della Torre, A., Montarsi, F., et al. (2015) Control Methods against Invasive Aedes Mosquitoes in Europe: A Review. Pest Management Science, 71, 1471-1485. https://doi.org/10.1002/ps.4044
|
[6]
|
Mancini, M.V., Murdochy, S.M., Bilgo, E., Ant, T.H., Gingell, D., Gnambani, E.J., et al. (2024) Wolbachia Strain wAlbB Shows Favourable Characteristics for Dengue Control Use in Aedes aegypti from Burkina Faso. Environmental Microbiology, 26, e16588. https://doi.org/10.1111/1462-2920.16588
|
[7]
|
Scholte, E., Knols, B.G.J., Samson, R.A. and Takken, W. (2004) Entomopathogenic Fungi for Mosquito Control: A Review. Journal of Insect Science, 4, 1-24. https://doi.org/10.1673/031.004.1901
|
[8]
|
Abbas, M.S.T. (2020) Interactions between Entomopathogenic Fungi and Entomophagous Insects. Advances in Entomology, 8, 130-146. https://doi.org/10.4236/ae.2020.83010
|
[9]
|
de Carolina Sánchez-Pérez, L., Barranco-Florido, J.E., Rodríguez-Navarro, S., Cervantes-Mayagoitia, J.F. and Ramos-López, M. (2014) Enzymes of Entomopathogenic Fungi, Advances and Insights. Advances in Enzyme Research, 2, 65-76.
|
[10]
|
Wang, C. and Wang, S. (2017) Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements. Annual Review of Entomology, 62, 73-90. https://doi.org/10.1146/annurev-ento-031616-035509
|
[11]
|
St. Leger, R.J. and Wang, J.B. (2020) Metarhizium: Jack of All Trades, Master of Many. Open Biology, 10, Article ID: 200307. https://doi.org/10.1098/rsob.200307
|
[12]
|
WHO (2009) Guidelines for Efficacy Testing of Insecticides for Indoor and Outdoor Ground-Applied Space Spray Applications. Report No.: WHO/HTM/NTD/WHOPES/GCDPP/2009.6. https://www.who.int/publications/i/item/who-htm-ntd-whopes-gcdpp-2009.6
|
[13]
|
Shen, D., Nyawira, K.T. and Xia, A. (2020) New Discoveries and Applications of Mosquito Fungal Pathogens. Current Opinion in Insect Science, 40, 111-116. https://doi.org/10.1016/j.cois.2020.05.003
|
[14]
|
WHO (2022) Dengue and Severe Dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
|
[15]
|
CDC (2019) Dengue Vaccination: What Everyone Should Know. https://www.cdc.gov/vaccines/vpd/dengue/public/index.html
|
[16]
|
Moyes, C.L., Vontas, J., Martins, A.J., Ng, L.C., Koou, S.Y., Dusfour, I., et al. (2017) Contemporary Status of Insecticide Resistance in the Major Aedes Vectors of Arboviruses Infecting Humans. PLOS Neglected Tropical Diseases, 11, e0005625. https://doi.org/10.1371/journal.pntd.0005625
|
[17]
|
Badolo, A., Sombié, A., Pignatelli, P.M., Sanon, A., Yaméogo, F., Wangrawa, D.W., et al. (2019) Insecticide Resistance Levels and Mechanisms in Aedes Aegypti Populations in and around Ouagadougou, Burkina Faso. PLOS Neglected Tropical Diseases, 13, e0007439. https://doi.org/10.1371/journal.pntd.0007439
|
[18]
|
Namountougou, M., Soma, D.D., Balboné, M., Kaboré, D.A., Kientega, M., Hien, A., et al. (2020) Monitoring Insecticide Susceptibility in Aedes Aegypti Populations from the Two Biggest Cities, Ouagadougou and Bobo-Dioulasso, in Burkina Faso: Implication of Metabolic Resistance. Tropical Medicine and Infectious Disease, 5, Article No. 84. https://doi.org/10.3390/tropicalmed5020084
|
[19]
|
Cavalcanti, L.P.d.G., Pontes, R.J.S., Regazzi, A.C.F., Paula Júnior, F.J.d., Frutuoso, R.L., Sousa, E.P., et al. (2007) Competência de peixes como predadores de larvas de Aedes aegypti, Em condições de laboratório. Revista de Saúde Pública, 41, 638-644. https://doi.org/10.1590/s0034-89102006005000041
|
[20]
|
Paiva, C.N., de Oliveira Lima, J.W., Camelo, S.S., de França Lima, C. and de Góes Cavalcanti, L.P. (2014) Survival of Larvivorous Fish Used for Biological Control of Aedes aegypti (Diptera: Culicidae) Combined with Different Larvicides. Tropical Medicine & International Health, 19, 1082-1086. https://doi.org/10.1111/tmi.12341
|
[21]
|
Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M. and Goettel, M.S. (2015) Insect Pathogens as Biological Control Agents: Back to the Future. Journal of Invertebrate Pathology, 132, 1-41. https://doi.org/10.1016/j.jip.2015.07.009
|
[22]
|
Alkhaibari, A.M., Carolino, A.T., Yavasoglu, S.I., Maffeis, T., Mattoso, T.C., Bull, J.C., et al. (2016) Metarhizium brunneum Blastospore Pathogenesis in Aedes Aegypti larvae: Attack on Several Fronts Accelerates Mortality. PLOS Pathogens, 12, e1005715. https://doi.org/10.1371/journal.ppat.1005715
|
[23]
|
Brunner-Mendoza, C., Reyes-Montes, M.d.R., Moonjely, S., Bidochka, M.J. and Toriello, C. (2018) A Review on the Genus Metarhizium as an Entomopathogenic Microbial Biocontrol Agent with Emphasis on Its Use and Utility in Mexico. Biocontrol Science and Technology, 29, 83-102. https://doi.org/10.1080/09583157.2018.1531111
|
[24]
|
Fang, W., Leng, B., Xiao, Y., Jin, K., Ma, J., Fan, Y., et al. (2005) Cloning of Beauveria bassiana Chitinase Gene Bbchit1 and Its Application to Improve Fungal Strain Virulence. Applied and Environmental Microbiology, 71, 363-370. https://doi.org/10.1128/aem.71.1.363-370.2005
|
[25]
|
Wang, C. and St Leger, R.J. (2007) A Scorpion Neurotoxin Increases the Potency of a Fungal Insecticide. Nature Biotechnology, 25, 1455-1456. https://doi.org/10.1038/nbt1357
|
[26]
|
Cui, C., Wang, Y., Li, Y., Sun, P., Jiang, J., Zhou, H., et al. (2022) Expression of Mosquito miRNAs in Entomopathogenic Fungus Induces Pathogen-Mediated Host RNA Interference and Increases Fungal Efficacy. Cell Reports, 41, Article ID: 111527. https://doi.org/10.1016/j.celrep.2022.111527
|
[27]
|
Fang, W., Azimzadeh, P. and St. Leger, R.J. (2012) Strain Improvement of Fungal Insecticides for Controlling Insect Pests and Vector-Borne Diseases. Current Opinion in Microbiology, 15, 232-238. https://doi.org/10.1016/j.mib.2011.12.012
|
[28]
|
Zhao, H., Lovett, B. and Fang, W. (2016) Genetically Engineering Entomopathogenic Fungi. Advances in Genetics, 94, 137-163. https://doi.org/10.1016/bs.adgen.2015.11.001
|
[29]
|
Deng, S., Zou, W., Li, D., Chen, J., Huang, Q., Zhou, L., et al. (2019) Expression of Bacillus thuringiensis Toxin Cyt2Ba in the Entomopathogenic Fungus Beauveria bassiana Increases Its Virulence towards Aedes Mosquitoes. PLOS Neglected Tropical Diseases, 13, e0007590. https://doi.org/10.1371/journal.pntd.0007590
|
[30]
|
Deng, S., Cai, Q., Deng, M., Huang, Q. and Peng, H. (2017) Scorpion Neurotoxin AaIT-Expressing Beauveria bassiana Enhances the Virulence against Aedes albopictus Mosquitoes. AMB Express, 7, Article No. 121. https://doi.org/10.1186/s13568-017-0422-1
|
[31]
|
Fan, Y., Borovsky, D., Hawkings, C., Ortiz-Urquiza, A. and Keyhani, N.O. (2012) Exploiting Host Molecules to Augment Mycoinsecticide Virulence. Nature Biotechnology, 30, 35-37. https://doi.org/10.1038/nbt.2080
|
[32]
|
Shang, Y., Duan, Z., Huang, W., Gao, Q. and Wang, C. (2012) Improving UV Resistance and Virulence of Beauveria bassiana by Genetic Engineering with an Exogenous Tyrosinase Gene. Journal of Invertebrate Pathology, 109, 105-109. https://doi.org/10.1016/j.jip.2011.10.004
|
[33]
|
Liao, X., Lu, H., Fang, W. and St. Leger, R.J. (2013) Overexpression of a Metarhizium robertsii HSP25 Gene Increases Thermotolerance and Survival in Soil. Applied Microbiology and Biotechnology, 98, 777-783. https://doi.org/10.1007/s00253-013-5360-5
|
[34]
|
Du, Y., Xia, Y. and Jin, K. (2022) Enhancing the Biocontrol Potential of the Entomopathogenic Fungus in Multiple Respects via the Overexpression of a Transcription Factor Gene MaSom1. Journal of Fungi, 8, Article No. 105. https://doi.org/10.3390/jof8020105
|
[35]
|
Pava-Ripoll, M., Posada, F.J., Momen, B., Wang, C. and St Leger, R. (2008) Increased Pathogenicity against Coffee Berry Borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium anisopliae Expressing the Scorpion Toxin (AaIT) Gene. Journal of Invertebrate Pathology, 99, 220-226. https://doi.org/10.1016/j.jip.2008.05.004
|
[36]
|
Hu, J. and Xia, Y. (2018) Increased Virulence in the Locust-Specific Fungal Pathogen Metarhizium acridum Expressing dsRNAs Targeting the Host F1F0-ATPase Subunit Genes. Pest Management Science, 75, 180-186. https://doi.org/10.1002/ps.5085
|
[37]
|
Wen, Z., Tian, H., Xia, Y. and Jin, K. (2021) O-Mannosyltransferase MaPmt2 Contributes to Stress Tolerance, Cell Wall Integrity and Virulence in Metarhizium acridum. Journal of Invertebrate Pathology, 184, Article ID: 107649. https://doi.org/10.1016/j.jip.2021.107649
|
[38]
|
Bilgo, E., Lovett, B., Bayili, K., Millogo, A.S., Saré, I., Dabiré, R.K., et al. (2018) Transgenic Metarhizium pingshaense Synergistically Ameliorates Pyrethroid-Resistance in Wild-Caught, Malaria-Vector Mosquitoes. PLOS ONE, 13, e0203529. https://doi.org/10.1371/journal.pone.0203529
|
[39]
|
Lovett, B., Bilgo, E., Millogo, S.A., Ouattarra, A.K., Sare, I., Gnambani, E.J., et al. (2019) Transgenic Metarhizium Rapidly Kills Mosquitoes in a Malaria-Endemic Region of Burkina Faso. Science, 364, 894-897. https://doi.org/10.1126/science.aaw8737
|
[40]
|
Lovett, B., Bilgo, E., Diabate, A. and St. Leger, R. (2019) A Review of Progress toward Field Application of Transgenic Mosquitocidal Entomopathogenic Fungi. Pest Management Science, 75, 2316-2324. https://doi.org/10.1002/ps.5385
|
[41]
|
Singh, G. and Prakash, S. (2014) New Prospective on Fungal Pathogens for Mosquitoes and Vectors Control Technology. Journal of Mosquito Research, 4, 36-52. https://doi.org/10.5376/jmr.2014.04.0007
|
[42]
|
Sundaravadivelan, C. and Padmanabhan, M.N. (2013) Effect of Mycosynthesized Silver Nanoparticles from Filtrate of Trichoderma harzianum against Larvae and Pupa of Dengue Vector Aedes aegypti L. Environmental Science and Pollution Research, 21, 4624-4633. https://doi.org/10.1007/s11356-013-2358-6
|
[43]
|
Banu, A.N. and Balasubramanian, C. (2014) Myco-Synthesis of Silver Nanoparticles Using Beauveria bassiana against Dengue Vector, Aedes aegypti (Diptera: Culicidae). Parasitology Research, 113, 2869-2877. https://doi.org/10.1007/s00436-014-3948-z
|
[44]
|
Banu, A.N. and Balasubramanian, C. (2014) Optimization and Synthesis of Silver Nanoparticles Using Isaria fumosorosea against Human Vector Mosquitoes. Parasitology Research, 113, 3843-3851. https://doi.org/10.1007/s00436-014-4052-0
|
[45]
|
Karabörklü, S., Azizoglu, U. and Azizoglu, Z.B. (2017) Recombinant Entomopathogenic Agents: A Review of Biotechnological Approaches to Pest Insect Control. World Journal of Microbiology and Biotechnology, 34, Article No. 14. https://doi.org/10.1007/s11274-017-2397-0
|
[46]
|
Lovett, B. and St. Leger, R.J. (2017) Genetically Engineering Better Fungal Biopesticides. Pest Management Science, 74, 781-789. https://doi.org/10.1002/ps.4734
|
[47]
|
Kamareddine, L., Fan, Y., Osta, M.A. and Keyhani, N.O. (2013) Expression of Trypsin Modulating Oostatic Factor (TMOF) in an Entomopathogenic Fungus Increases Its Virulence towards Anopheles gambiae and Reduces Fecundity in the Target Mosquito. Parasites & Vectors, 6, Article No. 22. https://doi.org/10.1186/1756-3305-6-22
|