[1]
|
Kumar, K.K., Nagai, M., Witayangkurn, A., Kritiyutanant, K. and Nakamura, S. (2016) Above Ground Biomass Assessment from Combined Optical and SAR Remote Sensing Data in Surat Thani Province, Thailand. Journal of Geographic Information System, 8, 506-516. https://doi.org/10.4236/jgis.2016.84042
|
[2]
|
Voosen, P. (2021) Global Temperatures in 2020 Tied Record Highs. Science, 371, 334-335. https://doi.org/10.1126/science.371.6527.334
|
[3]
|
Zhang, Y., Jin, Z. and Sikand, M. (2021) The Top-of-Atmosphere, Surface and Atmospheric Cloud Radiative Kernels Based on ISCCP-H Datasets: Method and Evaluation. Journal of Geophysical Research: Atmospheres, 126, e2021JD035053. https://doi.org/10.1029/2021jd035053
|
[4]
|
Borges, J.G., Diaz-Balteiro, L., McDill, M.E. and Rodriguez L.C.E. (2014) The Management of Industrial Forest Plantations: Theoretical Foundations and Applications. Springer.
|
[5]
|
Opuni-Frimpong, E., Nyarko-Duah, N.Y., Belford, E.J.D. and Storer, A.J. (2014) Silvicultural Systems for Restoration of Mahogany in Degraded Landscapes in Africa: Influence of Mixed Rainforest Plantation on Growth and Pest Damage. Open Journal of Forestry, 4, 414-425. https://doi.org/10.4236/ojf.2014.44046
|
[6]
|
Kinyanjui, M.J., Latva-Käyrä, P., Bhuwneshwar, P.S., Kariuki, P., Gichu, A. and Wamichwe, K. (2014) An Inventory of the above Ground Biomass in the Mau Forest Ecosystem, Kenya. Open Journal of Ecology, 4, 619-627. https://doi.org/10.4236/oje.2014.410052
|
[7]
|
Zhou, W., Cheng, X., Wu, R., Han, H., Kang, F., Zhu, J., et al. (2017) Effect of Intraspecific Competition on Biomass Partitioning of larix Principis-Rupprechtii. Journal of Plant Interactions, 13, 1-8. https://doi.org/10.1080/17429145.2017.1406999
|
[8]
|
Beaudet, M. and Messier, C. (1998) Growth and Morphological Responses of Yellow Birch, Sugar Maple, and Beech Seedlings Growing under a Natural Light Gradient. Canadian Journal of Forest Research, 28, 1007-1015. https://doi.org/10.1139/x98-077
|
[9]
|
Messier, C. and Nikinmaa, E. (2000) Effects of Light Availability and Sapling Size on the Growth, Biomass Allocation, and Crown Morphology of Understory Sugar Maple, Yellow Birch, and Beech. Écoscience, 7, 345-356. https://doi.org/10.1080/11956860.2000.11682604
|
[10]
|
Porté, A., Trichet, P., Bert, D. and Loustau, D. (2002) Allometric Relationships for Branch and Tree Woody Biomass of Maritime Pine (Pinus pinaster Aı̈t.). Forest Ecology and Management, 158, 71-83. https://doi.org/10.1016/s0378-1127(00)00673-3
|
[11]
|
Yang, B., Xue, W., Yu, S., Zhou, J. and Zhang, W. (2019) Effects of Stand Age on Biomass Allocation and Allometry of Quercus Acutissima in the Central Loess Plateau of China. Forests, 10, Article 41. https://doi.org/10.3390/f10010041
|
[12]
|
Gargaglione, V., Peri, P.L. and Rubio, G. (2010) Allometric Relations for Biomass Partitioning of Nothofagus Antarctica Trees of Different Crown Classes over a Site Quality Gradient. Forest Ecology and Management, 259, 1118-1126. https://doi.org/10.1016/j.foreco.2009.12.025
|
[13]
|
MacFarlane, D.W. (2015) A Generalized Tree Component Biomass Model Derived from Principles of Variable Allometry. Forest Ecology and Management, 354, 43-55. https://doi.org/10.1016/j.foreco.2015.06.038
|
[14]
|
Gomat, H.Y., Deleporte, P., Moukini, R., Mialounguila, G., Ognouabi, N., et al. (2011) What Factors Influence the Stem Taper of Eucalyptus: Growth, Environmental Conditions, or Genetics? Annals of Forest Science, 68, 109-120. https://doi.org/10.1007/s13595-011-0012-3
|
[15]
|
Bradshaw, A.D. (1965) Evolutionary Significance of Phenotypic Plasticity in Plants. In: Advances in Genetics, Elsevier, 115-155. https://doi.org/10.1016/s0065-2660(08)60048-6
|
[16]
|
Safou-Matondo, R., Deleporte, P., Laclau, J.P. and Bouillet, J.P. (2005) Hybrid and Clonal Variability of Nutrient Content and Nutrient Use Efficiency in Eucalyptus Stands in Congo. Forest Ecology and Management, 210, 193-204. https://doi.org/10.1016/j.foreco.2005.02.049
|
[17]
|
Johnson, D.W. and Todd, D.E. (1998) Harvesting Effects on Long-Term Changes in Nutrient Pools of Mixed Oak Forest. Soil Science Society of America Journal, 62, 1725-1735. https://doi.org/10.2136/sssaj1998.03615995006200060034x
|
[18]
|
Santa Regina, I. (2000) Biomass Estimation and Nutrient Pools in Four Quercus Pyrenaica in Sierra De Gata Mountains, Salamanca, Spain. Forest Ecology and Management, 132, 127-141. https://doi.org/10.1016/s0378-1127(99)00219-4
|
[19]
|
Miguel, A.d., Meffe, R., Leal, M., González-Naranjo, V., Martínez-Hernández, V., Lillo, J., et al. (2014) Treating Municipal Wastewater through a Vegetation Filter with a Short-Rotation Poplar Species. Ecological Engineering, 73, 560-568. https://doi.org/10.1016/j.ecoleng.2014.09.059
|
[20]
|
Davidson, R.L. (1969) Effect of Root/Leaf Temperature Differentials on Root/Shoot Ratios in Some Pasture Grasses and Clover. Annals of Botany, 33, 561-569. https://doi.org/10.1093/oxfordjournals.aob.a084308
|
[21]
|
Sebastià, M. (2006) Plant Guilds Drive Biomass Response to Global Warming and Water Availability in Subalpine Grassland. Journal of Applied Ecology, 44, 158-167. https://doi.org/10.1111/j.1365-2664.2006.01232.x
|
[22]
|
Fatemi, F.R., Yanai, R.D., Hamburg, S.P., Vadeboncoeur, M.A., Arthur, M.A., Briggs, R.D., et al. (2011) Allometric Equations for Young Northern Hardwoods: The Importance of Age-Specific Equations for Estimating Aboveground Biomass. Canadian Journal of Forest Research, 41, 881-891. https://doi.org/10.1139/x10-248
|
[23]
|
Shipley, B. and Meziane, D. (2002) The Balanced-Growth Hypothesis and the Allometry of Leaf and Root Biomass Allocation. Functional Ecology, 16, 326-331. https://doi.org/10.1046/j.1365-2435.2002.00626.x
|
[24]
|
Weiner, J. (2004) Allocation, Plasticity and Allometry in Plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. https://doi.org/10.1078/1433-8319-00083
|
[25]
|
Maherali, H. and DeLucia, E.H. (2001) Influence of Climate-Driven Shifts in Biomass Allocation on Water Transport and Storage in Ponderosa Pine. Oecologia, 129, 481-491. https://doi.org/10.1007/s004420100758
|
[26]
|
Fan, J.W., Wang, K., Harris, W., Zhong, H.P., Hu, Z.M., Han, B., et al. (2009) Allocation of Vegetation Biomass across a Climate-Related Gradient in the Grasslands of Inner Mongolia. Journal of Arid Environments, 73, 521-528. https://doi.org/10.1016/j.jaridenv.2008.12.004
|
[27]
|
Wang, J.R., Zhong, A.L., Simard, S.W. and Kimmins, J.P. (1996) Aboveground Biomass and Nutrient Accumulation in an Age Sequence of Paper Birch (Betula papyrifera) in the Interior Cedar Hemlock Zone, British Columbia. Forest Ecology and Management, 83, 27-38. https://doi.org/10.1016/0378-1127(96)03703-6
|
[28]
|
Rapp, M., Santa Regina, I., Rico, M. and Gallego, H.A. (1999) Biomass, Nutrient Content, Litterfall and Nutrient Return to the Soil in Mediterranean Oak Forests. Forest Ecology and Management, 119, 39-49. https://doi.org/10.1016/s0378-1127(98)00508-8
|
[29]
|
Laclau, J., Bouillet, J. and Ranger, J. (2000) Dynamics of Biomass and Nutrient Accumulation in a Clonal Plantation of Eucalyptus in Congo. Forest Ecology and Management, 128, 181-196. https://doi.org/10.1016/s0378-1127(99)00146-2
|
[30]
|
Xiang, W., Li, L., Ouyang, S., Xiao, W., Zeng, L., Chen, L., et al. (2020) Effects of Stand Age on Tree Biomass Partitioning and Allometric Equations in Chinese Fir (Cunninghamia lanceolata) Plantations. European Journal of Forest Research, 140, 317-332. https://doi.org/10.1007/s10342-020-01333-0
|
[31]
|
Peichl, M. and Arain, M.A. (2007) Allometry and Partitioning of Above and Belowground Tree Biomass in an Age-Sequence of White Pine Forests. Forest Ecology and Management, 253, 68-80. https://doi.org/10.1016/j.foreco.2007.07.003
|
[32]
|
Markgraf, R., Doyon, F., Delagrange, S. and Kneeshaw, D. (2023) Biomass Allocation and Plant Morphology Explain the Difference in Shrub Species Abundance in a Temperate Forest. Ecology and Evolution, 13, e10774. https://doi.org/10.1002/ece3.10774
|
[33]
|
Müller, I., Schmid, B. and Weiner, J. (2000) The Effect of Nutrient Availability on Biomass Allocation Patterns in 27 Species of Herbaceous Plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 115-127. https://doi.org/10.1078/1433-8319-00007
|
[34]
|
Rozenberg, P., Franc, A., Bastien, C. and Cahalan, C. (2001) Improving Models of Wood Density by Including Genetic Effects: A Case Study in Douglas-Fir. Annals of Forest Science, 58, 385-394. https://doi.org/10.1051/forest:2001132
|
[35]
|
Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P. and Mommer, L. (2011) Biomass Allocation to Leaves, Stems and Roots: Meta-Analyses of Interspecific Variation and Environmental Control. New Phytologist, 193, 30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
|
[36]
|
Poorter, H., Jagodzinski, A.M., Ruiz-Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., et al. (2015) How Does Biomass Distribution Change with Size and Differ among Species? An Analysis for 1200 Plant Species from Five Continents. New Phytologist, 208, 736-749. https://doi.org/10.1111/nph.13571
|
[37]
|
Saint-André, L., M’Bou, A.T., Mabiala, A., Mouvondy, W., Jourdan, C., Roupsard, O., et al. (2005) Age-Related Equations for Above and Below-Ground Biomass of a Eucalyptus Hybrid in Congo. Forest Ecology and Management, 205, 199-214. https://doi.org/10.1016/j.foreco.2004.10.006
|
[38]
|
Pilli, R., Anfodillo, T. and Carrer, M. (2006) Towards a Functional and Simplified Allometry for Estimating Forest Biomass. Forest Ecology and Management, 237, 583-593. https://doi.org/10.1016/j.foreco.2006.10.004
|
[39]
|
Wu, G.S. and Wang, Z.Q. (2000) Individual Tree Growth Competition Mode! In Mixed Plantation of Manchurian ash and Dahurian Larch. Chinese Journal of Applied Ecology, 11, 646-650.
|
[40]
|
Cao, Y., Wang, T., Xiao, Y. and Zhou, B. (2013) The Interspecific Competition Betweenhumulus Scandensandalternanthera Philoxeroides. Journal of Plant Interactions, 9, 194-199. https://doi.org/10.1080/17429145.2013.808767
|
[41]
|
Fox, T.R., Jokela, E.J. and Allen, H.L. (2007) The Development of Pine Plantation Silviculture in the Southern United States. Journal of Forestry, 105, 337-347. https://doi.org/10.1093/jof/105.7.337
|
[42]
|
Lin, Y., Huth, F., Berger, U. and Grimm, V. (2013) The Role of Belowground Competition and Plastic Biomass Allocation in Altering Plant Mass-Density Relationships. Oikos, 123, 248-256. https://doi.org/10.1111/j.1600-0706.2013.00921.x
|
[43]
|
Petersen, K.S., Ares, A., Terry, T.A. and Harrison, R.B. (2007) Vegetation Competition Effects on Aboveground Biomass and Macronutrients, Leaf Area, and Crown Structure in 5-Year Old Douglas-Fir. New Forests, 35, 299-311. https://doi.org/10.1007/s11056-007-9078-z
|
[44]
|
Dutcă, I., Mather, R., Blujdea, V.N.B., Ioraș, F., Olari, M. and Abrudan, I.V. (2018) Site-Effects on Biomass Allometric Models for Early Growth Plantations of Norway Spruce (Picea abies (L.) Karst.). Biomass and Bioenergy, 116, 8-17. https://doi.org/10.1016/j.biombioe.2018.05.013
|
[45]
|
Binkley, D. (2004) A Hypothesis about the Interaction of Tree Dominance and Stand Production through Stand Development. Forest Ecology and Management, 190, 265-271. https://doi.org/10.1016/j.foreco.2003.10.018
|
[46]
|
Peri, P.L., Gargaglione, V. and Pastur, G.M. (2006) Dynamics of Above and Below-Ground Biomass and Nutrient Accumulation in an Age Sequence of Nothofagus Antarctica Forest of Southern Patagonia. Forest Ecology and Management, 233, 85-99. https://doi.org/10.1016/j.foreco.2006.06.009
|
[47]
|
Xie, S., Kosaka, Y., Du, Y., Hu, K., Chowdary, J.S. and Huang, G. (2016) Indo-Western Pacific Ocean Capacitor and Coherent Climate Anomalies in Post-Enso Summer: A Review. Advances in Atmospheric Sciences, 33, 411-432. https://doi.org/10.1007/s00376-015-5192-6
|
[48]
|
Forrester, D.I., Benneter, A., Bouriaud, O. and Bauhus, J. (2016) Diversity and Competition Influence Tree Allometric Relationships—Developing Functions for Mixed-Species Forests. Journal of Ecology, 105, 761-774. https://doi.org/10.1111/1365-2745.12704
|
[49]
|
Garcia Villacorta, A.M., Martin, T.A., Jokela, E.J., Cropper, W.P. and Gezan, S.A. (2015) Variation in Biomass Distribution and Nutrient Content in Loblolly Pine (Pinus taeda L.) Clones Having Contrasting Crown Architecture and Growth Efficiency. Forest Ecology and Management, 342, 84-92. https://doi.org/10.1016/j.foreco.2015.01.012
|
[50]
|
Han, P., Zhang, W., Wang, G., Sun, W. and Huang, Y. (2016) Changes in Soil Organic Carbon in Croplands Subjected to Fertilizer Management: A Global Meta-Analysis. Scientific Reports, 6, Article 27199. https://doi.org/10.1038/srep27199
|
[51]
|
Wienhold, B.J., Varvel, G.E., Johnson, J.M.F. and Wilhelm, W.W. (2013) Carbon Source Quality and Placement Effects on Soil Organic Carbon Status. BioEnergy Research, 6, 786-796. https://doi.org/10.1007/s12155-013-9301-z
|
[52]
|
Peichl, M., Moore, T.R., Arain, M.A., Dalva, M., Brodkey, D. and McLaren, J. (2007) Concentrations and Fluxes of Dissolved Organic Carbon in an Age-Sequence of White Pine Forests in Southern Ontario, Canada. Biogeochemistry, 86, 1-17. https://doi.org/10.1007/s10533-007-9138-7
|
[53]
|
Zhang, J., Zhang, J., Mattson, K. and Finley, K. (2020) Effect of Silviculture on Carbon Pools during Development of a Ponderosa Pine Plantation. Forests, 11, Article 997. https://doi.org/10.3390/f11090997
|
[54]
|
Thornley, J.H.M. (1972) A Balanced Quantitative Model for Root: Shoot Ratios in Vegetative Plants. Annals of Botany, 36, 431-441. https://doi.org/10.1093/oxfordjournals.aob.a084602
|
[55]
|
Bloom, A.J., Chapin, F.S. and Mooney, H.A. (1985) Resource Limitation in Plants-An Economic Analogy. Annual Review of Ecology and Systematics, 16, 363-392. https://doi.org/10.1146/annurev.es.16.110185.002051
|
[56]
|
Philippe, V. (1991) Création et amélioration de variétés d’hybrides d’Eucalyptus au Congo. In: Intensive Forestry: The Role of Eucalyptus, 345-360.
|
[57]
|
Nouvellon, Y., Laclau, J.-P., Epron, D., Le Maire, G., Bonnefond, J.-M., Goncalves, J.L.M., et al. (2012) Production and Carbon Allocation in Monocultures and Mixed-Species Plantations of Eucalyptus Grandis and Acacia Mangium in Brazil. Tree Physiology, 32, 680-695. https://doi.org/10.1093/treephys/tps041
|
[58]
|
Descoing, B. (1975) Esquise phytogéographique du Congo. Atlas du Congo. O.R.S.T.O.M, Paris.
|
[59]
|
FAO (1998) World Reference Base for Soil Resources, by ISSS-ISRIC-FAO. World Soil Resources Report No. 84.
|
[60]
|
Mareschal, L., Nzila, J.D.D., Turpault, M.P., Thongo M'Bou, A., Mazoumbou, J.C., Bouillet, J.P., et al. (2011) Mineralogical and Physico-Chemical Properties of Ferralic Arenosols Derived from Unconsolidated Plio-Pleistocenic Deposits in the Coastal Plains of Congo. Geoderma, 162, 159-170. https://doi.org/10.1016/j.geoderma.2011.01.017
|
[61]
|
Loumeto, J.N. (1991) Données premières sur la végétation du sous bois des Eucalyptus des sables côtiers du Congo. Université Marien Ngouabi.
|
[62]
|
Picard, N., Saint-André, L. and Henry, M. (2012) Manuel de construction d’équations allométriques pour l’estimation du volume et la biomasse des arbres: De la mesure de terrain à la prédiction.
|
[63]
|
R Development Core Team (2010) R: A Language and Environment for Statistical Computing. http://www.R-project.org
|
[64]
|
Konôpka, B., Pajtík, J., Moravčík, M. and Lukac, M. (2010) Biomass Partitioning and Growth Efficiency in Four Naturally Regenerated Forest Tree Species. Basic and Applied Ecology, 11, 234-243. https://doi.org/10.1016/j.baae.2010.02.004
|
[65]
|
Zhang, H., Song, T., Wang, K., Du, H., Yue, Y., Wang, G., et al. (2014) Biomass and Carbon Storage in an Age-Sequence of Cyclobalanopsis Glauca Plantations in Southwest China. Ecological Engineering, 73, 184-191. https://doi.org/10.1016/j.ecoleng.2014.09.008
|
[66]
|
Helmisaari, H., Makkonen, K., Kellomäki, S., Valtonen, E. and Mälkönen, E. (2002) Below and Above-Ground Biomass, Production and Nitrogen Use in Scots Pine Stands in Eastern Finland. Forest Ecology and Management, 165, 317-326. https://doi.org/10.1016/s0378-1127(01)00648-x
|
[67]
|
Niklas, K.J. (2004) Modelling below and Above-Ground Biomass for Non-Woody and Woody Plants. Annals of Botany, 95, 315-321. https://doi.org/10.1093/aob/mci028
|
[68]
|
Zhang, W., Jia, X., Morris, E.C., Bai, Y. and Wang, G. (2012) Stem, Branch and Leaf Biomass-Density Relationships in Forest Communities. Ecological Research, 27, 819-825. https://doi.org/10.1007/s11284-012-0959-z
|
[69]
|
Unger, M., Homeier, J. and Leuschner, C. (2012) Effects of Soil Chemistry on Tropical Forest Biomass and Productivity at Different Elevations in the Equatorial Andes. Oecologia, 170, 263-274. https://doi.org/10.1007/s00442-012-2295-y
|
[70]
|
Dahlhausen, J., Uhl, E., Heym, M., Biber, P., Ventura, M., Panzacchi, P., et al. (2017) Stand Density Sensitive Biomass Functions for Young Oak Trees at Four Different European Sites. Trees, 31, 1811-1826. https://doi.org/10.1007/s00468-017-1586-7
|
[71]
|
Huang, X., Chonghua, X.U., Jun, X.U., Tao, X. and Xiaoniu, X.U. (2017) Structural Equation Model Analysis of the Relationship between Environmental and Stand Factors and Net Primary Productivity in Cunninghamia Lanceolata Forests. Acta Ecologica Sinica, 37, 2274-2281.
|