[1]
|
van Eekeren, N., Jongejans, E., van Agtmaal, M., Guo, Y., van der Velden, M., Versteeg, C., et al. (2022) Microarthropod Communities and Their Ecosystem Services Restore When Permanent Grassland with Mowing or Low-Intensity Grazing Is Installed. Agriculture, Ecosystems & Environment, 323, Article 107682. https://doi.org/10.1016/j.agee.2021.107682
|
[2]
|
Firbank, L.G., Petit, S., Smart, S., Blain, A. and Fuller, R.J. (2007) Assessing the Impacts of Agricultural Intensification on Biodiversity: A British Perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 777-787. https://doi.org/10.1098/rstb.2007.2183
|
[3]
|
Liang, Y. and Song, W. (2022) Integrating Potential Ecosystem Services Losses into Ecological Risk Assessment of Land Use Changes: A Case Study on the Qinghai-Tibet Plateau. Journal of Environmental Management, 318, Article 115607. https://doi.org/10.1016/j.jenvman.2022.115607
|
[4]
|
Lee, Y., Ahern, J. and Yeh, C. (2015) Ecosystem Services in Peri-Urban Landscapes: The Effects of Agricultural Landscape Change on Ecosystem Services in Taiwan’s Western Coastal Plain. Landscape and Urban Planning, 139, 137-148. https://doi.org/10.1016/j.landurbplan.2015.02.023
|
[5]
|
Emmerson, M., Morales, M.B., Oñate, J.J., Batáry, P., Berendse, F., Liira, J., et al. (2016) How Agricultural Intensification Affects Biodiversity and Ecosystem Services. Advances in Ecological Research, 55, 43-97. https://doi.org/10.1016/bs.aecr.2016.08.005
|
[6]
|
Ferrante, M., Lövei, G.L., Nunes, R., Monjardino, P., Lamelas-López, L., Möller, D., et al. (2023) Gains and Losses in Ecosystem Services and Disservices after Converting Native Forest to Agricultural Land on an Oceanic Island. Basic and Applied Ecology, 68, 1-12. https://doi.org/10.1016/j.baae.2022.11.010
|
[7]
|
Ma, S., Wang, L., Jiang, J. and Zhao, Y. (2023) Direct and Indirect Effects of Agricultural Expansion and Landscape Fragmentation Processes on Natural Habitats. Agriculture, Ecosystems & Environment, 353, Article 108555. https://doi.org/10.1016/j.agee.2023.108555
|
[8]
|
Kernecker, M., Felipe-Lucia, M., Westphal, C. and Hass, A. (2024) Managing Agrobiodiversity: Integrating Field and Landscape Scales for Biodiversity-Yield Synergies. Basic and Applied Ecology, 75, 26-30. https://doi.org/10.1016/j.baae.2024.01.001
|
[9]
|
Rivera-Pedroza, L.F., Escobar, F., Philpott, S.M. and Armbrecht, I. (2019) The Role of Natural Vegetation Strips in Sugarcane Monocultures: Ant and Bird Functional Diversity Responses. Agriculture, Ecosystems & Environment, 284, Article 106603. https://doi.org/10.1016/j.agee.2019.106603
|
[10]
|
Beckmann, M., Gerstner, K., Akin‐Fajiye, M., Ceaușu, S., Kambach, S., Kinlock, N.L., et al. (2019) Conventional Land‐Use Intensification Reduces Species Richness and Increases Production: A Global Meta‐Analysis. Global Change Biology, 25, 1941-1956. https://doi.org/10.1111/gcb.14606
|
[11]
|
Geiger, F., Bengtsson, J., Berendse, F., Weisser, W.W., Emmerson, M., Morales, M.B., et al. (2010) Persistent Negative Effects of Pesticides on Biodiversity and Biological Control Potential on European Farmland. Basic and Applied Ecology, 11, 97-105. https://doi.org/10.1016/j.baae.2009.12.001
|
[12]
|
Mohd Ghazi, R., Nik Yusoff, N.R., Abdul Halim, N.S., Wahab, I.R.A., Ab Latif, N., Hasmoni, S.H., et al. (2023) Health Effects of Herbicides and Its Current Removal Strategies. Bioengineered, 14, Article 2259526. https://doi.org/10.1080/21655979.2023.2259526
|
[13]
|
Stavert, J.R., Pattemore, D.E., Gaskett, A.C., Beggs, J.R. and Bartomeus, I. (2017) Exotic Species Enhance Response Diversity to Land-Use Change but Modify Functional Composition. Proceedings of the Royal Society B: Biological Sciences, 284, Article 20170788. https://doi.org/10.1098/rspb.2017.0788
|
[14]
|
Guo, Y., Xu, T., Cheng, J., Wei, G. and Lin, Y. (2021) Above-and Belowground Biodiversity Drives Soil Multifunctionality along a Long-Term Grassland Restoration Chronosequence. Science of the Total Environment, 772, Article 145010. https://doi.org/10.1016/j.scitotenv.2021.145010
|
[15]
|
Bommarco, R., Kleijn, D. and Potts, S.G. (2013) Ecological Intensification: Harnessing Ecosystem Services for Food Security. Trends in Ecology & Evolution, 28, 230-238. https://doi.org/10.1016/j.tree.2012.10.012
|
[16]
|
Jones, S.K., Sánchez, A.C., Beillouin, D., Juventia, S.D., Mosnier, A., Remans, R., et al. (2023) Achieving Win-Win Outcomes for Biodiversity and Yield through Diversified Farming. Basic and Applied Ecology, 67, 14-31. https://doi.org/10.1016/j.baae.2022.12.005
|
[17]
|
Owen, M.D.K. (2016) Diverse Approaches to Herbicide-Resistant Weed Management. Weed Science, 64, 570-584. https://doi.org/10.1614/ws-d-15-00117.1
|
[18]
|
Ferreira, M.I. and Reinhardt, C.F. (2016) Allelopathic Weed Suppression in Agroecosystems: A Review of Theories and Practices. African Journal of Agricultural Research, 11, 450-459. https://doi.org/10.5897/ajar2015.10580
|
[19]
|
Huang, Q.Q., Fan, Z.W., Li, X.X., Wang, Y., Liu, Y. and Shen, Y.D. (2018) Effects of Nutrient Addition and Clipping on Biomass Production of Invasive and Native Annual Asteraceae Plants. Weed Research, 58, 318-326. https://doi.org/10.1111/wre.12308
|
[20]
|
Godoy, O., Valladares, F. and Castro‐Díez, P. (2011) Multispecies Comparison Reveals That Invasive and Native Plants Differ in Their Traits but Not in Their Plasticity. Functional Ecology, 25, 1248-1259. https://doi.org/10.1111/j.1365-2435.2011.01886.x
|
[21]
|
Thapa, L.B., Kaewchumnong, K., Sinkkonen, A. and Sridith, K. (2016) Plant Invasiveness and Target Plant Density: High Densities of Native Schima wallichii Seedlings Reduce Negative Effects of Invasive Ageratina adenophora. Weed Research, 57, 72-80. https://doi.org/10.1111/wre.12238
|
[22]
|
Travlos, I., Cheimona, N. and Bilalis, D. (2017) Glyphosate Efficacy of Different Salt Formulations and Adjuvant Additives on Various Weeds. Agronomy, 7, Article 60. https://doi.org/10.3390/agronomy7030060
|
[23]
|
Gianessi, L.P. (2013) The Increasing Importance of Herbicides in Worldwide Crop Production. Pest Management Science, 69, 1099-1105. https://doi.org/10.1002/ps.3598
|
[24]
|
Jha, P., Kumar, V., Lim, C.A. and Yadav, R. (2017) Evaluation of Preemergence Herbicides for Crop Safety and Weed Control in Safflower. American Journal of Plant Sciences, 8, 2358-2366. https://doi.org/10.4236/ajps.2017.810158
|
[25]
|
Dayan, F.E. (2019) Current Status and Future Prospects in Herbicide Discovery. Plants, 8, Article 341. https://doi.org/10.3390/plants8090341
|
[26]
|
Gressel, J. (1991) Why Get Resistance? It Can Be Prevented or Delayed. In: Caseley, J.C., Cussans, G.W. and Atkin, R.K., Eds., Herbicide Resistance in Weeds and Crops, Elsevier, 1-25. https://doi.org/10.1016/b978-0-7506-1101-5.50004-8
|
[27]
|
Burns, E.E., Lehnhoff, E.A., Mckenzie, S.C., Maxwell, B.D., Dyer, W.E. and Menalled, F.D. (2018) You Cannot Fight Fire with Fire: A Demographic Model Suggests Alternative Approaches to Manage Multiple Herbicide‐Resistant Avena fatua. Weed Research, 58, 357-368. https://doi.org/10.1111/wre.12315
|
[28]
|
Renton, M., Diggle, A., Manalil, S. and Powles, S. (2011) Does Cutting Herbicide Rates Threaten the Sustainability of Weed Management in Cropping Systems? Journal of Theoretical Biology, 283, 14-27. https://doi.org/10.1016/j.jtbi.2011.05.010
|
[29]
|
Devault, D.A., Guillemin, J., Millet, M., Eymery, F., Hulin, M. and Merlo, M. (2019) Prosulfocarb at Center Stage! Environmental Science and Pollution Research, 29, 61-67. https://doi.org/10.1007/s11356-019-06928-8
|
[30]
|
Heap, I. (2024) The International Herbicide-Resistant Weed Database. https://www.weedscience.org/Home.aspx
|
[31]
|
Heap, I. (2014) Global Perspective of Herbicide‐Resistant Weeds. Pest Management Science, 70, 1306-1315. https://doi.org/10.1002/ps.3696
|
[32]
|
Ferreira, M.I. (2022) Mitigating Agricultural Intensification in the Western Cape with Landscape Elements: A Synopsis of Applicable Ecological Weed Management Strategies. Advances in Weed Science, 40, e020220063. https://doi.org/10.51694/advweedsci/2022;40:00027
|
[33]
|
Zhang, K., Lin, S., Ji, Y., Yang, C., Wang, X., Yang, C., et al. (2016) Plant Diversity Accurately Predicts Insect Diversity in Two Tropical Landscapes. Molecular Ecology, 25, 4407-4419. https://doi.org/10.1111/mec.13770
|
[34]
|
de Menezes, C.W.G. and Soares, M.A. (2016) Impactos do controle de plantas daninhas e da aplicação de herbicidas em inimigos naturais. Revista Brasileira de Herbicidas, 15, 2-13. https://doi.org/10.7824/rbh.v1i1.407
|
[35]
|
Sánchez-Bayo, F. and Wyckhuys, K.A.G. (2019) Worldwide Decline of the Entomofauna: A Review of Its Drivers. Biological Conservation, 232, 8-27. https://doi.org/10.1016/j.biocon.2019.01.020
|
[36]
|
El jaouhari, M., Damour, G., Tixier, P. and Coulis, M. (2023) Glyphosate Reduces the Biodiversity of Soil Macrofauna and Benefits Exotic over Native Species in a Tropical Agroecosystem. Basic and Applied Ecology, 73, 18-26. https://doi.org/10.1016/j.baae.2023.10.001
|
[37]
|
Zhang, H., Zhang, S., Huo, J., Xiao, Z. and Aurangzeib, M. (2023) Semi-Natural Habitat of Gullies Mediates the Spatiotemporal Pattern of Beneficial Insects in an Agricultural Watershed in Northeast China. Agriculture, Ecosystems & Environment, 345, Article 108340. https://doi.org/10.1016/j.agee.2022.108340
|
[38]
|
Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B.L., Lassaletta, L., et al. (2018) Options for Keeping the Food System within Environmental Limits. Nature, 562, 519-525. https://doi.org/10.1038/s41586-018-0594-0
|
[39]
|
Kremen, C., Iles, A. and Bacon, C. (2012) Diversified Farming Systems: An Agroecological, Systems-Based Alternative to Modern Industrial Agriculture. Ecology and Society, 17, Article 44. https://doi.org/10.5751/es-05103-170444
|
[40]
|
Beillouin, D., Ben‐Ari, T., Malézieux, E., Seufert, V. and Makowski, D. (2021) Positive but Variable Effects of Crop Diversification on Biodiversity and Ecosystem Services. Global Change Biology, 27, 4697-4710. https://doi.org/10.1111/gcb.15747
|
[41]
|
Cusser, S., Neff, J.L. and Jha, S. (2016) Natural Land Cover Drives Pollinator Abundance and Richness, Leading to Reductions in Pollen Limitation in Cotton Agroecosystems. Agriculture, Ecosystems & Environment, 226, 33-42. https://doi.org/10.1016/j.agee.2016.04.020
|
[42]
|
Pita, R., Morgado, R., Moreira, F., Mira, A. and Beja, P. (2020) Roads, Forestry Plantations and Hedgerows Affect Badger Occupancy in Intensive Mediterranean Farmland. Agriculture, Ecosystems & Environment, 289, Article 106721. https://doi.org/10.1016/j.agee.2019.106721
|
[43]
|
Hallikma, T., Tali, K., Melts, I. and Heinsoo, K. (2023) How Is Plant Biodiversity Inside Grassland Type Related to Economic and Ecosystem Services: An Estonian Case Study. Agriculture, Ecosystems & Environment, 349, Article 108429. https://doi.org/10.1016/j.agee.2023.108429
|
[44]
|
Böcker, T., Britz, W. and Finger, R. (2018) Modelling the Effects of a Glyphosate Ban on Weed Management in Silage Maize Production. Ecological Economics, 145, 182-193. https://doi.org/10.1016/j.ecolecon.2017.08.027
|
[45]
|
Beckie, H.J., Ashworth, M.B. and Flower, K.C. (2019) Herbicide Resistance Management: Recent Developments and Trends. Plants, 8, Article 161. https://doi.org/10.3390/plants8060161
|
[46]
|
Gage, K.L., Krausz, R.F. and Walters, S.A. (2019) Emerging Challenges for Weed Management in Herbicide-Resistant Crops. Agriculture, 9, Article 180. https://doi.org/10.3390/agriculture9080180
|
[47]
|
Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L.G., et al. (2019) A Global Synthesis Reveals Biodiversity-Mediated Benefits for Crop Production. Science Advances, 5, eaax0121. https://doi.org/10.1126/sciadv.aax0121
|
[48]
|
Rusch, A., Valantin-Morison, M., Sarthou, J. and Roger-Estrade, J. (2010) Biological Control of Insect Pests in Agroecosystems. Advances in Agronomy, 109, 219-259. https://doi.org/10.1016/b978-0-12-385040-9.00006-2
|
[49]
|
Muneret, L., Mitchell, M., Seufert, V., Aviron, S., Djoudi, E.A., Pétillon, J., et al. (2018) Evidence That Organic Farming Promotes Pest Control. Nature Sustainability, 1, 361-368. https://doi.org/10.1038/s41893-018-0102-4
|
[50]
|
Garibaldi, L.A., Oddi, F.J., Miguez, F.E., Bartomeus, I., Orr, M.C., Jobbágy, E.G., et al. (2020) Working Landscapes Need at Least 20% Native Habitat. Conservation Letters, 14, e12773. https://doi.org/10.1111/conl.12773
|
[51]
|
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E. and van der Heijden, M.G.A. (2019) Fungal-Bacterial Diversity and Microbiome Complexity Predict Ecosystem Functioning. Nature Communications, 10, Article No. 4841. https://doi.org/10.1038/s41467-019-12798-y
|
[52]
|
Ferreira, M.I., Reinhardt, C.F., van der Rijst, M., Marais, A. and Botha, A. (2019) Pot Leachates from Wheat and Ryegrass Hybrid Type Affect the Growth and Composition of Microbial Communities in the Soil. International Journal of Agriculture, Environment and Bioresearch, 4, 139-155. https://doi.org/10.35410/ijaeb.2019.4467
|
[53]
|
Leite, H.M.F., Calonego, J.C., Rosolem, C.A., Mendes, L.W., de Moraes, L.N., Grotto, R.M.T., et al. (2021) Cover Crops Shape the Soil Bacterial Community in a Tropical Soil under No-Till. Applied Soil Ecology, 168, Article 104166. https://doi.org/10.1016/j.apsoil.2021.104166
|
[54]
|
Ferreira, M.I., Marais, A., Botha, A., Reinhardt, C.F. and van der Rijst, M. (2023) Root Exudates from Weedy Ryegrass Hybrid Type and Selected Crop Plants Affect Soil Microbial Communities in Two Soil Types of the Western Cape, South Africa. Advances in Modern Agriculture, 4, Article ID: 2378. https://doi.org/10.54517/ama.v4i2.2378
|
[55]
|
Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., et al. (2015) Plant Diversity Increases Soil Microbial Activity and Soil Carbon Storage. Nature Communications, 6, Article No. 6707. https://doi.org/10.1038/ncomms7707
|
[56]
|
Müller‐Stöver, D., Nybroe, O., Baraibar, B., Loddo, D., Eizenberg, H., French, K., et al. (2016) Contribution of the Seed Microbiome to Weed Management. Weed Research, 56, 335-339. https://doi.org/10.1111/wre.12218
|
[57]
|
Kennedy, A.C. (2018) Selective Soil Bacteria to Manage Downy Brome, Jointed Goatgrass, and Medusahead and Do No Harm to Other Biota. Biological Control, 123, 18-27. https://doi.org/10.1016/j.biocontrol.2018.05.002
|
[58]
|
Kennedy, A.C. (2016) Pseudomonas Fluorescens Strains Selectively Suppress Annual Bluegrass (Poa annua L.). Biological Control, 103, 210-217. https://doi.org/10.1016/j.biocontrol.2016.09.012
|
[59]
|
Kennedy, A.C. (2017) The Use of Bacteria in Integrated Weed Management. In: Zimdahl, R. Ed., Integrated weed management for sustainable agriculture, Burleigh Dodds Science Publishing, 417-430. https://doi.org/10.19103/as.2017.0025.22
|
[60]
|
Jordan, N.R., Zhang, J. and Huerd, S. (2000) Arbuscular‐Mycorrhizal Fungi: Potential Roles in Weed Management. Weed Research, 40, 397-410. https://doi.org/10.1046/j.1365-3180.2000.00207.x
|
[61]
|
Busby, R.R., Torbert, H.A. and Prior, S.A. (2019) Soil and Vegetation Responses to Amendment with Pulverized Classified Paper Waste. Soil and Tillage Research, 194, Article 104328. https://doi.org/10.1016/j.still.2019.104328
|
[62]
|
Gannett, M., DiTommaso, A., Sparks, J.P. and Kao-Kniffin, J. (2024) Microbial Nitrogen Immobilization as a Tool to Manage Weeds in Agroecosystems. Agriculture, Ecosystems & Environment, 366, Article 108904. https://doi.org/10.1016/j.agee.2024.108904
|
[63]
|
Wang, F., Wang, X. and Song, N. (2021) Biochar and Vermicompost Improve the Soil Properties and the Yield and Quality of Cucumber (Cucumis sativus L.) Grown in Plastic Shed Soil Continuously Cropped for Different Years. Agriculture, Ecosystems & Environment, 315, Article 107425. https://doi.org/10.1016/j.agee.2021.107425
|
[64]
|
Akyol, T.Y., Niwa, R., Hirakawa, H., Maruyama, H., Sato, T., Suzuki, T., et al. (2019) Impact of Introduction of Arbuscular Mycorrhizal Fungi on the Root Microbial Community in Agricultural Fields. Microbes and Environments, 34, 23-32. https://doi.org/10.1264/jsme2.me18109
|
[65]
|
Lehmann, J. and Joseph, S. (2015) Biochar for Environmental Management: Science, Technology and Implementation. Routledge, 928.
|
[66]
|
Little, N.G., DiTommaso, A., Westbrook, A.S., Ketterings, Q.M. and Mohler, C.L. (2021) Effects of Fertility Amendments on Weed Growth and Weed-Crop Competition: A Review. Weed Science, 69, 132-146. https://doi.org/10.1017/wsc.2021.1
|
[67]
|
Uddin, M.N., Robinson, R.W. and Asaeda, T. (2020) Nitrogen Immobilization May Reduce Invasibility of Nutrient Enriched Plant Community Invaded by Phragmites Australis. Scientific Reports, 10, Article No. 1601. https://doi.org/10.1038/s41598-020-58523-4
|
[68]
|
Carbonne, B., Petit, S., Neidel, V., Foffova, H., Daouti, E., Frei, B., et al. (2020) The Resilience of Weed Seedbank Regulation by Carabid Beetles, at Continental Scales, to Alternative Prey. Scientific Reports, 10, Article No. 19315. https://doi.org/10.1038/s41598-020-76305-w
|
[69]
|
Law, J.J., Gallagher, R.S., Leslie, T.W. and Weber, J.B. (2023) Enhanced Invertebrate Activity-Densities and Weed Seed Predation in an Integrated Cropping System. Basic and Applied Ecology, 68, 46-56. https://doi.org/10.1016/j.baae.2023.03.005
|
[70]
|
Senapathi, D., Fründ, J., Albrecht, M., Garratt, M.P.D., Kleijn, D., Pickles, B.J., et al. (2021) Wild Insect Diversity Increases Inter-Annual Stability in Global Crop Pollinator Communities. Proceedings of the Royal Society B: Biological Sciences, 288, Article 20210212. https://doi.org/10.1098/rspb.2021.0212
|
[71]
|
Schumacher, M. and Gerhards, R. (2022) Facilitation of Weed Seed Predation by Living Mulch and Cover Crops. Weed Research, 62, 328-339. https://doi.org/10.1111/wre.12547
|
[72]
|
de Pedro, L., Perera-Fernández, L.G., López-Gallego, E., Pérez-Marcos, M. and Sanchez, J.A. (2020) The Effect of Cover Crops on the Biodiversity and Abundance of Ground-Dwelling Arthropods in a Mediterranean Pear Orchard. Agronomy, 10, Article 580. https://doi.org/10.3390/agronomy10040580
|
[73]
|
Blubaugh, C.K., Hagler, J.R., Machtley, S.A. and Kaplan, I. (2016) Cover Crops Increase Foraging Activity of Omnivorous Predators in Seed Patches and Facilitate Weed Biological Control. Agriculture, Ecosystems & Environment, 231, 264-270. https://doi.org/10.1016/j.agee.2016.06.045
|
[74]
|
Klapwijk, M.J., Ayres, M.P., Battisti, A. and Larsson, S. (2012) Assessing the Impact of Climate Change on Outbreak Potential. In: Barbosa, P., Letourneau, D.K. and Agrawal, A.A., Eds., Insect Outbreaks Revisited, John Wiley & Sons, Ltd, 429-450.
|
[75]
|
Perez‐Alvarez, R., Nault, B.A. and Poveda, K. (2018) Contrasting Effects of Landscape Composition on Crop Yield Mediated by Specialist Herbivores. Ecological Applications, 28, 842-853. https://doi.org/10.1002/eap.1695
|
[76]
|
Sirami, C., Gross, N., Baillod, A.B., Bertrand, C., Carrié, R., Hass, A., et al. (2019) Increasing Crop Heterogeneity Enhances Multitrophic Diversity across Agricultural Regions. Proceedings of the National Academy of Sciences, 116, 16442-16447. https://doi.org/10.1073/pnas.1906419116
|
[77]
|
Castellano, C., Bruno, D., Comín, F.A., Rey Benayas, J.M., Masip, A. and Jiménez, J.J. (2022) Environmental Drivers for Riparian Restoration Success and Ecosystem Services Supply in Mediterranean Agricultural Landscapes. Agriculture, Ecosystems & Environment, 337, Article 108048. https://doi.org/10.1016/j.agee.2022.108048
|
[78]
|
Rodenwald, N., Sutcliffe, L.M.E., Leuschner, C. and Batáry, P. (2023) Weak Evidence for Biocontrol Spillover from Both Flower Strips and Grassy Field Margins in Conventional Cereals. Agriculture, Ecosystems & Environment, 355, Article 108614. https://doi.org/10.1016/j.agee.2023.108614
|
[79]
|
Petit, S., Muneret, L., Carbonne, B., Hannachi, M., Ricci, B., Rusch, A., et al. (2020) Landscape-Scale Expansion of Agroecology to Enhance Natural Pest Control: A Systematic Review. Advances in Ecological Research, 63, 1-48. https://doi.org/10.1016/bs.aecr.2020.09.001
|
[80]
|
Basinger, N.T. and Hill, N.S. (2021) Establishing White Clover (Trifolium repens) as a Living Mulch: Weed Control and Herbicide Tolerance. Weed Technology, 35, 845-855. https://doi.org/10.1017/wet.2021.45
|
[81]
|
Bhaskar, V., Westbrook, A.S., Bellinder, R.R. and DiTommaso, A. (2021) Integrated Management of Living Mulches for Weed Control: A Review. Weed Technology, 35, 856-868. https://doi.org/10.1017/wet.2021.52
|
[82]
|
Marble, S.C. (2015) Herbicide and Mulch Interactions: A Review of the Literature and Implications for the Landscape Maintenance Industry. Weed Technology, 29, 341-349. https://doi.org/10.1614/wt-d-14-00165.1
|
[83]
|
Qu, Y. and Feng, B. (2022) Straw Mulching Improved Yield of Field Buckwheat (Fagopyrum) by Increasing Water-Temperature Use and Soil Carbon in Rain-Fed Farmland. Acta Ecologica Sinica, 42, 11-16. https://doi.org/10.1016/j.chnaes.2020.11.008
|
[84]
|
Happe, A., Riesch, F., Rösch, V., Gallé, R., Tscharntke, T. and Batáry, P. (2018) Small-Scale Agricultural Landscapes and Organic Management Support Wild Bee Communities of Cereal Field Boundaries. Agriculture, Ecosystems & Environment, 254, 92-98. https://doi.org/10.1016/j.agee.2017.11.019
|
[85]
|
Phillips, H.R.P., Newbold, T. and Purvis, A. (2017) Land-Use Effects on Local Biodiversity in Tropical Forests Vary between Continents. Biodiversity and Conservation, 26, 2251-2270. https://doi.org/10.1007/s10531-017-1356-2
|
[86]
|
Garratt, M.P.D., Senapathi, D., Coston, D.J., Mortimer, S.R. and Potts, S.G. (2017) The Benefits of Hedgerows for Pollinators and Natural Enemies Depends on Hedge Quality and Landscape Context. Agriculture, Ecosystems & Environment, 247, 363-370. https://doi.org/10.1016/j.agee.2017.06.048
|
[87]
|
Blaix, C., Moonen, A.C., Dostatny, D.F., Izquierdo, J., Le Corff, J., Morrison, J., et al. (2018) Quantification of Regulating Ecosystem Services Provided by Weeds in Annual Cropping Systems Using a Systematic Map Approach. Weed Research, 58, 151-164. https://doi.org/10.1111/wre.12303
|
[88]
|
Melander, B., Rasmussen, I.A. and Olesen, J.E. (2020) Legacy Effects of Leguminous Green Manure Crops on the Weed Seed Bank in Organic Crop Rotations. Agriculture, Ecosystems & Environment, 302, Article 107078. https://doi.org/10.1016/j.agee.2020.107078
|
[89]
|
Pelletier-Guittier, C., Théau, J. and Dupras, J. (2020) Use of Hedgerows by Mammals in an Intensive Agricultural Landscape. Agriculture, Ecosystems & Environment, 302, Article 107079. https://doi.org/10.1016/j.agee.2020.107079
|
[90]
|
Blary, C., Kerbiriou, C., Le Viol, I. and Barré, K. (2021) Assessing the Importance of Field Margins for Bat Species and Communities in Intensive Agricultural Landscapes. Agriculture, Ecosystems & Environment, 319, Article 107494. https://doi.org/10.1016/j.agee.2021.107494
|
[91]
|
Holden, J., Grayson, R.P., Berdeni, D., Bird, S., Chapman, P.J., Edmondson, J.L., et al. (2019) The Role of Hedgerows in Soil Functioning within Agricultural Landscapes. Agriculture, Ecosystems & Environment, 273, 1-12. https://doi.org/10.1016/j.agee.2018.11.027
|
[92]
|
Poinas, I., Fried, G., Henckel, L. and Meynard, C.N. (2023) Agricultural Drivers of Field Margin Plant Communities Are Scale-Dependent. Basic and Applied Ecology, 72, 55-63. https://doi.org/10.1016/j.baae.2023.08.003
|
[93]
|
Zamorano, J., Bartomeus, I., Grez, A.A. and Garibaldi, L.A. (2020) Field Margin Floral Enhancements Increase Pollinator Diversity at the Field Edge but Show No Consistent Spillover into the Crop Field: A Meta‐Analysis. Insect Conservation and Diversity, 13, 519-531. https://doi.org/10.1111/icad.12454
|
[94]
|
Woodcock, B.A., Bullock, J.M., McCracken, M., Chapman, R.E., Ball, S.L., Edwards, M.E., et al. (2016) Spill-over of Pest Control and Pollination Services into Arable Crops. Agriculture, Ecosystems & Environment, 231, 15-23. https://doi.org/10.1016/j.agee.2016.06.023
|
[95]
|
Haddaway, N.R., Brown, C., Eales, J., Eggers, S., Josefsson, J., Kronvang, B., et al. (2018) The Multifunctional Roles of Vegetated Strips around and within Agricultural Fields. Environmental Evidence, 7, Article No. 14. https://doi.org/10.1186/s13750-018-0126-2
|
[96]
|
Aavik, T. and Liira, J. (2009) Agrotolerant and High Nature-Value Species—Plant Biodiversity Indicator Groups in Agroecosystems. Ecological Indicators, 9, 892-901. https://doi.org/10.1016/j.ecolind.2008.10.006
|
[97]
|
Meier, E.S., Lüscher, G. and Knop, E. (2022) Disentangling Direct and Indirect Drivers of Farmland Biodiversity at Landscape Scale. Ecology Letters, 25, 2422-2434. https://doi.org/10.1111/ele.14104
|
[98]
|
Estrada-Carmona, N., Sánchez, A.C., Remans, R. and Jones, S.K. (2022) Complex Agricultural Landscapes Host More Biodiversity than Simple Ones: A Global Meta-Analysis. Proceedings of the National Academy of Sciences, 119, e2203385119. https://doi.org/10.1073/pnas.2203385119
|
[99]
|
Alejandra, L., Bibiana, B. and Carlos, B.J. (2013) A Contribution to Pollen Rain Characterization in Forest-Savanna Mosaics of the Venezuelan Guayana and Its Use in Vegetation Reconstructions from Sedimentary Records. American Journal of Plant Sciences, 4, 33-52. https://doi.org/10.4236/ajps.2013.47a1006
|
[100]
|
McCauley, C., Legleiter, T., Herman, R., Rasoulpour, R., Schroeder, J., Pilcher, T., et al. (2022) Sustainable Weed Management—What Is It and How Are We Doing? Weed Technology, 36, 768-776. https://doi.org/10.1017/wet.2022.103
|
[101]
|
Neve, P., Barney, J.N., Buckley, Y., Cousens, R.D., Graham, S., Jordan, N.R., et al. (2018) Reviewing Research Priorities in Weed Ecology, Evolution and Management: A Horizon Scan. Weed Research, 58, 250-258. https://doi.org/10.1111/wre.12304
|
[102]
|
Weigelt, A., Schumacher, J., Roscher, C. and Schmid, B. (2008) Does Biodiversity Increase Spatial Stability in Plant Community Biomass? Ecology Letters, 11, 338-347. https://doi.org/10.1111/j.1461-0248.2007.01145.x
|
[103]
|
Rader, R., Birkhofer, K., Schmucki, R., Smith, H.G., Stjernman, M. and Lindborg, R. (2014) Organic Farming and Heterogeneous Landscapes Positively Affect Different Measures of Plant Diversity. Journal of Applied Ecology, 51, 1544-1553. https://doi.org/10.1111/1365-2664.12344
|
[104]
|
Haan, N.L., Zhang, Y. and Landis, D.A. (2020) Predicting Landscape Configuration Effects on Agricultural Pest Suppression. Trends in Ecology & Evolution, 35, 175-186. https://doi.org/10.1016/j.tree.2019.10.003
|
[105]
|
Petit, S. and Landis, D.A. (2023) Landscape-Scale Management for Biodiversity and Ecosystem Services. Agriculture, Ecosystems & Environment, 347, Article 108370. https://doi.org/10.1016/j.agee.2023.108370
|