[1]
|
McDougall, A.R.A., Hastie, R., Goldstein, M., Tuttle, A., Ammerdorffer, A., Gülmezoglu, A.M., et al. (2023) New Medicines for Spontaneous Preterm Birth Prevention and Preterm Labour Management: Landscape Analysis of the Medicine Development Pipeline. BMC Pregnancy and Childbirth, 23, Article No. 525. https://doi.org/10.1186/s12884-023-05842-9
|
[2]
|
Ayele, T.B. and Moyehodie, Y.A. (2023) Prevalence of Preterm Birth and Associated Factors among Mothers Who Gave Birth in Public Hospitals of East Gojjam Zone, Ethiopia. BMC Pregnancy and Childbirth, 23, Article No. 204. https://doi.org/10.1186/s12884-023-05517-5
|
[3]
|
Labouesse, M.A., Langhans, W. and Meyer, U. (2015) Long-Term Pathological Consequences of Prenatal Infection: Beyond Brain Disorders. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309, R1-R12. https://doi.org/10.1152/ajpregu.00087.2015
|
[4]
|
Gomez-Lopez, N., Galaz, J., Miller, D., Farias-Jofre, M., Liu, Z., Arenas-Hernandez, M., et al. (2022) The Immunobiology of Preterm Labor and Birth: Intra-Amniotic Inflammation or Breakdown of Maternal-Fetal Homeostasis. Reproduction, 164, R11-R45. https://doi.org/10.1530/rep-22-0046
|
[5]
|
Green, E.S. and Arck, P.C. (2020) Pathogenesis of Preterm Birth: Bidirectional Inflammation in Mother and Fetus. Seminars in Immunopathology, 42, 413-429. https://doi.org/10.1007/s00281-020-00807-y
|
[6]
|
Moore, T.A., Ahmad, I.M. and Zimmerman, M.C. (2018) Oxidative Stress and Preterm Birth: An Integrative Review. Biological Research for Nursing, 20, 497-512. https://doi.org/10.1177/1099800418791028
|
[7]
|
Cundubey, C.R. and Demır, M.B. (2023) 8-Hydroxy-2-Deoxyguanosine, a Product of Oxidative DNA Degradation, Is Increased in the Amniotic Fluid of Preterm Births. European Review for Medical and Pharmacological Sciences, 27, 5184-5189.
|
[8]
|
Kirici, P., Cagiran, F.T. and Kali, Z. (2022) Impact of Spontaneous Preterm Birth on Amniotic Fluid NF-κB, IL-6, TNF-α and IL-1β Levels in Singleton Pregnancies Conceived after IVF/ICSI Treatment or Natural Conception. European Review for Medical and Pharmacological Sciences, 26, 8395-8400.
|
[9]
|
Murata, T., Kyozuka, H., Fukuda, T., Imaizumi, K., Isogami, H., Kanno, A., et al. (2024) Urinary 8-Hydroxy-2'-Deoxyguanosine Levels and Preterm Births: A Prospective Cohort Study from the Japan Environment and Children’s Study. BMJ Open, 14, e063619. https://doi.org/10.1136/bmjopen-2022-063619
|
[10]
|
Colson, A., Sonveaux, P., Debiève, F. and Sferruzzi-Perri, A.N. (2020) Adaptations of the Human Placenta to Hypoxia: Opportunities for Interventions in Fetal Growth Restriction. Human Reproduction Update, 27, 531-569. https://doi.org/10.1093/humupd/dmaa053
|
[11]
|
Phoswa, W.N. and Khaliq, O.P. (2021) The Role of Oxidative Stress in Hypertensive Disorders of Pregnancy (Preeclampsia, Gestational Hypertension) and Metabolic Disorder of Pregnancy (Gestational Diabetes Mellitus). Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5581570. https://doi.org/10.1155/2021/5581570
|
[12]
|
Hussain, T., Murtaza, G., Metwally, E., Kalhoro, D.H., Kalhoro, M.S., Rahu, B.A., et al. (2021) The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators of Inflammation, 2021, 1-11. https://doi.org/10.1155/2021/9962860
|
[13]
|
Prearo Moço, N., Ribeiro de Andrade Ramos, B., de Castro Silva, M., Polettini, J., Menon, R. and Guimarães da Silva, M. (2020) Spontaneous Prematurity, Innate Immune System, and Oxidative Stress at the Maternal-Fetal Interface: An Overview. In: Nunes, A.C.F., Ed., Translational Studies on Inflammation, IntechOpen. https://doi.org/10.5772/intechopen.88379
|
[14]
|
Nolfi-Donegan, D., Braganza, A. and Shiva, S. (2020) Mitochondrial Electron Transport Chain: Oxidative Phosphorylation, Oxidant Production, and Methods of Measurement. Redox Biology, 37, Article 101674. https://doi.org/10.1016/j.redox.2020.101674
|
[15]
|
Georgiou, C.D. and Margaritis, L.H. (2021) Oxidative Stress and NADPH Oxidase: Connecting Electromagnetic Fields, Cation Channels and Biological Effects. International Journal of Molecular Sciences, 22, Article 10041. https://doi.org/10.3390/ijms221810041
|
[16]
|
Guerby, P., Tasta, O., Swiader, A., Pont, F., Bujold, E., Parant, O., et al. (2021) Role of Oxidative Stress in the Dysfunction of the Placental Endothelial Nitric Oxide Synthase in Preeclampsia. Redox Biology, 40, Article 101861. https://doi.org/10.1016/j.redox.2021.101861
|
[17]
|
Graille, M., Wild, P., Sauvain, J., Hemmendinger, M., Guseva Canu, I. and Hopf, N.B. (2020) Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. International Journal of Molecular Sciences, 21, Article 3743. https://doi.org/10.3390/ijms21113743
|
[18]
|
Lembo, C., Buonocore, G. and Perrone, S. (2021) Oxidative Stress in Preterm Newborns. Antioxidants, 10, Article 1672. https://doi.org/10.3390/antiox10111672
|
[19]
|
Katti, K., Ayasolla, K.R., Iurcotta, T., Potak, D., Codipilly, C. and Weinberger, B. (2021) Lipid Peroxidation Products as Predictors of Oxidant-Mediated Disease in Preterm Infants. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 4878-4883. https://doi.org/10.1080/14767058.2020.1869934
|
[20]
|
Rathod, P., Desai, A. and Chandel, D. (2024) Role of Oxidative Stress and DNA Damage on Preterm Birth Outcome. Biological Research for Nursing, 26, 410-417. https://doi.org/10.1177/10998004241230638
|
[21]
|
Grzeszczak, K., Kapczuk, P., Kupnicka, P., Simińska, D.K., Lebdowicz-Knul, J., Kwiatkowski, S.K., et al. (2023) The Trace Element Concentrations and Oxidative Stress Parameters in Afterbirths from Women with Multiple Pregnancies. Biomolecules, 13, Article 797. https://doi.org/10.3390/biom13050797
|
[22]
|
Piotrowska, K., Zgutka, K., Tkacz, M. and Tarnowski, M. (2023) Physical Activity as a Modern Intervention in the Fight against Obesity-Related Inflammation in Type 2 Diabetes Mellitus and Gestational Diabetes. Antioxidants, 12, Article 1488. https://doi.org/10.3390/antiox12081488
|
[23]
|
Hung, T., Chen, S., Hsieh, T., Lo, L., Li, M. and Yeh, Y. (2011) The Associations between Labor and Delivery Mode and Maternal and Placental Oxidative Stress. Reproductive Toxicology, 31, 144-150. https://doi.org/10.1016/j.reprotox.2010.11.009
|
[24]
|
Wu, M., Bian, Q., Liu, Y., Fernandes, A., Taylor, A., Pereira, P., et al. (2009) Sustained Oxidative Stress Inhibits NF-κB Activation Partially via Inactivating the Proteasome. Free Radical Biology and Medicine, 46, 62-69. https://doi.org/10.1016/j.freeradbiomed.2008.09.021
|
[25]
|
Meihe, L., Shan, G., Minchao, K., Xiaoling, W., Peng, A., Xili, W., et al. (2021) The Ferroptosis-NLRP1 Inflammasome: The Vicious Cycle of an Adverse Pregnancy. Frontiers in Cell and Developmental Biology, 9, Article 707959. https://doi.org/10.3389/fcell.2021.707959
|
[26]
|
Socha, M.W., Flis, W., Wartęga, M. and Stankiewicz, M. (2022) Impact of Oxidative Stress on Molecular Mechanisms of Cervical Ripening in Pregnant Women. International Journal of Molecular Sciences, 23, Article 12780. https://doi.org/10.3390/ijms232112780
|
[27]
|
Zych, B., Górka, A., Myszka, A., Błoniarz, D., Siekierzyńska, A. and Błaż, W. (2022) Status of Oxidative Stress during Low-Risk Labour: Preliminary Data. International Journal of Environmental Research and Public Health, 20, Article 157. https://doi.org/10.3390/ijerph20010157
|
[28]
|
Tantengco, O.A.G., Vink, J., Medina, P.M.B. and Menon, R. (2021) Oxidative Stress Promotes Cellular Damages in the Cervix: Implications for Normal and Pathologic Cervical Function in Human Pregnancy. Biology of Reproduction, 105, 204-216. https://doi.org/10.1093/biolre/ioab058
|