[1]
|
Hsia, D.S., Grove, O. and Cefalu, W.T. (2017) An Update on Sodium-Glucose Co-Transporter-2 Inhibitors for the Treatment of Diabetes Mellitus. Current Opinion in Endocrinology, Diabetes & Obesity, 24, 73-79. https://doi.org/10.1097/med.0000000000000311
|
[2]
|
Evans, M., Morgan, A.R., Bain, S.C., Davies, S., Dashora, U., Sinha, S., et al. (2022) Defining the Role of SGLT2 Inhibitors in Primary Care: Time to Think Differently. Diabetes Therapy, 13, 889-911. https://doi.org/10.1007/s13300-022-01242-y
|
[3]
|
Mudaliar, S., Polidori, D., Zambrowicz, B. and Henry, R.R. (2015) Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport. Diabetes Care, 38, 2344-2353. https://doi.org/10.2337/dc15-0642
|
[4]
|
Rotkvić, P.G., Berković, M.C., Bulj, N., Rotkvić, L. and Ćelap, I. (2020) Sodium-glucose Cotransporter 2 Inhibitors’ Mechanisms of Action in Heart Failure. World Journal of Diabetes, 11, 269-279. https://doi.org/10.4239/wjd.v11.i7.269
|
[5]
|
Liew, A., Lydia, A., Matawaran, B.J., Susantitaphong, P., Tran, H.T.B. and Lim, L.L. (2023) Practical Considerations for the Use of SGLT‐2 Inhibitors in the Asia-Pacific Countries—An Expert Consensus Statement. Nephrology, 28, 415-424. https://doi.org/10.1111/nep.14167
|
[6]
|
Marassi, M. and Fadini, G.P. (2023) The Cardio-Renal-Metabolic Connection: A Review of the Evidence. Cardiovascular Diabetology, 22, Article No. 195. https://doi.org/10.1186/s12933-023-01937-x
|
[7]
|
Elserafy, A.S., Reda, A., Farag, E., Mostafa, T., Farag, N., Elbahry, A., et al. (2021) Egyptian Atherosclerosis and Vascular Biology Association Consensus on the Use of Sodium Glucose Cotransporter-2 Inhibitors in Heart Failure with Reduced Ejection Fraction. Clinical Drug Investigation, 41, 1027-1036. https://doi.org/10.1007/s40261-021-01095-6
|
[8]
|
Heerspink, H.J.L., Karasik, A., Thuresson, M., Melzer-Cohen, C., Chodick, G., Khunti, K., et al. (2020) Kidney Outcomes Associated with Use of SGLT2 Inhibitors in Real-World Clinical Practice (CVD-REAL 3): A Multinational Observational Cohort Study. The Lancet Diabetes & Endocrinology, 8, 27-35. https://doi.org/10.1016/s2213-8587(19)30384-5
|
[9]
|
Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446. https://doi.org/10.1056/nejmoa2024816
|
[10]
|
Packer, M., Anker, S.D., Butler, J., Filippatos, G., Pocock, S.J., Carson, P., et al. (2020) Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. New England Journal of Medicine, 383, 1413-1424. https://doi.org/10.1056/nejmoa2022190
|
[11]
|
McMurray, J.J.V., Solomon, S.D., Inzucchi, S.E., Køber, L., Kosiborod, M.N., Martinez, F.A., et al. (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381, 1995-2008. https://doi.org/10.1056/nejmoa1911303
|
[12]
|
Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group (2022) KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International, 105, S117-S314.
|
[13]
|
Stumvoll, M., Goldstein, B.J. and van Haeften, T.W. (2005) Type 2 Diabetes: Principles of Pathogenesis and Therapy. The Lancet, 365, 1333-1346. https://doi.org/10.1016/s0140-6736(05)61032-x
|
[14]
|
Jabbour, S.A., Ibrahim, N.E. and Argyropoulos, C.P. (2022) Physicians’ Considerations and Practice Recommendations Regarding the Use of Sodium-Glucose Cotransporter-2 Inhibitors. Journal of Clinical Medicine, 11, Article 6051. https://doi.org/10.3390/jcm11206051
|
[15]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. https://doi.org/10.1016/j.diabres.2021.109119
|
[16]
|
Groenewegen, A., Rutten, F.H., Mosterd, A. and Hoes, A.W. (2020) Epidemiology of Heart Failure. European Journal of Heart Failure, 22, 1342-1356. https://doi.org/10.1002/ejhf.1858
|
[17]
|
Bikbov, B., Purcell, C.A., Levey, A.S., Smith, M., Abdoli, A., Abebe, M., et al. (2020) Global, Regional, and National Burden of Chronic Kidney Disease, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 395, 709-733. https://doi.org/10.1016/s0140-6736(20)30045-3
|
[18]
|
Maack, C., Lehrke, M., Backs, J., Heinzel, F.R., Hulot, J., Marx, N., et al. (2018) Heart Failure and Diabetes: Metabolic Alterations and Therapeutic Interventions: A State-of-the-Art Review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. European Heart Journal, 39, 4243-4254. https://doi.org/10.1093/eurheartj/ehy596
|
[19]
|
Seferović, P.M. and Paulus, W.J. (2015) Clinical Diabetic Cardiomyopathy: A Two-Faced Disease with Restrictive and Dilated Phenotypes. European Heart Journal, 36, 1718-1727. https://doi.org/10.1093/eurheartj/ehv134
|
[20]
|
Usman, M.S., Khan, M.S. and Butler, J. (2021) The Interplay between Diabetes, Cardiovascular Disease, and Kidney Disease. ADA Clinical Compendia, 2021, 13-18. https://doi.org/10.2337/db20211-13
|
[21]
|
Damman, K., Valente, M.A.E., Voors, A.A., O’Connor, C.M., van Veldhuisen, D.J. and Hillege, H.L. (2013) Renal Impairment, Worsening Renal Function, and Outcome in Patients with Heart Failure: An Updated Meta-Analysis. European Heart Journal, 35, 455-469. https://doi.org/10.1093/eurheartj/eht386
|
[22]
|
Kadowaki, T., Maegawa, H., Watada, H., Yabe, D., Node, K., Murohara, T., et al. (2022) Interconnection between Cardiovascular, Renal and Metabolic Disorders: A Narrative Review with a Focus on Japan. Diabetes, Obesity and Metabolism, 24, 2283-2296. https://doi.org/10.1111/dom.14829
|
[23]
|
Schechter, M., Melzer Cohen, C., Yanuv, I., Rozenberg, A., Chodick, G., et al. (2022) Epidemiology of the Diabetes-Cardio-Renal Spectrum: A Cross-Sectional Report of 1.4 Million Adults. Cardiovascular Diabetology, 21, Article No. 104. https://doi.org/10.1186/s12933-022-01521-9
|
[24]
|
Nichols, G.A., Amitay, E.L., Chatterjee, S. and Steubl, D. (2023) The Bidirectional Association of Chronic Kidney Disease, Type 2 Diabetes, Atherosclerotic Cardiovascular Disease, and Heart Failure: The Cardio-Renal-Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 21, 261-266. https://doi.org/10.1089/met.2023.0006
|
[25]
|
Olufade, T., Jiang, L., Israni, R., Huang, J. and Gosmanov, A.R. (2021) Cardiovascular and Renal Disease Manifestation and Healthcare Resource Utilization in Patients on First‐Line Oral Therapy for Type 2 Diabetes: A Claims‐based Observational Cohort Study. Diabetes, Obesity and Metabolism, 23, 2741-2751. https://doi.org/10.1111/dom.14530
|
[26]
|
Dei Cas, A., Khan, S.S., Butler, J., Mentz, R.J., Bonow, R.O., Avogaro, A., et al. (2015) Impact of Diabetes on Epidemiology, Treatment, and Outcomes of Patients with Heart Failure. JACC: Heart Failure, 3, 136-145. https://doi.org/10.1016/j.jchf.2014.08.004
|
[27]
|
Kuznik, A., Mardekian, J. and Tarasenko, L. (2013) Evaluation of Cardiovascular Disease Burden and Therapeutic Goal Attainment in US Adults with Chronic Kidney Disease: An Analysis of National Health and Nutritional Examination Survey Data, 2001–2010. BMC Nephrology, 14, Article No. 132. https://doi.org/10.1186/1471-2369-14-132
|
[28]
|
Nitta, K., Iimuro, S., Imai, E., Matsuo, S., Makino, H., Akizawa, T., et al. (2018) Risk Factors for Increased Left Ventricular Hypertrophy in Patients with Chronic Kidney Disease: Findings from the CKD-JAC Study. Clinical and Experimental Nephrology, 23, 85-98. https://doi.org/10.1007/s10157-018-1605-z
|
[29]
|
Titze, S., Schmid, M., Kottgen, A., Busch, M., Floege, J., Wanner, C., et al. (2014) Disease Burden and Risk Profile in Referred Patients with Moderate Chronic Kidney Disease: Composition of the German Chronic Kidney Disease (GCKD) Cohort. Nephrology Dialysis Transplantation, 30, 441-451. https://doi.org/10.1093/ndt/gfu294
|
[30]
|
Go, A.S., Chertow, G.M., Fan, D., McCulloch, C.E. and Hsu, C. (2004) Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. New England Journal of Medicine, 351, 1296-1305. https://doi.org/10.1056/nejmoa041031
|
[31]
|
Sarnak, M.J., Levey, A.S., Schoolwerth, A.C., Coresh, J., Culleton, B., Hamm, L.L., et al. (2003) Kidney Disease as a Risk Factor for Development of Cardiovascular Disease. Hypertension, 42, 1050-1065. https://doi.org/10.1161/01.hyp.0000102971.85504.7c
|
[32]
|
Fried, L.F., Shlipak, M.G., Crump, C., Kronmal, R.A., Bleyer, A.J., Gottdiener, J.S., et al. (2003) Renal Insufficiency as a Predictor of Cardiovascular Outcomes and Mortality in Elderly Individuals. Journal of the American College of Cardiology, 41, 1364-1372. https://doi.org/10.1016/s0735-1097(03)00163-3
|
[33]
|
George, L.K., Koshy, S.K.G., Molnar, M.Z., Thomas, F., Lu, J.L., Kalantar-Zadeh, K., et al. (2017) Heart Failure Increases the Risk of Adverse Renal Outcomes in Patients with Normal Kidney Function. Circulation: Heart Failure, 10, e003825. https://doi.org/10.1161/circheartfailure.116.003825
|
[34]
|
Fonseca-Correa, J.I. and Correa-Rotter, R. (2021) Sodium-glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Frontiers in Medicine, 8, Article 777861. https://doi.org/10.3389/fmed.2021.777861
|
[35]
|
DeFronzo, R.A., Eldor, R. and Abdul-Ghani, M. (2013) Pathophysiologic Approach to Therapy in Patients with Newly Diagnosed Type 2 Diabetes. Diabetes Care, 36, S127-S138. https://doi.org/10.2337/dcs13-2011
|
[36]
|
DeFronzo, R.A. (2009) From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes, 58, 773-795. https://doi.org/10.2337/db09-9028
|
[37]
|
Schwartz, S.S., Epstein, S., Corkey, B.E., Grant, S.F.A., Gavin, J.R. and Aguilar, R.B. (2016) The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the Β-Cell-Centric Classification Schema. Diabetes Care, 39, 179-186. https://doi.org/10.2337/dc15-1585
|
[38]
|
Garber, A.J., Handelsman, Y., Grunberger, G., Einhorn, D., Abrahamson, M.J., Barzilay, J.I., et al. (2020) Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm—2020 Executive Summary. Endocrine Practice, 26, 107-139. https://doi.org/10.4158/cs-2019-0472
|
[39]
|
Inzucchi, S.E., et al. (2015) Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 38, 140-149. https://pubmed.ncbi.nlm.nih.gov/25538310/
|
[40]
|
American Diabetes Association (2023) Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2024. Diabetes Care, 47, S158-S178.
|
[41]
|
Tentolouris, A., Vlachakis, P., Tzeravini, E., Eleftheriadou, I. and Tentolouris, N. (2019) SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. International Journal of Environmental Research and Public Health, 16, Article 2965. https://doi.org/10.3390/ijerph16162965
|
[42]
|
Nelinson, D.S., Sosa, J.M. and Chilton, R.J. (2021) SGLT2 Inhibitors: A Narrative Review of Efficacy and Safety. Journal of Osteopathic Medicine, 121, 229-239. https://doi.org/10.1515/jom-2020-0153
|
[43]
|
Giugliano, D., Maiorino, M.I., Bellastella, G. and Esposito, K. (2021) The Residual Cardiorenal Risk in Type 2 Diabetes. Cardiovascular Diabetology, 20, Article No. 36. https://doi.org/10.1186/s12933-021-01229-2
|
[44]
|
Bain, S., Druyts, E., Balijepalli, C., Baxter, C.A., Currie, C.J., Das, R., et al. (2016) Cardiovascular Events and All‐Cause Mortality Associated with Sulphonylureas Compared with Other Antihyperglycaemic Drugs: A Bayesian Meta‐Analysis of Survival Data. Diabetes, Obesity and Metabolism, 19, 329-335. https://doi.org/10.1111/dom.12821
|
[45]
|
Mannucci, E., Nreu, B., Montereggi, C., Ragghianti, B., Gallo, M., Giaccari, A., et al. (2021) Cardiovascular Events and All-Cause Mortality in Patients with Type 2 Diabetes Treated with Dipeptidyl Peptidase-4 Inhibitors: An Extensive Meta-Analysis of Randomized Controlled Trials. Nutrition, Metabolism and Cardiovascular Diseases, 31, 2745-2755. https://doi.org/10.1016/j.numecd.2021.06.002
|
[46]
|
Chaudhury, A., Duvoor, C., Reddy Dendi, V.S., Kraleti, S., Chada, A., Ravilla, R., et al. (2017) Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Frontiers in Endocrinology, 8, Article 6. https://doi.org/10.3389/fendo.2017.00006
|
[47]
|
Häring, H., Merker, L., Seewaldt-Becker, E., Weimer, M., Meinicke, T., Woerle, H.J., et al. (2013) Empagliflozin as Add-On to Metformin Plus Sulfonylurea in Patients with Type 2 Diabetes. Diabetes Care, 36, 3396-3404. https://doi.org/10.2337/dc12-2673
|
[48]
|
Rosenstock, J., Jelaska, A., Frappin, G., Salsali, A., Kim, G., Woerle, H.J., et al. (2014) Improved Glucose Control with Weight Loss, Lower Insulin Doses, and No Increased Hypoglycemia with Empagliflozin Added to Titrated Multiple Daily Injections of Insulin in Obese Inadequately Controlled Type 2 Diabetes. Diabetes Care, 37, 1815-1823. https://doi.org/10.2337/dc13-3055
|
[49]
|
Stenlöf, K., Cefalu, W.T., Kim, K., Jodar, E., Alba, M., Edwards, R., et al. (2013) Long-term Efficacy and Safety of Canagliflozin Monotherapy in Patients with Type 2 Diabetes Inadequately Controlled with Diet and Exercise: Findings from the 52-Week CANTATA-M Study. Current Medical Research and Opinion, 30, 163-175. https://doi.org/10.1185/03007995.2013.850066
|
[50]
|
Xiong, W., Xiao, M.Y., Zhang, M. and Chang, F. (2016) Efficacy and Safety of Canagliflozin in Patients with Type 2 Diabetes. Medicine, 95, e5473. https://doi.org/10.1097/md.0000000000005473
|
[51]
|
Neal, B., Perkovic, V., de Zeeuw, D., Mahaffey, K.W., Fulcher, G., Ways, K., et al. (2014) Efficacy and Safety of Canagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2, When Used in Conjunction with Insulin Therapy in Patients with Type 2 Diabetes. Diabetes Care, 38, 403-411. https://doi.org/10.2337/dc14-1237
|
[52]
|
Bailey, C.J., Gross, J.L., Hennicken, D., Iqbal, N., Mansfield, T.A. and List, J.F. (2013) Dapagliflozin Add-On to Metformin in Type 2 Diabetes Inadequately Controlled with Metformin: A Randomized, Double-Blind, Placebo-Controlled 102-Week Trial. BMC Medicine, 11, Article No. 43. https://doi.org/10.1186/1741-7015-11-43
|
[53]
|
Bailey, C.J., Gross, J.L., Pieters, A., Bastien, A. and List, J.F. (2010) Effect of Dapagliflozin in Patients with Type 2 Diabetes Who Have Inadequate Glycaemic Control with Metformin: A Randomised, Double-Blind, Placebo-Controlled Trial. The Lancet, 375, 2223-2233. https://doi.org/10.1016/s0140-6736(10)60407-2
|
[54]
|
Bailey, C.J., Iqbal, N., T'joen, C. and List, J.F. (2012) Dapagliflozin Monotherapy in Drug‐Naïve Patients with Diabetes: A Randomized‐Controlled Trial of Low‐Dose Range. Diabetes, Obesity and Metabolism, 14, 951-959. https://doi.org/10.1111/j.1463-1326.2012.01659.x
|
[55]
|
Ferrannini, E., Ramos, S.J., Salsali, A., Tang, W. and List, J.F. (2010) Dapagliflozin Monotherapy in Type 2 Diabetic Patients with Inadequate Glycemic Control by Diet and Exercise. Diabetes Care, 33, 2217-2224. https://doi.org/10.2337/dc10-0612
|
[56]
|
Bolinder, J., Ljunggren, Ö., Johansson, L., Wilding, J., Langkilde, A.M., Sjöström, C.D., et al. (2013) Dapagliflozin Maintains Glycaemic Control While Reducing Weight and Body Fat Mass over 2 Years in Patients with Type 2 Diabetes Mellitus Inadequately Controlled on Metformin. Diabetes, Obesity and Metabolism, 16, 159-169. https://doi.org/10.1111/dom.12189
|
[57]
|
Bolinder, J., Ljunggren, Ö., Kullberg, J., Johansson, L., Wilding, J., Langkilde, A.M., et al. (2012) Effects of Dapagliflozin on Body Weight, Total Fat Mass, and Regional Adipose Tissue Distribution in Patients with Type 2 Diabetes Mellitus with Inadequate Glycemic Control on Metformin. The Journal of Clinical Endocrinology & Metabolism, 97, 1020-1031. https://doi.org/10.1210/jc.2011-2260
|
[58]
|
Jabbour, S.A., Hardy, E., Sugg, J. and Parikh,, S. (2014) Dapagliflozin Is Effective as Add-On Therapy to Sitagliptin with or without Metformin: A 24-Week, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study. Diabetes Care, 37, 740-750. https://doi.org/10.2337/dc13-0467
|
[59]
|
Nauck, M.A., Del Prato, S., Meier, J.J., Durán-García, S., Rohwedder, K., Elze, M., et al. (2011) Dapagliflozin versus Glipizide as Add-On Therapy in Patients with Type 2 Diabetes Who Have Inadequate Glycemic Control with Metformin. Diabetes Care, 34, 2015-2022. https://doi.org/10.2337/dc11-0606
|
[60]
|
Rosenstock, J., Vico, M., Wei, L., Salsali, A. and List, J.F. (2012) Effects of Dapagliflozin, an SGLT2 Inhibitor, on Hba1c, Body Weight, and Hypoglycemia Risk in Patients with Type 2 Diabetes Inadequately Controlled on Pioglitazone Monotherapy. Diabetes Care, 35, 1473-1478. https://doi.org/10.2337/dc11-1693
|
[61]
|
Strojek, K., Yoon, K., Hruba, V., Sugg, J., Langkilde, A.M. and Parikh, S. (2014) Dapagliflozin Added to Glimepiride in Patients with Type 2 Diabetes Mellitus Sustains Glycemic Control and Weight Loss over 48 Weeks: A Randomized, Double-Blind, Parallel-Group, Placebo-Controlled Trial. Diabetes Therapy, 5, 267-283. https://doi.org/10.1007/s13300-014-0072-0
|
[62]
|
Strojek, K., Yoon, K.H., Hruba, V., Elze, M., Langkilde, A.M. and Parikh, S. (2011) Effect of Dapagliflozin in Patients with Type 2 Diabetes Who Have Inadequate Glycaemic Control with Glimepiride: A Randomized, 24-Week, Double-Blind, Placebo-Controlled Trial. Diabetes, Obesity and Metabolism, 13, 928-938. https://doi.org/10.1111/j.1463-1326.2011.01434.x
|
[63]
|
Roden, M., Weng, J., Eilbracht, J., Delafont, B., Kim, G., Woerle, H.J., et al. (2013) Empagliflozin Monotherapy with Sitagliptin as an Active Comparator in Patients with Type 2 Diabetes: A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Diabetes & Endocrinology, 1, 208-219. https://doi.org/10.1016/s2213-8587(13)70084-6
|
[64]
|
Wilding, J.P.H. (2012) Long-term Efficacy of Dapagliflozin in Patients with Type 2 Diabetes Mellitus Receiving High Doses of Insulin. Annals of Internal Medicine, 156, 405-415. https://doi.org/10.7326/0003-4819-156-6-201203200-00003
|
[65]
|
Ridderstråle, M., Andersen, K.R., Zeller, C., Kim, G., Woerle, H.J. and Broedl, U.C. (2014) Comparison of Empagliflozin and Glimepiride as Add-On to Metformin in Patients with Type 2 Diabetes: A 104-Week Randomised, Active-Controlled, Double-Blind, Phase 3 Trial. The Lancet Diabetes & Endocrinology, 2, 691-700. https://doi.org/10.1016/s2213-8587(14)70120-2
|
[66]
|
Kovacs, C.S., Seshiah, V., Merker, L., Christiansen, A.V., Roux, F., Salsali, A., et al. (2015) Empagliflozin as Add-On Therapy to Pioglitazone with or without Metformin in Patients with Type 2 Diabetes Mellitus. Clinical Therapeutics, 37, 1773-1788.E1. https://doi.org/10.1016/j.clinthera.2015.05.511
|
[67]
|
Hollander, P., Liu, J., Hill, J., Johnson, J., Jiang, Z.W., Golm, G., et al. (2017) Ertugliflozin Compared with Glimepiride in Patients with Type 2 Diabetes Mellitus Inadequately Controlled on Metformin: The VERTIS SU Randomized Study. Diabetes Therapy, 9, 193-207. https://doi.org/10.1007/s13300-017-0354-4
|
[68]
|
Terra, S.G., Focht, K., Davies, M., Frias, J., Derosa, G., Darekar, A., et al. (2017) Phase III, Efficacy and Safety Study of Ertugliflozin Monotherapy in People with Type 2 Diabetes Mellitus Inadequately Controlled with Diet and Exercise Alone. Diabetes, Obesity and Metabolism, 19, 721-728. https://doi.org/10.1111/dom.12888
|
[69]
|
Rosenstock, J., Frias, J., Páll, D., Charbonnel, B., Pascu, R., Saur, D., et al. (2017) Effect of Ertugliflozin on Glucose Control, Body Weight, Blood Pressure and Bone Density in Type 2 Diabetes Mellitus Inadequately Controlled on Metformin Monotherapy (VERTIS MET). Diabetes, Obesity and Metabolism, 20, 520-529. https://doi.org/10.1111/dom.13103
|
[70]
|
Dagogo‐Jack, S., Liu, J., Eldor, R., Amorin, G., Johnson, J., Hille, D., et al. (2017) Efficacy and Safety of the Addition of Ertugliflozin in Patients with Type 2 Diabetes Mellitus Inadequately Controlled with Metformin and Sitagliptin: The VERTIS SITA2 Placebo‐Controlled Randomized Study. Diabetes, Obesity and Metabolism, 20, 530-540. https://doi.org/10.1111/dom.13116
|
[71]
|
Miller, S., Krumins, T., Zhou, H., Huyck, S., Johnson, J., Golm, G., et al. (2018) Ertugliflozin and Sitagliptin Co-Initiation in Patients with Type 2 Diabetes: The VERTIS SITA Randomized Study. Diabetes Therapy, 9, 253-268. https://doi.org/10.1007/s13300-017-0358-0
|
[72]
|
Pratley, R.E., Eldor, R., Raji, A., Golm, G., Huyck, S.B., Qiu, Y., et al. (2018) Ertugliflozin plus Sitagliptin versus Either Individual Agent over 52 Weeks in Patients with Type 2 Diabetes Mellitus Inadequately Controlled with Metformin: The VERTIS FACTORIAL Randomized Trial. Diabetes, Obesity and Metabolism, 20, 1111-1120. https://doi.org/10.1111/dom.13194
|
[73]
|
Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., et al. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine, 373, 2117-2128. https://doi.org/10.1056/nejmoa1504720
|
[74]
|
Zelniker, T.A., Wiviott, S.D., Raz, I., Im, K., Goodrich, E.L., Bonaca, M.P., et al. (2019) SGLT2 Inhibitors for Primary and Secondary Prevention of Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. The Lancet, 393, 31-39. https://doi.org/10.1016/s0140-6736(18)32590-x
|
[75]
|
Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine, 377, 644-657. https://doi.org/10.1056/nejmoa1611925
|
[76]
|
Cosentino, F., Grant, P.J., Aboyans, V., Bailey, C.J., Ceriello, A., Delgado, V., et al. (2019) 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. European Heart Journal, 41, 255-323. https://doi.org/10.1093/eurheartj/ehz486
|
[77]
|
Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., Kato, E.T., Cahn, A., et al. (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine, 380, 347-357. https://doi.org/10.1056/nejmoa1812389
|
[78]
|
Cannon, C.P., Pratley, R., Dagogo-Jack, S., Mancuso, J., Huyck, S., Masiukiewicz, U., et al. (2020) Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. New England Journal of Medicine, 383, 1425-1435. https://doi.org/10.1056/nejmoa2004967
|
[79]
|
Gupta, M., Rao, S., Manek, G., Fonarow, G.C. and Ghosh, R.K. (2021) The Role of Dapagliflozin in the Management of Heart Failure: An Update on the Emerging Evidence. Therapeutics and Clinical Risk Management, 17, 823-830. https://doi.org/10.2147/tcrm.s275076
|
[80]
|
Ge, Z., Li, A., McNamara, J., dos Remedios, C. and Lal, S. (2019) Pathogenesis and Pathophysiology of Heart Failure with Reduced Ejection Fraction: Translation to Human Studies. Heart Failure Reviews, 24, 743-758. https://doi.org/10.1007/s10741-019-09806-0
|
[81]
|
Roger, V.L. (2021) Epidemiology of Heart Failure. Circulation Research, 128, 1421-1434. https://doi.org/10.1161/circresaha.121.318172
|
[82]
|
Bendary, A., Hassanein, M., Bendary, M., Smman, A., Hassanin, A. and Elwany, M. (2023) The Predictive Value of Precipitating Factors on Clinical Outcomes in Hospitalized Patients with Decompensated Heart Failure: Insights from the Egyptian Cohort in the European Society of Cardiology Heart Failure Long-Term Registry. The Egyptian Heart Journal, 75, Article No. 16. https://doi.org/10.1186/s43044-023-00342-9
|
[83]
|
Liang, M., Bian, B. and Yang, Q. (2022) Characteristics and Long‐term Prognosis of Patients with Reduced, Mid‐range, and Preserved Ejection Fraction: A Systemic Review and Meta‐Analysis. Clinical Cardiology, 45, 5-17. https://doi.org/10.1002/clc.23754
|
[84]
|
Bhatt, D.L., Szarek, M., Steg, P.G., Cannon, C.P., Leiter, L.A., McGuire, D.K., et al. (2021) Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. New England Journal of Medicine, 384, 117-128. https://doi.org/10.1056/nejmoa2030183
|
[85]
|
Voors, A.A., Angermann, C.E., Teerlink, J.R., Collins, S.P., Kosiborod, M., Biegus, J., et al. (2022) The SGLT2 Inhibitor Empagliflozin in Patients Hospitalized for Acute Heart Failure: A Multinational Randomized Trial. Nature Medicine, 28, 568-574. https://doi.org/10.1038/s41591-021-01659-1
|
[86]
|
Bhatt, D.L., Szarek, M., Pitt, B., Cannon, C.P., Leiter, L.A., McGuire, D.K., et al. (2021) Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. New England Journal of Medicine, 384, 129-139. https://doi.org/10.1056/nejmoa2030186
|
[87]
|
Bhatt, D.L., Szarek, M., Steg, P.G., Cannon, C.P., Leiter, L.A., McGuire, D.K., et al. (2021) Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. New England Journal of Medicine, 384, 117-128. https://doi.org/10.1056/nejmoa2030183
|
[88]
|
Heidenreich, P.A., Bozkurt, B., Aguilar, D., Allen, L.A., Byun, J.J., Colvin, M.M., et al. (2022) 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e895-e1032. https://doi.org/10.1161/cir.0000000000001063
|
[89]
|
McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., Böhm, M., et al. (2021) 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 42, 3599-3726. https://doi.org/10.1093/eurheartj/ehab368
|
[90]
|
Isaza, N., Calvachi, P., Raber, I., Liu, C., Bellows, B.K., Hernandez, I., et al. (2021) Cost-effectiveness of Dapagliflozin for the Treatment of Heart Failure with Reduced Ejection Fraction. JAMA Network Open, 4, e2114501. https://doi.org/10.1001/jamanetworkopen.2021.14501
|
[91]
|
Tafazzoli, A., Reifsnider, O.S., Bellanca, L., Ishak, J., Carrasco, M., Rakonczai, P., et al. (2022) A European Multinational Cost-Effectiveness Analysis of Empagliflozin in Heart Failure with Reduced Ejection Fraction. The European Journal of Health Economics, 24, 1441-1454. https://doi.org/10.1007/s10198-022-01555-6
|
[92]
|
Reifsnider, O.S., Kansal, A.R., Franke, J., Lee, J., George, J.T., Brueckmann, M., et al. (2020) Cost‐effectiveness of Empagliflozin in the UK in an EMPA‐REG OUTCOME Subgroup with Type 2 Diabetes and Heart Failure. ESC Heart Failure, 7, 3910-3918. https://doi.org/10.1002/ehf2.12985
|
[93]
|
Qin, L., Darlington, O., Miller, R., Mellstrom, C. and Mcewan, P. (2021) Budget Impact Evaluation of the DAPA-HF Trial: Is Dapagliflozin Cost-Saving for the Treatment of Heart Failure with Reduced Ejection Fraction? European Journal of Heart Failure, 23, 305-305.
|
[94]
|
Abdelhamid, M., Kandil, H., Hassanin, M., Shaheen, S., Sobhy, M., ElEtreby, A., et al. (2022) Egyptian Expert Opinion for the Use of Sodium‐Glucose Cotransporter‐2 Inhibitors in Patients with Heart Failure with Reduced Ejection Fraction. ESC Heart Failure, 9, 800-811. https://doi.org/10.1002/ehf2.13811
|
[95]
|
Honigberg, M.C., Vardeny, O. and Vaduganathan, M. (2020) Practical Considerations for the Use of Sodium-Glucose Co-Transporter 2 Inhibitors in Heart Failure. Circulation: Heart Failure, 13, e006623. https://doi.org/10.1161/circheartfailure.119.006623
|
[96]
|
Verma, S. and McMurray, J.J.V. (2018) SGLT2 Inhibitors and Mechanisms of Cardiovascular Benefit: A State-of-the-Art Review. Diabetologia, 61, 2108-2117. https://doi.org/10.1007/s00125-018-4670-7
|
[97]
|
Kittleson, M.M., Panjrath, G.S., Amancherla, K., Davis, L.L., Deswal, A., Dixon, D.L., et al. (2023) 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure with Preserved Ejection Fraction. Journal of the American College of Cardiology, 81, 1835-1878. https://doi.org/10.1016/j.jacc.2023.03.393
|
[98]
|
Cleland, J.G.F. (2006) The Perindopril in Elderly People with Chronic Heart Failure (PEP-CHF) Study. European Heart Journal, 27, 2338-2345. https://doi.org/10.1093/eurheartj/ehl250
|
[99]
|
Yusuf, S., Pfeffer, M.A., Swedberg, K., Granger, C.B., Held, P., McMurray, J.J., et al. (2003) Effects of Candesartan in Patients with Chronic Heart Failure and Preserved Left-Ventricular Ejection Fraction: The Charm-Preserved Trial. The Lancet, 362, 777-781. https://doi.org/10.1016/s0140-6736(03)14285-7
|
[100]
|
Massie, B.M., Carson, P.E., McMurray, J.J., Komajda, M., McKelvie, R., Zile, M.R., et al. (2008) Irbesartan in Patients with Heart Failure and Preserved Ejection Fraction. New England Journal of Medicine, 359, 2456-2467. https://doi.org/10.1056/nejmoa0805450
|
[101]
|
Pitt, B., Pfeffer, M.A., Assmann, S.F., Boineau, R., Anand, I.S., Claggett, B., et al. (2014) Spironolactone for Heart Failure with Preserved Ejection Fraction. New England Journal of Medicine, 370, 1383-1392. https://doi.org/10.1056/nejmoa1313731
|
[102]
|
Ahmed, A., Rich, M.W., Fleg, J.L., Zile, M.R., Young, J.B., Kitzman, D.W., et al. (2006) Effects of Digoxin on Morbidity and Mortality in Diastolic Heart Failure. Circulation, 114, 397-403. https://doi.org/10.1161/circulationaha.106.628347
|
[103]
|
Solomon, S.D., McMurray, J.J.V., Anand, I.S., Ge, J., Lam, C.S.P., Maggioni, A.P., et al. (2019) Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. New England Journal of Medicine, 381, 1609-1620. https://doi.org/10.1056/nejmoa1908655
|
[104]
|
Solomon, S.D., Claggett, B., Lewis, E.F., Desai, A., Anand, I., Sweitzer, N.K., et al. (2015) Influence of Ejection Fraction on Outcomes and Efficacy of Spironolactone in Patients with Heart Failure with Preserved Ejection Fraction. European Heart Journal, 37, 455-462. https://doi.org/10.1093/eurheartj/ehv464
|
[105]
|
Hogg, K. and McMurray, J. (2006) The Treatment of Heart Failure with Preserved Ejection Fraction (“Diastolic Heart Failure”). Heart Failure Reviews, 11, 141-146. https://doi.org/10.1007/s10741-006-9488-6
|
[106]
|
Solomon, S.D., Vaduganathan, M., L. Claggett, B., Packer, M., Zile, M., Swedberg, K., et al. (2020) Sacubitril/Valsartan across the Spectrum of Ejection Fraction in Heart Failure. Circulation, 141, 352-361. https://doi.org/10.1161/circulationaha.119.044586
|
[107]
|
Anker, S.D., Butler, J., Filippatos, G., Ferreira, J.P., Bocchi, E., Böhm, M., et al. (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New England Journal of Medicine, 385, 1451-1461. https://doi.org/10.1056/nejmoa2107038
|
[108]
|
Solomon, S.D., McMurray, J.J.V., Claggett, B., de Boer, R.A., DeMets, D., Hernandez, A.F., et al. (2022) Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. New England Journal of Medicine, 387, 1089-1098. https://doi.org/10.1056/nejmoa2206286
|
[109]
|
Nassif, M.E., Windsor, S.L., Borlaug, B.A., Kitzman, D.W., Shah, S.J., Tang, F., et al. (2021) The SGLT2 Inhibitor Dapagliflozin in Heart Failure with Preserved Ejection Fraction: A Multicenter Randomized Trial. Nature Medicine, 27, 1954-1960. https://doi.org/10.1038/s41591-021-01536-x
|
[110]
|
McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., Böhm, M., et al. (2023) 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 44, 3627-3639. https://doi.org/10.1093/eurheartj/ehad195
|
[111]
|
Hill, N.R., Fatoba, S.T., Oke, J.L., Hirst, J.A., O’Callaghan, C.A., Lasserson, D.S., et al. (2016) Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-analysis. PLOS ONE, 11, e0158765. https://doi.org/10.1371/journal.pone.0158765
|
[112]
|
Hoogeveen, E.K. (2022) The Epidemiology of Diabetic Kidney Disease. Kidney and Dialysis, 2, 433-442. https://doi.org/10.3390/kidneydial2030038
|
[113]
|
Wanner, C., Inzucchi, S.E., Lachin, J.M., Fitchett, D., von Eynatten, M., Mattheus, M., et al. (2016) Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. New England Journal of Medicine, 375, 323-334. https://doi.org/10.1056/nejmoa1515920
|
[114]
|
Mosenzon, O., Wiviott, S.D., Cahn, A., Rozenberg, A., Yanuv, I., Goodrich, E.L., et al. (2019) Effects of Dapagliflozin on Development and Progression of Kidney Disease in Patients with Type 2 Diabetes: An Analysis from the DECLARE-TIMI 58 Randomised Trial. The Lancet Diabetes & Endocrinology, 7, 606-617. https://doi.org/10.1016/s2213-8587(19)30180-9
|
[115]
|
Kluger, A.Y., Tecson, K.M., Barbin, C.M., Lee, A.Y., Lerma, E.V., Rosol, Z.P., et al. (2018) Cardiorenal Outcomes in the CANVAS, DECLARE-TIMI 58, and EMPA-REG OUTCOME Trials: A Systematic Review. Reviews in Cardiovascular Medicine, 19, 41-49. https://doi.org/10.31083/j.rcm.2018.02.907
|
[116]
|
Cherney, D.Z.I., Zinman, B., Inzucchi, S.E., Koitka-Weber, A., Mattheus, M., von Eynatten, M., et al. (2017) Effects of Empagliflozin on the Urinary Albumin-to-Creatinine Ratio in Patients with Type 2 Diabetes and Established Cardiovascular Disease: An Exploratory Analysis from the EMPA-REG Outcome Randomised, Placebo-Controlled Trial. The Lancet Diabetes & Endocrinology, 5, 610-621. https://doi.org/10.1016/s2213-8587(17)30182-1
|
[117]
|
Cherney, D.Z.I., Dagogo‐Jack, S., McGuire, D.K., Cosentino, F., Pratley, R., Shih, W.J., et al. (2021) Kidney Outcomes Using a Sustained ≥ 40% Decline in EGFR: A Meta‐Analysis of SGLT2 Inhibitor Trials. Clinical Cardiology, 44, 1139-1143. https://doi.org/10.1002/clc.23665
|
[118]
|
Cherney, D.Z.I., McGuire, D.K., Charbonnel, B., Cosentino, F., Pratley, R., Dagogo-Jack, S., et al. (2021) Gradient of Risk and Associations with Cardiovascular Efficacy of Ertugliflozin by Measures of Kidney Function. Circulation, 143, 602-605. https://doi.org/10.1161/circulationaha.120.051901
|
[119]
|
Meraz-Muñoz, A.Y., Weinstein, J. and Wald, R. (2021) EGFR Decline after SGLT2 Inhibitor Initiation: The Tortoise and the Hare Reimagined. Kidney360, 2, 1042-1047. https://doi.org/10.34067/kid.0001172021
|
[120]
|
Sridhar, V.S., Tuttle, K.R. and Cherney, D.Z.I. (2020) We Can Finally Stop Worrying about SGLT2 Inhibitors and Acute Kidney Injury. American Journal of Kidney Diseases, 76, 454-456. https://doi.org/10.1053/j.ajkd.2020.05.014
|
[121]
|
Yau, K., Dharia, A., Alrowiyti, I. and Cherney, D.Z.I. (2022) Prescribing SGLT2 Inhibitors in Patients with CKD: Expanding Indications and Practical Considerations. Kidney International Reports, 7, 1463-1476. https://doi.org/10.1016/j.ekir.2022.04.094
|
[122]
|
Vardeny, O. and Vaduganathan, M. (2019) Practical Guide to Prescribing Sodium-Glucose Cotransporter 2 Inhibitors for Cardiologists. JACC: Heart Failure, 7, 169-172. https://doi.org/10.1016/j.jchf.2018.11.013
|
[123]
|
Roy, A., Maiti, A., Sinha, A., Baidya, A., Basu, A.K., Sarkar, D., et al. (2020) Kidney Disease in Type 2 Diabetes Mellitus and Benefits of Sodium-Glucose Cotransporter 2 Inhibitors: A Consensus Statement. Diabetes Therapy, 11, 2791-2827. https://doi.org/10.1007/s13300-020-00921-y
|
[124]
|
Donnan, J.R., Grandy, C.A., Chibrikov, E., Marra, C.A., Aubrey-Bassler, K., Johnston, K., et al. (2019) Comparative Safety of the Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A Systematic Review and Meta-Analysis. BMJ Open, 9, e022577. https://doi.org/10.1136/bmjopen-2018-022577
|