Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group

Abstract

In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group.

Share and Cite:

Cheng, H. and Zhou, F. (2024) Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group. Advances in Pure Mathematics, 14, 744-758. doi: 10.4236/apm.2024.149039.

1. Introduction

The main purpose of this article is to study Besov regularities of weak solutions to sub-elliptic equations of the type

div H A( x,Xu )=0 (1.1)

and

div H A( x,Xu )= div H ( | F | p2 F ) (1.2)

in Ω, respectively. Here Ω is an open and bounded sub-domain in the Heisenberg group n = 2n+1 ( n1 ). In the homogeneous Equation (1.1) and the non-homogeneous Equation (1.2), the unknown uH W loc 1,p ( Ω ) , where the sub-elliptic Sobolev space H W 1,p ( Ω ) will be introduced in Section 2. In both equations, the horizontal divergence operator div H and the horizontal gradient X are defined by

div H F= i=1 2n X i F i ,

Xu=( X 1 u, X 2 u,, X 2n1 u, X 2n u )

in the distributional sense. Moreover, A:Ω× 2n 2n is assumed to be a Carathéodory vector field with general growth and uniformly elliptic conditions, that is, there exist constants ν,L,k>0 and 0<μ<1 such that

(A1) [ A( x,ξ )A( x,η ) ]( ξη )ν ( μ 2 + | ξ | 2 + | η | 2 ) p2 2 | ξη | 2 ,

(A2) | A( x,ξ )A( x,η ) |L ( μ 2 + | ξ | 2 + | η | 2 ) p2 2 | ξη | ,

(A3) | A( x,ξ ) |k ( μ 2 + | ξ | 2 ) p1 2

for every ξ,η 2n and for almost all xΩ . In (1.2), F:Ω 2n .

The regularity of solutions to elliptic equations in Euclidean spaces n has been well studied by Iwaniec [1], DiBenedetto and Manfredi [2]. Then this theory is extended to the case of general elliptic problems, see in relevant papers [3]-[6]. For the nonlinear Calderón-Zygmund estimate in the Heisenberg group, Goldstein and Zatorska-Goldstein [7] deal with the quadratic case p=2 . Later on the H W 1,p estimates for sub-elliptic equations on n are proved by Mingione, Zatorska-Goldstein and Zhong [8]. They consider the equation of the form

div H [ b( x )a( Xu ) ]= div H ( | F | p2 F )

with b VMO loc ( Ω ) .

At present, the studies are concerned with the regularity estimates of weak solutions in Besov spaces in both n and n ([9]-[11]). Besov spaces consist of a wide class of functions compared with the classical Sobolev spaces. Baisón [12] deals with nonlinear elliptic equations in divergence form, and obtains a regularity estimate of weak solutions in Besov spaces. Clop [13] and Lyaghfouri [14] extended the result in Besov spaces by establishing a higher integrability of weak solutions.

For the homogeneous case (1.1), we assume that there exists a function g L Q α ( Ω ) ( 0<α<1 ) such that

(A4) | A( x,ξ )A( y,ξ ) | dist CC ( x,y ) α ( g( x )+g( y ) ) ( μ 2 + | ξ | 2 ) p1 2

for almost every x,yΩ and all ξ 2n . Here dist CC ( x,y ) is the CC-distance between two points x and y in n .

While for the non-homogeneous situation (1.2), we assume that there exists a sequence of measurable non-negative functions g k L Q α ( Ω )( k,0<α<1 ) satisfying that

(A5) { k=1 g k L Q α ( Ω ) q <( 1q< ) | A( x,ξ )A( y,ξ ) | dist CC ( x,y ) α ( g k ( x )+ g k ( y ) ) ( μ 2 + | ξ | 2 ) p1 2

for ξ 2n and almost all x,yΩ such that 2 k dist CC ( x,y )< 2 k+1 . According to (A5), we write { g k } k l q ( L Q α ( Ω ) ) in short.

By introducing an auxiliary function

V( ξ )= ( μ 2 + | ξ | 2 ) p2 4 ξ (1.3)

with ξ 2n , we present the main results of this article.

Theorem 1.1 Let 0<α<1 and 2p<4 . Assume that A satisfies hypotheses (A1)-(A4) with 0<μ<1 . If uH W loc 1,p ( Ω ) is a weak solution to (1.1), then V( Xu ) B 2, α ( Ω ) locally.

Theorem 1.2 Let 0<α<1 , 2p<4 , and 1q< 2Q Q2α . Assume that the hypotheses (A1)-(A3) and (A5) hold. If uH W loc 1,p ( Ω ) is a weak solution to (1.2) with 0<μ<1 and | F | p2 F B 2,q α ( Ω ) , then V( Xu ) B 2,q α ( Ω ) locally.

See Section 2 for the definitions of H W 1,p ( Ω ) and B 2,q α ( Ω ) .

The contribution of the main results is to study a wide class of sub-elliptic equations in the Heisenberg group. Our aim is to obtain a Besov regularity estimate of weak solutions. The hypotheses (A1)-(A4) (or (A5)) shall be an extension of the VMO conditions.

This article is organized as follows. In Section 2 we give some definitions and tools such as classical inequalities, and we present two Lemmas relating to the reverse Hölder type inequalities of weak solutions. In Section 3 and Section 4, we present the proofs of Theorem 1.1 and Theorem 1.2, respectively.

2. Preliminary

2.1. Heisenberg Group

In this section, we collect some basic notations and preliminaries for the Heisenberg group (see [8] [15] for more details). We denote by ( x,t )=( x 1 , x 2 ,, x 2n ,t ) the coordinates of points of the Heisenberg group n . The group structure on n is given by

( x 1 , x 2 ,, x 2n ,t )( y 1 , y 2 ,, y 2n ,s ) =( x 1 + y 1 , x 2 + y 2 ,, x 2n + y 2n ,t+s+ 1 2 j=1 n ( x j y n+j x n+j y j ) ).

An anisotropic dilation induces a homogeneous norm (gauge) of ( x,t ) by ( | x | 2 +t ) 1 2 . For j=1,,n , we set

X j = x j x n+j 2 t , X n+j = x n+j + x j 2 t ,T= t ,

which represent a basis of the space of left-invariant vector fields on n . The vector field X 1 , X 2 ,, X 2n are called the horizontal vector fields. Then the length of the horizontal gradient is given by

| Xu | 2 = j=1 2n ( X j f ) 2 .

2.2. CC-Distance and CC-Balls

By considering the well-known Carnot-Carathéodory metric with CC-distance dist CC , we define CC-balls by

B R ( x 0 )={ y n | dist CC ( x 0 ,y )<R }

with the center x 0 and radius R. By introducing the homogeneous dimension Q=2n+2 , one gets the Lebesgue measure of a CC-ball | B R ( x 0 ) | R Q .

2.3. Horizontal Sobolev Spaces and Besov Spaces

Let L p ( n ) be the Lebesgue space in the Heisenberg group, then the dual space of L p ( n ) is L p ( n ) with 1 p + 1 p =1 . The horizontal Sobolev space with its norm is defined by

H W 1,p ( Ω )={ u L p ( Ω )|Xu L p ( Ω ) },

u H W 1,p ( Ω ) = u L p ( Ω ) + Xu L p ( Ω ) .

It is clear that a function uH W loc 1,p ( Ω ) , if uH W 1,p ( Ω 0 ) for every Ω 0 Ω .

Let the parameters 0<α<1 , 1p< , 1q . The Besov spaces B p,q α ( Ω ) ( Ω n ) with its norm are defined via ([16])

u B p,q α ( Ω ) = u L p ( Ω ) + [ u ] B p,q α ( Ω )  < ,

[ u ] B p,q α ( Ω ) ={ ( Ω ( Ω | Δ h u | p | h | αp dx ) q p dh | h | Q ) 1 q <, 1q<, sup hΩ ( Ω | Δ h u | p | h | αp dx ) 1 p <, q=.

In this article, we shall write Δ h u=u( x+h )u( x ) in short.

2.4. Basic Tools

For every ε>0 , there exists C( ε )>0 such that for all s,t0 , there holds

stε s p +C( ε ) t p , (2.1)

which is the classical Young inequality. Here 1 p + 1 p =1 . In particular,

abε a 2 +C( ε ) b 2 . (2.2)

Let B R n be a CC-ball, and f an integrable function on B R , we define the average of f over the CC-ball B R as

( f ) B R = B R f( x )dx = 1 | B R | B R f( x )dx R Q B R f( x )dx . (2.3)

We present the definition of weak solutions. If for any φ C 0 ( Ω ) , there holds

Ω A( x,Xu )Xφdx = Ω | F | p2 FXφdx , (2.4)

then uH W loc 1,p ( Ω ) is a weak solution to (1.2). Here we call φ is a test function.

2.5. Reverse Hölder Type Inequality

The higher integrability estimates for Laplace and p-Laplace equations are well known (see [1] and [2]). In the Heisenberg group, we have the following two results for homogeneous and non-homogeneous situations, see [8].

Lemma 2.1 Let uH W 1,p ( Ω ) with 2p<4 be a weak solution to (1.1) under the hypotheses (A1)-(A4). There exists a constant c( n,p,ν,k,L ) , but otherwise independent of μ , of the solution u, and of the vector field A( x,u ) , such that the following inequalities hold for any CC-ball B R Ω :

sup B R 2 | Xu |c ( B R ( μ+| Xu | ) p dx ) 1 p . (2.5)

Lemma 2.2 Let uH W 1,p ( Ω ) with 2p<4 be a weak solution to equation (1.2). Assume that (A1)-(A3) and (A5) hold. If F L loc q ( Ω ) , then Xu L loc q ( Ω ) , where q( p, ) . Moreover, there exists a positive constant C( n,p,ν,L,q,a ) such that

( B R 2 | Xu | q dx ) 1 q C ( B R ( μ+| Xu | ) p dx ) 1 p +C ( B R | F | q dx ) 1 q (2.6)

for any CC-ball B R Ω .

3. Proofs of Theorem 1.1

In this section, we present the proofs of Theorem 1.1. Inspired by [13], for the vector field A( x,ξ ) appeared in (1.2), we introduce

A B ( ξ )= B A( x,ξ )dx (3.1)

for ξ 2n and a CC-ball BΩ . Then we define

V( x,B )= sup ξ 2n | A( x,ξ ) A B ( ξ ) | ( μ 2 + | ξ | 2 ) p1 2 , (3.2)

where BΩ is a CC-ball and xΩ . It follows that if A:Ω× 2n 2n be a Carathéodory vector field such that (A1)-(A4) hold, then A is locally uniformly in VMO, that is,

lim R0 sup r( B )<R sup c( B )K B V( x,B )dx =0, (3.3)

where KΩ , c( B ) and r( B ) denote the center and the radius of the CC-ball B, respectively.

In order to prove Theorem 1.1, we mention that there exists a constant C ^ >0 such that

C ^ 1 ( μ 2 + | ξ | 2 + | η | 2 ) p2 2 | V( ξ )V( η ) | 2 | ξη | 2 C ^ ( μ 2 + | ξ | 2 + | η | 2 ) p2 2 (3.4)

for any ξ,η 2n and | ξη |0 .

We are in a position to present the proof.

Proof of Theorem 1.1. We let B 3R Ω and select a test function φ= Δ h ( η 2 Δ h u ) to (1.1), where η C 0 ( B 3R ) is a cut-off function satisfying that

0η( x )1,η( x )1forx B R 2 ,η( x )0forx B 3R \ B R ,and| Xη | C R .

One gets that

G 1 = B 2R [ A( x+h,Xu( x+h ) )A( x+h,Xu ) ] η 2 Δ h Xudx = B 2R [ A( x,Xu )A( x+h,Xu ) ] η 2 Δ h Xudx +   B 2R [ A( x+h,Xu )A( x+h,Xu( x+h ) ) ]2ηXη Δ h udx +   B 2R [ A( x,Xu )A( x+h,Xu ) ]2ηXη Δ h udx = G 2 + G 3 + G 4 . (3.5)

We estimate each G i ( 1i4 ) in (3.5). By (A1), it is clear that

G 1 ν B 2R ( μ 2 + | Xu( x+h ) | 2 + | Xu | 2 ) p2 2 | Δ h Xu | 2 η 2 dx . (3.6)

For G 2 , according to (A4) and (2.2), we obtain that

G 2 B 2R | h | α ( g( x )+g( x+h ) ) ( μ 2 + | Xu | 2 ) p1 2 | Δ h Xu | η 2 dx ε B 2R ( μ 2 + | Xu | 2 ) p2 2 | Δ h Xu | 2 η 2 dx +C | h | 2α B 2R ( g( x )+g( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx ε B 2R ( μ 2 + | Xu( x+h ) | 2 + | Xu | 2 ) p2 2 | Δ h Xu | 2 η 2 dx +C | h | 2α B 2R ( g( x )+g( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx . (3.7)

where ε>0 will be chosen later. By (A2) and (2.2), one deduces that

G 3 C B 2R ( μ 2 + | Xu | 2 + | Xu( x+h ) | 2 ) p2 2 | Δ h Xu | η | Xη | | Δ h u |dx ε B 2R ( μ 2 + | Xu | 2 + | Xu( x+h ) | 2 ) p2 2 | Δ h Xu | 2 η 2 dx +C B 2R ( μ 2 + | Xu | 2 + | Xu( x+h ) | 2 ) p2 2 | Xη | 2 | Δ h u | 2 dx .

By applying Lagrange Mean Value Theorem, we obtain

C B 2R ( μ 2 + | Xu | 2 + | Xu( x+h ) | 2 ) p2 2 | Xη | 2 | Δ h u | 2 dx C  | h | 2 B 2R+| h | ( μ 2 +2 | Xu | 2 ) p2 2 | Xu | 2 dx C  | h | 2 B 2R+| h | ( μ+| Xu | ) p dx . (3.8)

To estimate G 4 , the hypothesis (A4) and (2.2) give us that

G 4 C B 2R | h | α ( g( x )+g( x+h ) ) ( μ 2 + | Xu | 2 ) p1 2 η| Xη || Δ h u |dx ε B 2R ( μ 2 + | Xu | 2 ) p2 2 η 2 | Δ h u | 2 dx +C | h | 2α B 2R ( g( x )+g( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx . (3.9)

Here we notice that

ε B 2R ( μ 2 + | Xu | 2 ) p2 2 η 2 | Δ h u | 2 dx C | h | 2 B 2R+| h | ( μ+| Xu | ) p dx .

Combining the estimates of G i and choosing ε small enough, we obtain that

B 2R ( μ 2 + | Xu( x+h ) | 2 + | Xu | 2 ) p2 2 | Δ h Xu | 2 η 2 dx C | h | 2α B 2R ( g( x )+g( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx +C | h | 2 B 2R+| h | ( μ+| Xu | ) p dx . (3.10)

By the definition of V (1.3) and the property (3.4), one gets

| Δ h V( Xu ) | 2 = | ( μ 2 + | Xu( x+h ) | 2 ) p2 4 Xu( x+h ) ( μ 2 + | Xu( x ) | 2 ) p2 4 Xu( x ) | 2 C ( μ 2 + | Xu( x+h ) | 2 + | Xu | 2 ) p2 2 | Δ h Xu | 2 . (3.11)

We integrate both sides of (3.11) on B R 2 and apply the properties of η to get

B R 2 | Δ h V( Xu ) | 2 dx C B R 2 ( μ 2 + | Xu( x+h ) | 2 + | Xu | 2 ) p2 2 | Δ h Xu | 2 η 2 dx C | h | 2α B 2R ( g( x )+g( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx +C | h | 2 B 2R+| h | ( μ+| Xu | ) p dx (3.12)

Dividing both sides of (3.12) by | h | 2α , it follows that

B R 2 | Δ h V( Xu ) | h | α | 2 dx C B 2R ( g( x )+g( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx +C | h | 22α B 2R+| h | ( μ+| Xu | ) p dx =: P 1 + P 2 . (3.13)

Finally, we shall give the proof that P i is bounded for each i. In view of Lemma 2.1, ones get | Xu | p L t ( Ω ) with t>1 . In particular, | Xu | p L Q Q2α ( Ω ) . By choosing 0<| h |<δ<R and (A4), we acquire

P 1 C ( B 2R ( g( x )+g( x+h ) ) Q α dx ) 2α Q ( B 2R [ ( μ 2 + | Xu | 2 ) p 2 ] Q Q2α dx ) Q2α Q C ( B 2R+| h | g ( x ) Q α dx ) 2α Q ( B 2R [ ( μ 2 + | Xu | 2 ) p 2 ] Q Q2α dx ) n2α Q <.

Because uH W loc 1,p ( Ω ) , we get P 2 < . It follows that sup | h |<δ B R 2 | Δ h V( Xu ) | h | α | 2 dx < with δ<R , that is, V( Xu ) B 2, α ( Ω ) locally.

4. Proofs of Theorem 1.2

For the non-homogeneous case, we need the following lemma.

Lemma 4.1 Let A:Ω× 2n 2n be a Carathéodory vector field such that (A1)-(A3) and (A5) hold. Then A is locally uniformly in VMO, that is,

lim R0 sup r( B )<R sup c( B )K B V( x,B )dx =0, (4.1)

where V( x,B ) is given in (3.2), KΩ , c( B ) and r( B ) denote the center and the radius of the CC-ball B, respectively.

Proof. Given a point xΩ , we let A k ( x )={ yΩ: 2 k dist CC ( x,y )< 2 k+1 } . Ones get

B V( x,B )dx B sup ξ 2n B | A( x,ξ )A( y,ξ ) | ( μ 2 + | ξ | 2 ) p1 2 dydx = B sup ξ 2n 1 | B | k B A k ( x ) | A( x,ξ )A( y,ξ ) | ( μ 2 + | ξ | 2 ) p1 2 dydx 1 | B | 2 k B B A k ( x ) dist CC ( x,y ) α ( g k ( x )+ g k ( y ) )dydx ( 1 | B | 2 k B B A k ( x ) dist CC ( x,y ) Qα Qα dydx ) Qα Q × ( 1 | B | 2 k B B A k ( x ) ( g k ( x )+ g k ( y ) ) Q α dydx ) α Q C( Q,α ) | B | α Q ( 1 | B | 2 k B B A k ( x ) ( g k ( x )+ g k ( y ) ) Q α dydx ) α Q .

By Hölder inequality, we acquire that

( 1 | B | 2 k B B A k ( x ) ( g k ( x )+ g k ( y ) ) Q α dydx ) α Q C ( 1 | B | 2 k | B   A k ( x ) | B g k ( x ) Q α dx ) α Q C | B | 2 q ( k g k L Q α ( B ) q ) 1 q 1 | B | 2( α Q 1 q ) ( k | B   A k ( x ) | αq αqQ ) α Q αqQ αQ C( Q,α,q ) | B | α Q ( k g k L Q α ( B ) q ) 1 q .

We choose r>0 small enough and observe that x g k l q ( L Q α ( B r ( x ) ) ) is continuous on the set { xΩ:dist( x,Ω )>r } . Therefore, there is a point x r K for r>0 small enough such that

sup xK g k l q ( L Q α ( B r ( x ) ) ) = g k l q ( L Q α ( B r ( x ) ) ) .

We obtain that

lim r0 g k l q ( L Q α ( B r ( x ) ) ) = ( k lim r0 ( B r ( x r ) g k Q α ) qα Q ) 1 q .

Each of the limits on the right hand side equals to 0. Hence we complete the proof. □

With the help of preceding lemma, we have the following result.

Proof of Theorem 1.2. We assume that B 3R+1 Ω , and choose a test function φ= Δ h ( η 2 Δ h u ) to (1.2), where η C 0 ( Ω ) is a cut-off function satisfying that

0η( x )1,η( x )1forx B R 2 ,η( x )0forx B 3R+1 \ B R ,and| Xη | C R .

According to the definition of weak solution and choice of test function, we obtain

G 1 = B 2R [ A( x+h,Xu( x+h ) )A( x+h,Xu ) ] η 2 Δ h Xudx = B 2R [ A( x,Xu )A( x+h,Xu ) ] η 2 Δ h Xudx + B 2R [ A( x+h,Xu )A( x+h,Xu( x+h ) ) ]2ηXη Δ h udx + B 2R [ A( x,Xu )A( x+h,Xu ) ]2ηXη Δ h udx + B 2R Δ h [ | F | p2 F ]2ηXη Δ h udx + B 2R Δ h [ | F | p2 F ] η 2 Δ h Xudx = G 2 + G 3 + G 4 + G 5 + G 6 . (4.2)

We have estimated the terms G 1 to G 4 in the proof of Theorem 1.1. Thus it remains to estimate G 5 and G 6 . We apply (2.2) to get

G 5 C B 2R |   Δ h [ | F | p2 F ]  || Δ h u |ηdx C  | h | 2α B 2R | Δ h [ | F | p2 F ] | h | α | 2 dx +C B 2R | Δ h u | 2 η 2 dx .

By applying the Lagrange Mean Value Theorem, the second term can be controlled by

C( μ ) B 2R | Δ h u | 2 η 2 dx C B 2R μ p μ 2 | Δ h u | 2 η 2 dx C | h | 2 B 2R+| h | [ ( μ 2 + | Xu | 2 ) 1 2 ] p [ ( μ 2 + | Xu | 2 ) 1 2 ] 2   | Xu | 2 dx C | h | 2 B 2R+| h | ( μ+| Xu | ) p dx .

For the estimate of G 6 , it is apparent that

G 6 B 2R | Δ h [ | F | p2 F ] || Δ h Xu | η 2 dx C  | h | 2α B 2R | Δ h [ | F | p2 F ] | h | α | 2 dx +ε B 2R | Δ h Xu | 2 η 2 dx .

Similarly, one obtains that

ε B 2R | Δ h Xu | 2 η 2 dx ε μ p2 B 2R μ p2 | Δ h Xu | 2 η 2 dx ε μ p2 B 2R ( μ 2 + | Xu( x+h ) | 2 + | Xu | 2 ) p2 2 | Δ h Xu | 2 η 2 dx .

Combining the estimates of G i , we evidently have

( ν2ε ε μ p2 ) B 2R ( μ 2 + | Xu( x+h ) | 2 + | Xu | 2 ) p2 2 | Δ h Xu | 2 η 2 dx C | h | 2α B 2R ( g k ( x )+ g k ( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx +C | h | 2 B 2R+| h | ( μ+| Xu | ) p dx +C | h | 2α B 2R | Δ h [ | F | p2 F ] | h | α | 2 dx . (4.3)

By choosing ε= ν 4+ 2 μ p2 , we obtain that

B 2R ( μ 2 + | Xu( x+h ) | 2 + | Xu | 2 ) p2 2 | Δ h Xu | 2 η 2 dx C | h | 2α B 2R ( g k ( x )+ g k ( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx +C | h | 2 B 2R+| h | ( μ+| Xu | ) p dx +C | h | 2α B 2R | Δ h [ | F | p2 F ] | h | α | 2 dx . (4.4)

Using (1.3) and (3.4) again, we obtain that

| Δ h V( Xu ) | 2 C ( μ 2 + | Xu( x+h ) | 2 + | Xu | 2 ) p2 2 | Δ h Xu | 2 .

Using (4.4), it follows that

B R 2 | Δ h V( Xu ) | 2 dx C | h | 2 B 2R+| h | ( μ+| Xu | ) p dx +C | h | 2α B 2R | Δ h [ | F | p2 F ] | h | α | 2 dx +C | h | 2α B 2R ( g k ( x )+ g k ( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx . (4.5)

Dividing both sides of (4.5) by | h | 2α and applying the properties of η , one derives that

B R 2 | Δ h V( Xu ) | h | α | 2 dx C | h | 22α B 2R+| h | ( μ+| Xu | ) p dx +C B 2R | Δ h [ | F | p2 F ] | h | α | 2 dx +C B 2R ( g k ( x )+ g k ( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx . (4.6)

By taking the power of 1 2 , one obtains

( B R 2 | Δ h V( Xu ) | h | α | 2 dx ) 1 2 C [ B 2R ( g k ( x )+ g k ( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx ] 1 2 +C | h | 1α ( B 2R B 2R+| h | ( μ+| Xu | ) p dx ) 1 2 +C ( B 2R | Δ h [ | F | p2 F ] | h | α | 2 dx ) 1 2 . (4.7)

Restricting to B δ with 0<| h |<δ and taking the L q norm with respect to the measure dh | h | Q , it follows that

( B δ ( B R 2 | Δ h V( Xu ) | h | α | 2 dx ) q 2 dh | h | Q ) 1 q C ( B δ ( B 2R ( g k ( x )+ g k ( x+h ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx ) q 2 dh | h | Q ) 1 q +C ( B δ | h | ( 1α )q ( B 2R+| h | ( μ+| Xu | ) p dx ) q 2 dh | h | Q ) 1 q +C ( B δ ( B 2R | Δ h [ | F | p2 F ] | h | α | 2 dx ) q 2 dh | h | Q ) 1 q =: P 1 + P 2 + P 3 . (4.8)

We shall show that each P i ( 1i3 ) is bounded. Since B 2,q α ( Ω ) L 2Q Q2α ( Ω ) with 1q< 2Q Q2α , one has | F | p2 F L 2Q Q2α ( Ω ) . By Lemma 2.2, we get | Xu | p2 Xu L 2Q Q2α ( Ω ) . That is, Xu L 2Q( p1 ) Q2α ( Ω ) . Since

2Q( p1 ) Q2α Qp Q2α ,

then we get | Xu | p L Q Q2α ( Ω ) .

To estimate P 1 , we write the L q norm in polar coordinates. There is no harm in supposing that δ=1 , so h B 1    2n is equivalent to h=rξ for 0r<1 and ξ in the unit sphere S 2n1 . Let dσ( ξ ) be the surface measure on S 2n1 . By letting r k = 1 2 k , we estimate P 1 as

P 1 = 0 1 0 1 S 2n1 ( B 2R ( g k ( x+rξ )+ g k ( x ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx ) q 2 dσ( ξ ) dr r dt = 0 1 k=0 r k+1 r k S 2n1 ( B 2R ( g k ( x+rξ )+ g k ( x ) ) 2 ( μ 2 + | Xu | 2 ) p 2 dx ) q 2 dσ( ξ ) dr r dt 0 1 k=0 r k+1 r k S 2n1 ( τ rξ   g k + g k ) ( ( μ 2 + | Xu | 2 ) p 2 ) 1 2 L 2 ( B 2R ) q dσ( ξ ) dr r dt .

We note that τ rξ g k ( x )= g k ( x+rξ ) . Since | Xu | p L Q Q2α ( Ω ) and g k L Q α ( Ω ) , one gets that

( τ rξ   g k + g k )  ( ( μ 2 + | Xu | 2 ) p 2 ) 1 2 L 2 ( B 2R ) ( [ B 2R ( τ rξ   g k + g k ) 2 Q 2α dx ] 2α Q [ B 2R ( μ 2 + | Xu | 2 ) p 2    Q Q2α dx ] Q2α Q ) 1 2 = τ rξ   g k + g k L Q α ( B 2R ) ( μ 2 + | Xu | 2 ) p 2 L Q Q2α ( B 2R ) 1 2 .

On the other hand, there holds

τ rξ   g k + g k L Q α ( B 2R ) g k L Q α ( ( B 2R ) r k ξ ) + g k L Q α ( B 2R ) 2 g k L Q α ( ϱ B R )

for each ξ S 2n1 and r k+1 r r k , where ϱ=3+ 1 R . Therefore one gets

P 1 C  ( μ 2 + | Xu | 2 ) p 2 L Q Q2α ( B 2R ) 1 2 { g k } k l q ( L Q α ( ϱ B R ) ) <.

In the Heisenberg group, a direct calculation gives us that

B δ n | h | ( 1α )qQ dx = B δ 2n [ B δ ( | z | 2 +t ) ( 1α )qQ 2 dt ]dz =C( α,q,Q ) B δ 2n ( | z | 2 + δ 2 ) ( 1α )q( 2n+2 ) 2 +1 dz =C( α,q,Q ) ω 2n1 0 δ ( ρ 2 + δ 2 ) ( 1α )q2n 2 ρ 2n1 dρ C( α,q,Q ) ω 2n1 0 δ ρ ( 1α )q1 dρ <.

According to the fact that uH W 1,p ( Ω ) , we deduce that

P 2 C ( B δ | h | ( 1α )qQ dx ) 1 q ( B 2R+| h | ( μ+| Xu | ) p dx ) 1 2 C ( 0 δ ρ ( 1α )q1 dρ ) 1 q ( B 2R+δ ( μ+| Xu | ) p dx ) 1 2 <.

Because | F | p2 F B 2,q α ( Ω ) , it follows that

P 3 =C  Δ h [ | F | p2 F ] | h | α L q ( dh | h | Q ; L 2 ( B 2R ) ) <.

Therefore, we complete the proof of Theorem 1.2.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Iwaniec, T. (1983) Projections onto Gradient Fields and-Estimates for Degenerated Elliptic Operators. Studia Mathematica, 75, 293-312.
https://doi.org/10.4064/sm-75-3-293-312
[2] DiBenedetto, E. and Manfredi, J. (1993) On the Higher Integrability of the Gradient of Weak Solutions of Certain Degenerate Elliptic Systems. American Journal of Mathematics, 115, 1107-1134.
https://doi.org/10.2307/2375066
[3] Caffarelli, L.A. and Peral, I. (1998) On Estimates for Elliptic Equations in Divergence Form. Communications on Pure and Applied Mathematics, 51, 1-21.
https://doi.org/10.1002/(sici)1097-0312(199801)51:1<1::aid-cpa1>3.0.co;2-g
[4] Byun, S. and Wang, L. (2007)-Estimates for General Nonlinear Elliptic Equations. Indiana University Mathematics Journal, 56, 3193-3222.
https://doi.org/10.1512/iumj.2007.56.3034
[5] Kinnunen, J. and Zhou, S. (1999) A Local Estimate for Nonlinear Equations with Discontinuous Coefficients. Communications in Partial Differential Equations, 24, 2043-2068.
https://doi.org/10.1080/03605309908821494
[6] Kinnunen, J. and Zhou, S. (2001) A Boundary Estimate for Nonlinear Equations with Discontinuous Coefficients. Differential and Integral Equations, 14, 475-492.
https://doi.org/10.57262/die/1356123316
[7] Goldstein, P. and Zatorska-Goldstein, A. (2008) Calderon-Zygmund Type Estimates for Nonlinear Systems with Quadratic Growth on the Heisenberg Group. Forum Mathematicum, 20, 679-710.
https://doi.org/10.1515/forum.2008.033
[8] Mingione, G., Zatorska-Goldstein, A. and Zhong, X. (2009) Gradient Regularity for Elliptic Equations in the Heisenberg Group. Advances in Mathematics, 222, 62-129.
https://doi.org/10.1016/j.aim.2009.03.016
[9] Balci, A.K., Diening, L. and Weimar, M. (2020) Higher Order Calderón-Zygmund Estimates for the p-Laplace Equation. Journal of Differential Equations, 268, 590-635.
https://doi.org/10.1016/j.jde.2019.08.009
[10] Dahlke, S., Diening, L., Hartmann, C., Scharf, B. and Weimar, M. (2016) Besov Regularity of Solutions to the p-Poisson Equation. Nonlinear Analysis, 130, 298-329.
https://doi.org/10.1016/j.na.2015.10.015
[11] Hartmann, C. and Weimar, M. (2018) Besov Regularity of Solutions to the p-Poisson Equation in the Vicinity of a Vertex of a Polygonal Domain. Results in Mathematics, 73, Article No. 41.
https://doi.org/10.1007/s00025-018-0805-x
[12] Baisón, A.L., Clop, A., Giova, R., Orobitg, J. and Passarelli di Napoli, A. (2016) Fractional Differentiability for Solutions of Nonlinear Elliptic Equations. Potential Analysis, 46, 403-430.
https://doi.org/10.1007/s11118-016-9585-7
[13] Clop, A., Giova, R. and Passarelli di Napoli, A. (2017) Besov Regularity for Solutions of p-Harmonic Equations. Advances in Nonlinear Analysis, 8, 762-778.
https://doi.org/10.1515/anona-2017-0030
[14] Lyaghfouri, A. (2021) Global Higher Integrability of the Gradient of the A-Laplace Equation Solution. arXiv:2104.08831.
https://doi.org/10.48550/arXiv.2104.08831
[15] Razani, A. (2023) Entire Weak Solutions for an Anisotropic Equation in the Heisenberg Group. Proceedings of the American Mathematical Society, 151, 4771-4779.
https://doi.org/10.1090/proc/16488
[16] Triebel, H. (1983) Theory of Function Spaces. Birkhäuser Verlag.

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.