|
[1]
|
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.[CrossRef] [PubMed]
|
|
[2]
|
Siegel, R.L., Miller, K.D. and Jemal, A. (2020) Cancer Statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 7-30.[CrossRef] [PubMed]
|
|
[3]
|
He, J., Li, N., Chen, W.Q., et al. (2021) Chinese Guidelines for Screening, Early Diagnosis and Early Treatment of Lung Cancer. Chinese Journal of Oncology, 43, 243-268.
|
|
[4]
|
Yang, C., Yang, J.C. and Yang, P. (2020) Precision Management of Advanced Non-Small Cell Lung Cancer. Annual Review of Medicine, 71, 117-136.[CrossRef] [PubMed]
|
|
[5]
|
Peggs, K.S., Quezada, S.A., Chambers, C.A., Korman, A.J. and Allison, J.P. (2009) Blockade of CTLA-4 on Both Effector and Regulatory T Cell Compartments Contributes to the Antitumor Activity of Anti-CTLA-4 Antibodies. Journal of Experimental Medicine, 206, 1717-1725.[CrossRef] [PubMed]
|
|
[6]
|
Lahiri, A., Maji, A., Potdar, P.D., Singh, N., Parikh, P., Bisht, B., et al. (2023) Lung Cancer Immunotherapy: Progress, Pitfalls, and Promises. Molecular Cancer, 22, Article No. 40.[CrossRef] [PubMed]
|
|
[7]
|
Garon, E.B., Rizvi, N.A., Hui, R., Leighl, N., Balmanoukian, A.S., Eder, J.P., et al. (2015) Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer. New England Journal of Medicine, 372, 2018-2028.[CrossRef] [PubMed]
|
|
[8]
|
Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., et al. (2019) Updated Analysis of KEYNOTE-024: Pembrolizumab versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score of 50% or Greater. Journal of Clinical Oncology, 37, 537-546.[CrossRef] [PubMed]
|
|
[9]
|
Theelen, W.S.M.E. and Baas, P. (2019) Pembrolizumab Monotherapy for PD-L1 ≥ 50% Non-Small Cell Lung Cancer, Undisputed First Choice? Annals of Translational Medicine, 7, S140-S140.[CrossRef] [PubMed]
|
|
[10]
|
Mok, T.S.K., Wu, Y.L., Kudaba, I., et al. (2019) Pembrolizumab versus Chemotherapy for Previously Untreated, PD-Ll-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomized, Open-Label, Controlled, Phase 3 Trial. The Lancet, 393, 1819-1830.
|
|
[11]
|
Novello, S., Kowalski, D.M., Luft, A., Gümüş, M., Vicente, D., Mazières, J., et al. (2023) Pembrolizumab Plus Chemotherapy in Squamous Non-Small-Cell Lung Cancer: 5-Year Update of the Phase III KEYNOTE-407 Study. Journal of Clinical Oncology, 41, 1999-2006.[CrossRef] [PubMed]
|
|
[12]
|
Cheng, Y., Zhang, L., Hu, J., Wang, D., Hu, C., Zhou, J., et al. (2021) Pembrolizumab Plus Chemotherapy for Chinese Patients with Metastatic Squamous NSCLC in Keynote-407. JTO Clinical and Research Reports, 2, Article ID: 100225.[CrossRef] [PubMed]
|
|
[13]
|
Tomasini, P., Khobta, N., Greillier, L. and Barlesi, F. (2011) Ipilimumab: Its Potential in Non-Small Cell Lung Cancer. Therapeutic Advances in Medical Oncology, 4, 43-50.[CrossRef] [PubMed]
|
|
[14]
|
Lynch, T.J., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., et al. (2012) Ipilimumab in Combination with Paclitaxel and Carboplatin as First-Line Treatment in Stage IIIB/IV Non-Small-Cell Lung Cancer: Results from a Randomized, Double-Blind, Multi-Center Phase II Study. Journal of Clinical Oncology, 30, 2046-2054.[CrossRef] [PubMed]
|
|
[15]
|
Hellmann, M.D., Paz-Ares, L., Bernabe Caro, R., Zurawski, B., Kim, S., Carcereny Costa, E., et al. (2019) Nivolumab Plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. New England Journal of Medicine, 381, 2020-2031.[CrossRef] [PubMed]
|
|
[16]
|
Deng, H. and Zhou, C. (2021) From Checkmate 227 to Checkmate 9LA: Rethinking the Status of Chemotherapy in the Immunotherapy Era-Chemo-Free or Chemo-Reform? Translational Lung Cancer Research, 10, 1924-1927.[CrossRef] [PubMed]
|
|
[17]
|
Paz-Ares, L., Ciuleanu, T., Cobo, M., Schenker, M., Zurawski, B., Menezes, J., et al. (2021) First-Line Nivolumab Plus Ipilimumab Combined with Two Cycles of Chemotherapy in Patients with Non-Small-Cell Lung Cancer (Checkmate 9LA): An International, Randomized, Open-Label, Phase 3 Trial. The Lancet Oncology, 22, 198-211.[CrossRef] [PubMed]
|
|
[18]
|
Melincovici, C.S., Bosca, A.B., Susman, S., et al. (2018) Vascular Endothelial Growth Factor (VEGF)—Key Factor in Normal and Pathological Angiogenesis. Romanian Journal of Morphology and Embryology, 59, 67-455.
|
|
[19]
|
Lee, S., Rauch, J. and Kolch, W. (2020) Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. International Journal of Molecular Sciences, 21, Article 1102.[CrossRef] [PubMed]
|
|
[20]
|
Mabeta, P. and Steenkamp, V. (2022) The VEGF/VEGFR Axis Revisited: Implications for Cancer Therapy. International Journal of Molecular Sciences, 23, Article 15585.[CrossRef] [PubMed]
|
|
[21]
|
Ellis, L.M. (2004) Epidermal Growth Factor Receptor in Tumor Angiogenesis. Hematology/Oncology Clinics of North America, 18, 1007-1021.[CrossRef] [PubMed]
|
|
[22]
|
Gentzler, R.D., Yentz, S.E. and Patel, J.D. (2013) Bevacizumab in Advanced NSCLC: Chemotherapy Partners and Duration of Use. Current Treatment Options in Oncology, 14, 595-609.[CrossRef] [PubMed]
|
|
[23]
|
Sandler, A., Gray, R., Perry, M.C., Brahmer, J., Schiller, J.H., Dowlati, A., et al. (2006) Paclitaxel-Carboplatin Alone or with Bevacizumab for Non-Small-Cell Lung Cancer. New England Journal of Medicine, 355, 2542-2550.[CrossRef] [PubMed]
|
|
[24]
|
Zhou, C., Wu, Y., Chen, G., Liu, X., Zhu, Y., Lu, S., et al. (2015) BEYOND: A Randomized, Double-Blind, Placebo-Controlled, Multicenter, Phase III Study of First-Line Carboplatin/Paclitaxel Plus Bevacizumab or Placebo in Chinese Patients with Advanced or Recurrent Nonsquamous Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 33, 2197-2204.[CrossRef] [PubMed]
|
|
[25]
|
Zhou, Q., Xu, C., Cheng, Y., Liu, Y., Chen, G., Cui, J., et al. (2021) Bevacizumab Plus Erlotinib in Chinese Patients with Untreated, EGFR-Mutated, Advanced NSCLC (ARTEMIS-CTONG1509): A Multicenter Phase 3 Study. Cancer Cell, 39, 1279-1291.e3.[CrossRef] [PubMed]
|
|
[26]
|
Han, B., Li, K., Zhao, Y., Li, B., Cheng, Y., Zhou, J., et al. (2018) Anlotinib as a Third-Line Therapy in Patients with Refractory Advanced Non-Small-Cell Lung Cancer: A Multicentre, Randomized Phase II Trial (ALTER0302). British Journal of Cancer, 118, 654-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Han, B., Li, K., Wang, Q., Zhang, L., Shi, J., Wang, Z., et al. (2018) Effect of Anlotinib as a Third-Line or Further Treatment on Overall Survival of Patients with Advanced Non-Small Cell Lung Cancer. JAMA Oncology, 4, 1569-1575.[CrossRef] [PubMed]
|
|
[28]
|
Yamamoto, N., Seto, T., Nishio, M., Goto, K., Yamamoto, N., Okamoto, I., et al. (2021) Erlotinib Plus Bevacizumab vs Erlotinib Monotherapy as First-Line Treatment for Advanced EGFR Mutation-Positive Non-Squamous Non-Small-Cell Lung Cancer: Survival Follow-Up Results of the Randomized JO25567 Study. Lung Cancer, 151, 20-24.[CrossRef] [PubMed]
|
|
[29]
|
Nakagawa, K., Garon, E.B., Seto, T., et al. (2019) Ramucirumab Plus Erlotinib in Patients with Untreated, EGFR-Mutated, Advanced Non-Small-Cell Lung Cancer (RELAY): A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 20, 1655-1669.
|
|
[30]
|
Liu, M., Luo, N., Fang, Z., Liu, Q., et al. (2021) The Efficacy and Toxicity of Maintenance Therapy with Bevacizumab Plus Pemetrexed versus Bevacizumab/Pemetrexed Alone for Stage IIIB/IV Nonsquamous Non-Small Cell Lung Cancer: A Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Pharmacy and Therapeutics, 47, 157-167.[CrossRef] [PubMed]
|
|
[31]
|
Ramalingam, S.S., Dahlberg, S.E., Belani, C.P., Saltzman, J.N., Pennell, N.A., Nambudiri, G.S., et al. (2019) Pemetrexed, Bevacizumab, or the Combination as Maintenance Therapy for Advanced Nonsquamous Non-Small-Cell Lung Cancer: ECOG-ACRIN 5508. Journal of Clinical Oncology, 37, 2360-2367.[CrossRef] [PubMed]
|
|
[32]
|
Lim, A.R., Rathmell, W.K. and Rathmell, J.C. (2020) The Tumor Microenvironment as a Metabolic Barrier to Effector T Cells and Immunotherapy. eLife, 9, e55185.[CrossRef] [PubMed]
|
|
[33]
|
Carmeliet, P. and Jain, R.K. (2000) Angiogenesis in Cancer and Other Diseases. Nature, 407, 249-257.[CrossRef] [PubMed]
|
|
[34]
|
Griffioen, A.W. (2008) Anti-Angiogenesis: Making the Tumor Vulnerable to the Immune System. Cancer Immunology, Immunotherapy, 57, 1553-1558.[CrossRef] [PubMed]
|
|
[35]
|
Facciabene, A., Motz, G.T. and Coukos, G. (2012) T-Regulatory Cells: Key Players in Tumor Immune Escape and Angiogenesis. Cancer Research, 72, 2162-2171.[CrossRef] [PubMed]
|
|
[36]
|
Huber, V., Camisaschi, C., Berzi, A., Ferro, S., Lugini, L., Triulzi, T., et al. (2017) Cancer Acidity: An Ultimate Frontier of Tumor Immune Escape and a Novel Target of Immunomodulation. Seminars in Cancer Biology, 43, 74-89.[CrossRef] [PubMed]
|
|
[37]
|
Wang, J., Li, D., Cang, H. and Guo, B. (2019) Crosstalk between Cancer and Immune Cells: Role of Tumor-Associated Macrophages in the Tumor Microenvironment. Cancer Medicine, 8, 4709-4721.[CrossRef] [PubMed]
|
|
[38]
|
Viallard, C. and Larrivée, B. (2017) Tumor Angiogenesis and Vascular Normalization: Alternative Therapeutic Targets. Angiogenesis, 20, 409-426.[CrossRef] [PubMed]
|
|
[39]
|
Liang, H. and Wang, M. (2019) Prospect of Immunotherapy Combined with Anti-Angiogenic Agents in Patients with Advanced Non-Small Cell Lung Cancer. Cancer Management and Research, 11, 7707-7719.
|
|
[40]
|
Huang, Y., Kim, B.Y.S., Chan, C.K., Hahn, S.M., Weissman, I.L. and Jiang, W. (2018) Improving Immune-Vascular Crosstalk for Cancer Immunotherapy. Nature Reviews Immunology, 18, 195-203.[CrossRef] [PubMed]
|
|
[41]
|
Huang, Y., Yuan, J., Righi, E., Kamoun, W.S., Ancukiewicz, M., Nezivar, J., et al. (2012) Vascular Normalizing Doses of Antiangiogenic Treatment Reprogram the Immunosuppressive Tumor Microenvironment and Enhance Immunotherapy. Proceedings of the National Academy of Sciences, 109, 17561-17566.[CrossRef] [PubMed]
|
|
[42]
|
Long, J., Hu, Z., Xue, H., Wang, Y., Chen, J., Tang, F., et al. (2019) Vascular Endothelial Growth Factor (VEGF) Impairs the Motility and Immune Function of Human Mature Dendritic Cells through the VEGF Receptor 2-RhoA-Cofilin1 Pathway. Cancer Science, 110, 2357-2367.[CrossRef] [PubMed]
|
|
[43]
|
Palazon, A., Tyrakis, P.A., Macias, D., Veliça, P., Rundqvist, H., Fitzpatrick, S., et al. (2017) An Hif-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression. Cancer Cell, 32, 669-683.e5.[CrossRef] [PubMed]
|
|
[44]
|
Voron, T., Colussi, O., Marcheteau, E., Pernot, S., Nizard, M., Pointet, A., et al. (2015) VEGF-A Modulates Expression of Inhibitory Checkpoints on CD8+ T Cells in Tumors. Journal of Experimental Medicine, 212, 139-148.[CrossRef] [PubMed]
|
|
[45]
|
Tian, L., Goldstein, A., Wang, H., Ching Lo, H., Sun Kim, I., Welte, T., et al. (2017) Mutual Regulation of Tumour Vessel Normalization and Immunostimulatory Reprogramming. Nature, 544, 250-254.[CrossRef] [PubMed]
|
|
[46]
|
Kammertoens, T., Friese, C., Arina, A., Idel, C., Briesemeister, D., Rothe, M., et al. (2017) Tumour Ischaemia by Interferon-γ Resembles Physiological Blood Vessel Regression. Nature, 545, 98-102.[CrossRef] [PubMed]
|
|
[47]
|
Reck, M., Mok, T.S.K., Nishio, M., Jotte, R.M., Cappuzzo, F., Orlandi, F., et al. (2019) Atezolizumab Plus Bevacizumab and Chemotherapy in Non-Small-Cell Lung Cancer (Impower150): Key Subgroup Analyses of Patients with EGFR Mutations or Baseline Liver Metastases in a Randomized, Open-Label Phase 3 Trial. The Lancet Respiratory Medicine, 7, 387-401.[CrossRef] [PubMed]
|
|
[48]
|
Herbst, R., Arkenau, H., Bendell, J., Arrowsmith, E., Wermke, M., Soriano, A., et al. (2019) MA14.07 Phase I Expansion Cohort of Ramucirumab Plus Pembrolizumab in Advanced Treatment-Naïve Non-Small Cell Lung Cancer (JVDF). Journal of Thoracic Oncology, 14, S307. [Google Scholar] [CrossRef]
|
|
[49]
|
Han, B., Chu, T., Zhong, R., Zhong, H., Zhang, B., Zhang, W., et al. (2019) P1.04-02 Efficacy and Safety of Sintilimab with Anlotinib as First-Line Therapy for Advanced Non-Small Cell Lung Cancer (NSCLC). Journal of Thoracic Oncology, 14, S439. [Google Scholar] [CrossRef]
|
|
[50]
|
Chu, T., Zhong, R., Zhong, H., Zhang, B., Zhang, W., Shi, C., et al. (2021) Phase 1b Study of Sintilimab Plus Anlotinib as First-Line Therapy in Patients with Advanced NSCLC. Journal of Thoracic Oncology, 16, 643-652.[CrossRef] [PubMed]
|
|
[51]
|
Ren, S., Wang, X., Han, B., Pan, Y., Zhao, J., Cheng, Y., et al. (2024) First-Line Treatment with Camrelizumab Plus Famitinib in Advanced or Metastatic NSCLC Patients with PD-L1 TPS ≥ 1%: Results from a Multicenter, Open-Label, Phase 2 Trial. Journal for ImmunoTherapy of Cancer, 12, e007227.[CrossRef] [PubMed]
|
|
[52]
|
Kennedy, L.B. and Salama, A.K.S. (2020) A Review of Cancer Immunotherapy Toxicity. CA: A Cancer Journal for Clinicians, 70, 86-104.[CrossRef] [PubMed]
|
|
[53]
|
Tu, J., Liang, H., Li, C., Huang, Y., Wang, Z., Chen, X., et al. (2023) The Application and Research Progress of Anti-Angiogenesis Therapy in Tumor Immunotherapy. Frontiers in Immunology, 14, Article 1198972.[CrossRef] [PubMed]
|