[1]
|
(2020) Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet (London, England), 396, 1204-1222.
|
[2]
|
Brenner, M.B., McLean, J., Dialynas, D.P., Strominger, J.L., Smith, J.A., Owen, F.L., et al. (1986) Identification of a Putative Second T-Cell Receptor. Nature, 322, 145-149. https://doi.org/10.1038/322145a0
|
[3]
|
Saura-Esteller, J., de Jong, M., King, L.A., Ensing, E., Winograd, B., de Gruijl, T.D., et al. (2022) Gamma Delta T-Cell Based Cancer Immunotherapy: Past-Present-Future. Frontiers in Immunology, 13, Article ID: 915837. https://doi.org/10.3389/fimmu.2022.915837
|
[4]
|
Casetti, R. and Martino, A. (2008) The Plasticity of γδ T Cells: Innate Immunity, Antigen Presentation and New Immunotherapy. Cellular & Molecular Immunology, 5, 161-170. https://doi.org/10.1038/cmi.2008.20
|
[5]
|
Mabuchi, T., Takekoshi, T. and Hwang, S.T. (2011) Epidermal CCR6+ γδ T Cells Are Major Producers of IL-22 and IL-17 in a Murine Model of Psoriasiform Dermatitis. The Journal of Immunology, 187, 5026-5031. https://doi.org/10.4049/jimmunol.1101817
|
[6]
|
Murphy, A.G., O’Keeffe, K.M., Lalor, S.J., Maher, B.M., Mills, K.H.G. and McLoughlin, R.M. (2014) Staphylococcus aureus Infection of Mice Expands a Population of Memory γδ T Cells That Are Protective against Subsequent Infection. The Journal of Immunology, 192, 3697-3708. https://doi.org/10.4049/jimmunol.1303420
|
[7]
|
Meraviglia, S., El Daker, S., Dieli, F., Martini, F. and Martino, A. (2011) γδT Cells Cross-Link Innate and Adaptive Immunity in Mycobacterium tuberculosis Infection. Clinical and Developmental Immunology, 2011, Article ID: 587315. https://doi.org/10.1155/2011/587315
|
[8]
|
Chen, Z.W. (2012) Multifunctional Immune Responses of Hmbpp-Specific Vγ2Vδ2 T Cells in M. tuberculosis and Other Infections. Cellular & Molecular Immunology, 10, 58-64. https://doi.org/10.1038/cmi.2012.46
|
[9]
|
D’Souza, M.P., Adams, E., Altman, J.D., Birnbaum, M.E., Boggiano, C., Casorati, G., et al. (2019) Casting a Wider Net: Immunosurveillance by Nonclassical MHC Molecules. PLOS Pathogens, 15, e1007567. https://doi.org/10.1371/journal.ppat.1007567
|
[10]
|
Van Rhijn, I., Kasmar, A., de Jong, A., Gras, S., Bhati, M., Doorenspleet, M.E., et al. (2013) A Conserved Human T Cell Population Targets Mycobacterial Antigens Presented by CD1b. Nature Immunology, 14, 706-713. https://doi.org/10.1038/ni.2630
|
[11]
|
De Libero, G., Singhal, A., Lepore, M. and Mori, L. (2014) Nonclassical T Cells and Their Antigens in Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 4, a018473. https://doi.org/10.1101/cshperspect.a018473
|
[12]
|
Dieli, F., Troye-Blomberg, M., Ivanyi, J., Fournié, J.J., Krensky, A.M., Bonneville, M., et al. (2001) Granulysin-Dependent Killing of Intracellular and Extracellular Mycobacterium tuberculosisby Vγ9/Vδ2 T Lymphocytes. The Journal of Infectious Diseases, 184, 1082-1085. https://doi.org/10.1086/323600
|
[13]
|
Ali, Z., Shao, L., Halliday, L., Reichenberg, A., Hintz, M., Jomaa, H., et al. (2007) Prolonged (e)-4-Hydroxy-3-Methyl-But-2-Enyl Pyrophosphate-Driven Antimicrobial and Cytotoxic Responses of Pulmonary and Systemic Vγ2Vδ2 T Cells in Macaques. The Journal of Immunology, 179, 8287-8296. https://doi.org/10.4049/jimmunol.179.12.8287
|
[14]
|
Chen, C.Y., Yao, S., Huang, D., Wei, H., Sicard, H., Zeng, G., et al. (2013) Phosphoantigen/Il2 Expansion and Differentiation of Vγ2Vδ2 T Cells Increase Resistance to Tuberculosis in Nonhuman Primates. PLOS Pathogens, 9, e1003501. https://doi.org/10.1371/journal.ppat.1003501
|
[15]
|
Wei, H., Huang, D., Lai, X., Chen, M., Zhong, W., Wang, R., et al. (2008) Definition of APC Presentation of Phosphoantigen (e)-4-Hydroxy-3-Methyl-But-2-Enyl Pyrophosphate to Vγ2Vδ2 TCR. The Journal of Immunology, 181, 4798-4806. https://doi.org/10.4049/jimmunol.181.7.4798
|
[16]
|
Xia, M., Hesser, D.C., De, P., Sakala, I.G., Spencer, C.T., Kirkwood, J.S., et al. (2016) A Subset of Protective γ9δ2T Cells Is Activated by Novel Mycobacterial Glycolipid Components. Infection and Immunity, 84, 2449-2462. https://doi.org/10.1128/iai.01322-15
|
[17]
|
Corpuz, T.M., Stolp, J., Kim, H., Pinget, G.V., Gray, D.H.D., Cho, J., et al. (2016) Differential Responsiveness of Innate-Like IL-17-and IFN-γ-Producing γδ T Cells to Homeostatic Cytokines. The Journal of Immunology, 196, 645-654. https://doi.org/10.4049/jimmunol.1502082
|
[18]
|
El Daker, S., Sacchi, A., Montesano, C., Altieri, A.M., Galluccio, G., Colizzi, V., et al. (2013) An Abnormal Phenotype of Lung Vγ9Vδ2 T Cells Impairs Their Responsiveness in Tuberculosis Patients. Cellular Immunology, 282, 106-112. https://doi.org/10.1016/j.cellimm.2013.05.001
|
[19]
|
Lu, H., Li, D. and Jin, L. (2016) γδT Cells and Related Diseases. American Journal of Reproductive Immunology, 75, 609-618. https://doi.org/10.1111/aji.12495
|
[20]
|
Muro, R., Nitta, T., Nakano, K., Okamura, T., Takayanagi, H. and Suzuki, H. (2017) γδTCR Recruits the Syk/PI3K Axis to Drive Proinflammatory Differentiation Program. Journal of Clinical Investigation, 128, 415-426. https://doi.org/10.1172/jci95837
|
[21]
|
Shen, L., Frencher, J., Huang, D., Wang, W., Yang, E., Chen, C.Y., et al. (2019) Immunization of Vγ2Vδ2 T Cells Programs Sustained Effector Memory Responses That Control Tuberculosis in Nonhuman Primates. Proceedings of the National Academy of Sciences, 116, 6371-6378. https://doi.org/10.1073/pnas.1811380116
|
[22]
|
Chen, J., Fan, Y., Cui, B., Li, X., Yu, Y., Du, Y., et al. (2018) HMGN2: An Antitumor Effector Molecule of γδT Cells. Journal of Immunotherapy, 41, 118-124. https://doi.org/10.1097/cji.0000000000000211
|
[23]
|
Zhao, Y., Lin, L., Xiao, Z., Li, M., Wu, X., Li, W., et al. (2018) Protective Role of γδT Cells in Different Pathogen Infections and Its Potential Clinical Application. Journal of Immunology Research, 2018, Article ID: 5081634. https://doi.org/10.1155/2018/5081634
|
[24]
|
Chen, Z.W. (2016) Protective Immune Responses of Major Vγ2Vδ2 T-Cell Subset in M. tuberculosis Infection. Current Opinion in Immunology, 42, 105-112. https://doi.org/10.1016/j.coi.2016.06.005
|
[25]
|
Okamoto Yoshida, Y., Umemura, M., Yahagi, A., O’Brien, R.L., Ikuta, K., Kishihara, K., et al. (2010) Essential Role of IL-17A in the Formation of a Mycobacterial Infection-Induced Granuloma in the Lung. The Journal of Immunology, 184, 4414-4422. https://doi.org/10.4049/jimmunol.0903332
|
[26]
|
Liang, J., Fu, L., Li, M., Chen, Y., Wang, Y., Lin, Y., et al. (2021) Allogeneic Vγ9Vδ2 T-Cell Therapy Promotes Pulmonary Lesion Repair: An Open-Label, Single-Arm Pilot Study in Patients with Multidrug-Resistant Tuberculosis. Frontiers in Immunology, 12, Article ID: 756495. https://doi.org/10.3389/fimmu.2021.756495
|
[27]
|
Price, A.E., Reinhardt, R.L., Liang, H. and Locksley, R.M. (2012) Marking and Quantifying IL-17A-Producing Cells in Vivo. PLOS ONE, 7, e39750. https://doi.org/10.1371/journal.pone.0039750
|
[28]
|
Cheng, P., Liu, T., Zhou, W., Zhuang, Y., Peng, L., Zhang, J., et al. (2012) Role of Gamma-Delta T Cells in Host Response against Staphylococcus aureus-Induced Pneumonia. BMC Immunology, 13, Article No. 38. https://doi.org/10.1186/1471-2172-13-38
|
[29]
|
Liu, J., Qu, H., Li, Q., Ye, L., Ma, G. and Wan, H. (2013) The Responses of γδ T-Cells against Acute Pseudomonas aeruginosa Pulmonary Infection in Mice via Interleukin-17. Pathogens and Disease, 68, 44-51. https://doi.org/10.1111/2049-632x.12043
|
[30]
|
Liu, J., Feng, Y., Yang, K., Li, Q., Ye, L., Han, L., et al. (2011) Early Production of IL-17 Protects against Acute Pulmonary Pseudomonas aeruginosa Infection in Mice. FEMS Immunology & Medical Microbiology, 61, 179-188. https://doi.org/10.1111/j.1574-695x.2010.00764.x
|
[31]
|
Misiak, A., Wilk, M.M., Raverdeau, M. and Mills, K.H.G. (2017) IL-17-Producing Innate and Pathogen-Specific Tissue Resident Memory γδ T Cells Expand in the Lungs of Bordetella pertussis-Infected Mice. The Journal of Immunology, 198, 363-374. https://doi.org/10.4049/jimmunol.1601024
|
[32]
|
Cha, H., Xie, H., Jin, C., Feng, Y., Xie, S., Xie, A., et al. (2020) Adjustments of γδ T Cells in the Lung of Schistosoma Japonicum-Infected C56BL/6 Mice. Frontiers in Immunology, 11, Article No. 1045. https://doi.org/10.3389/fimmu.2020.01045
|
[33]
|
Murakami, T., Hatano, S., Yamada, H., Iwakura, Y. and Yoshikai, Y. (2016) Two Types of Interleukin 17a-Producing γδ T Cells in Protection against Pulmonary Infection with Klebsiella pneumoniae. Journal of Infectious Diseases, 214, 1752-1761. https://doi.org/10.1093/infdis/jiw443
|
[34]
|
Aujla, S.J., Chan, Y.R., Zheng, M., Fei, M., Askew, D.J., Pociask, D.A., et al. (2008) IL-22 Mediates Mucosal Host Defense against Gram-Negative Bacterial Pneumonia. Nature Medicine, 14, 275-281. https://doi.org/10.1038/nm1710
|
[35]
|
Borkner, L., Curham, L.M., Wilk, M.M., Moran, B. and Mills, K.H.G. (2021) IL-17 Mediates Protective Immunity against Nasal Infection with Bordetella Pertussis by Mobilizing Neutrophils, Especially Siglec-F+ Neutrophils. Mucosal Immunology, 14, 1183-1202. https://doi.org/10.1038/s41385-021-00407-5
|
[36]
|
Kirby, A.C., Newton, D.J., Carding, S.R. and Kaye, P.M. (2007) Evidence for the Involvement of Lung-Specific γδ T Cell Subsets in Local Responses to Streptococcus pneumoniae Infection. European Journal of Immunology, 37, 3404-3413. https://doi.org/10.1002/eji.200737216
|
[37]
|
Paget, C., Chow, M.T., Gherardin, N.A., Beavis, P.A., Uldrich, A.P., Duret, H., et al. (2014) Cd3bright Signals on γδ T Cells Identify Il-17a-Producing Vγ6Vδ1+ T Cells. Immunology & Cell Biology, 93, 198-212. https://doi.org/10.1038/icb.2014.94
|
[38]
|
Qin, G., Liu, Y., Zheng, J., Ng, I.H.Y., Xiang, Z., Lam, K., et al. (2011) Type 1 Responses of Human Vγ9Vδ2 T Cells to Influenza a Viruses. Journal of Virology, 85, 10109-10116. https://doi.org/10.1128/jvi.05341-11
|
[39]
|
Li, H., Xiang, Z., Feng, T., Li, J., Liu, Y., Fan, Y., et al. (2013) Human Vγ9Vδ2-T Cells Efficiently Kill Influenza Virus-Infected Lung Alveolar Epithelial Cells. Cellular & Molecular Immunology, 10, 159-164. https://doi.org/10.1038/cmi.2012.70
|
[40]
|
Tu, W., Zheng, J., Liu, Y., Sia, S.F., Liu, M., Qin, G., et al. (2011) The Aminobisphosphonate Pamidronate Controls Influenza Pathogenesis by Expanding a γδ T Cell Population in Humanized Mice. Journal of Experimental Medicine, 208, 1511-1522. https://doi.org/10.1084/jem.20110226
|
[41]
|
Xue, C., Wen, M., Bao, L., Li, H., Li, F., Liu, M., et al. (2017) Vγ4+γδT Cells Aggravate Severe H1N1 Influenza Virus Infection-Induced Acute Pulmonary Immunopathological Injury via Secreting Interleukin-17a. Frontiers in Immunology, 8, Article No. 1054. https://doi.org/10.3389/fimmu.2017.01054
|
[42]
|
Guo, X.J., Dash, P., Crawford, J.C., Allen, E.K., Zamora, A.E., Boyd, D.F., et al. (2018) Lung γδ T Cells Mediate Protective Responses during Neonatal Influenza Infection That Are Associated with Type 2 Immunity. Immunity, 49, 531-544.e6. https://doi.org/10.1016/j.immuni.2018.07.011
|
[43]
|
Hahn, Y., Taube, C., Jin, N., Takeda, K., Park, J., Wands, J.M., et al. (2003) Vγ4+ γδ T Cells Regulate Airway Hyperreactivity to Methacholine in Ovalbumin-Sensitized and Challenged Mice. The Journal of Immunology, 171, 3170-3178. https://doi.org/10.4049/jimmunol.171.6.3170
|
[44]
|
Poccia, F., Agrati, C., Castilletti, C., Bordi, L., Gioia, C., Horejsh, D., et al. (2006) Anti-severe Acute Respiratory Syndrome Coronavirus Immune Responses: The Role Played by Vγ9Vδ2 T Cells. The Journal of Infectious Diseases, 193, 1244-1249. https://doi.org/10.1086/502975
|
[45]
|
Fears, A.C., Walker, E.M., Chirichella, N., Slisarenko, N., Merino, K.M., Golden, N., et al. (2022) The Dynamics of γδ T Cell Responses in Nonhuman Primates during Sars-Cov-2 Infection. Communications Biology, 5, Article No. 1380. https://doi.org/10.1038/s42003-022-04310-y
|
[46]
|
Dejima, T., Shibata, K., Yamada, H., Hara, H., Iwakura, Y., Naito, S., et al. (2011) Protective Role of Naturally Occurring Interleukin-17a-Producing γδ T Cells in the Lung at the Early Stage of Systemic Candidiasis in Mice. Infection and Immunity, 79, 4503-4510. https://doi.org/10.1128/iai.05799-11
|
[47]
|
Wei, H., Jin, C., Peng, A., Xie, H., Xie, S., Feng, Y., et al. (2021) Characterization of γδT Cells in Lung of Plasmodium yoelii-Infected C57BL/6 Mice. Malaria Journal, 20, Article No. 89. https://doi.org/10.1186/s12936-021-03619-z
|
[48]
|
Sharma, M., Hegde, P., Aimanianda, V., Beau, R., Maddur, M.S., Sénéchal, H., et al. (2013) Circulating Human Basophils Lack the Features of Professional Antigen Presenting Cells. Scientific Reports, 3, Article No. 1188. https://doi.org/10.1038/srep01188
|
[49]
|
Michishita, Y., Hirokawa, M., Guo, Y., Abe, Y., Liu, J., Ubukawa, K., et al. (2011) Age-associated Alteration of γδ T-Cell Repertoire and Different Profiles of Activation-Induced Death of Vδ1 and Vδ2 T Cells. International Journal of Hematology, 94, 230-240. https://doi.org/10.1007/s12185-011-0907-7
|
[50]
|
Caccamo, N., Dieli, F., Wesch, D., Jomaa, H. and Eberl, M. (2006) Sex-Specific Phenotypical and Functional Differences in Peripheral Human Vγ9/Vδ2 T Cells. Journal of Leukocyte Biology, 79, 663-666. https://doi.org/10.1189/jlb.1105640
|
[51]
|
Kallemeijn, M.J., Boots, A.M.H., van der Klift, M.Y., Brouwer, E., Abdulahad, W.H., Verhaar, J.A.N., et al. (2017) Ageing and Latent CMV Infection Impact on Maturation, Differentiation and Exhaustion Profiles of T-Cell Receptor Gammadelta T-Cells. Scientific Reports, 7, Article No. 5509. https://doi.org/10.1038/s41598-017-05849-1
|
[52]
|
Wistuba-Hamprecht, K., Haehnel, K., Janssen, N., Demuth, I. and Pawelec, G. (2015) Peripheral Blood T-Cell Signatures from High-Resolution Immune Phenotyping of γδ and Αβ T-Cells in Younger and Older Subjects in the Berlin Aging Study II. Immunity & Ageing, 12, Article No. 25. https://doi.org/10.1186/s12979-015-0052-x
|
[53]
|
Andreu-Ballester, J.C., Tormo-Calandín, C., Garcia-Ballesteros, C., Pérez-Griera, J., Amigó, V., Almela-Quilis, A., et al. (2013) Association of γδ T Cells with Disease Severity and Mortality in Septic Patients. Clinical and Vaccine Immunology, 20, 738-746. https://doi.org/10.1128/cvi.00752-12
|
[54]
|
Tschöp, J., Martignoni, A., Goetzman, H.S., Choi, L.G., Wang, Q., Noel, J.G., et al. (2007) γδ T Cells Mitigate the Organ Injury and Mortality of Sepsis. Journal of Leukocyte Biology, 83, 581-588. https://doi.org/10.1189/jlb.0707507
|
[55]
|
Andreu-Ballester, J.C., Arribas, M.A., Rico, M., García-Ballesteros, C., Galindo-Regal, L., Sorando-Serra, R., et al. (2022) Changes of CD3+CD56+ γδ T Cell Number and Apoptosis during Hospital Admission Are Related to Mortality in Septic Patients. Clinical Immunology, 236, Article ID: 108956. https://doi.org/10.1016/j.clim.2022.108956
|
[56]
|
Liao, X., Feng, T., Zhang, J., Cao, X., Wu, Q., Xie, Z., et al. (2017) Phenotypic Changes and Impaired Function of Peripheral γδ T Cells in Patients with Sepsis. Shock, 48, 321-328. https://doi.org/10.1097/shk.0000000000000857
|
[57]
|
Zhao, N., Zhang, T., Zhao, Y., Zhang, J. and Wang, K. (2021) CD3+T, CD4+T, CD8+T, and CD4+T/CD8+T Ratio and Quantity of γδT Cells in Peripheral Blood of HIV-Infected/aids Patients and Its Clinical Significance. Computational and Mathematical Methods in Medicine, 2021, Article ID: 8746264. https://doi.org/10.1155/2021/8746264
|
[58]
|
Pauza, C.D., Poonia, B., Li, H., Cairo, C. and Chaudhry, S. (2015) γδT Cells in HIV Disease: Past, Present, and Future. Frontiers in Immunology, 5, Article No. 687. https://doi.org/10.3389/fimmu.2014.00687
|
[59]
|
Li, Z., Li, W., Li, N., Jiao, Y., Chen, D., Cui, L., et al. (2014) γδ T Cells Are Involved in Acute HIV Infection and Associated with AIDS Progression. PLOS ONE, 9, e106064. https://doi.org/10.1371/journal.pone.0106064
|
[60]
|
Deng, J. and Yin, H. (2022) Gamma Delta (γδ) T Cells in Cancer Immunotherapy; Where It Comes from, Where It Will Go? European Journal of Pharmacology, 919, Article ID: 174803. https://doi.org/10.1016/j.ejphar.2022.174803
|
[61]
|
Rimailho, L., Faria, C., Domagala, M., Laurent, C., Bezombes, C. and Poupot, M. (2023) γδ T Cells in Immunotherapies for B-Cell Malignancies. Frontiers in Immunology, 14, Article ID: 1200003. https://doi.org/10.3389/fimmu.2023.1200003
|