|
[1]
|
Marjani, M., Baghaei, P., Kazempour Dizaji, M., Gorji Bayani, P., Fahimi, F., Tabarsi, P., et al. (2016) Evaluation of Hepatoprotective Effect of Silymarin among under Treatment Tuberculosis Patients: A Randomized Clinical Trial. Iranian Journal of Pharmaceutical Research, 15, 247-252.
|
|
[2]
|
Federico, A., Dallio, M. and Loguercio, C. (2017) Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules, 22, Article 191.
[Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Vargas-Mendoza, N., Madrigal-Santillán, E., Morales-González, A., Esquivel-Soto, J., Esquivel-Chirino, C., García-Luna., et al. (2014) Hepatoprotective Effect of Silymarin. World Journal of Hepatology, 6, 144-149.
[Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Esposito, T., Sansone, F., Russo, P., Picerno, P., Aquino, R.P., Gasparri, F., et al. (2019) A Water-Soluble Microencapsulated Milk Thistle Extract as Active Ingredient for Dermal Formulations. Molecules, 24, Article 1547.
[Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ganesan, P. and Choi, D.K. (2016) Current Application of Phytocompound-Based Nanocosmeceuticals for Beauty and Skin Therapy. International Journal of Nanomedicine, 11, 1987-2007. [Google Scholar] [CrossRef]
|
|
[6]
|
Ni, X. and Wang, H. (2016) Silymarin Attenuated Hepatic Steatosis through Regulation of Lipid Metabolism and Oxidative Stress in a Mouse Model of Nonalcoholic Fatty Liver Disease (NAFLD). American Journal of Translational Research, 8, 1073-1081.
|
|
[7]
|
Surai, P.F. (2015) Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants, 4, 204-247.
[Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Avci, H., Epikmen, E.T., İpek, E., Tunca, R., Birincioglu, S.S., Akşit, H., et al. (2017) Protective Effects of Silymarin and Curcumin on Cyclophosphamide-Induced Cardiotoxicity. Experimental and Toxicologic Pathology, 69, 317-327.
[Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Devi, K.P., Malar, D.S., Braidy, N., Nabavi, S.M. and Nabavi, S.F. (2017) A Mini Review on the Chemistry and Neuroprotective Effects of Silymarin. Current Drug Targets, 18, 1529-1536. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Onaolapo, A.Y., Abdusalam, S.Z. and Onaolapo, O.J. (2017) Silymarin Attenuates Aspartame-Induced Variation in Mouse Behaviour, Cerebrocortical Morphology and Oxidative Stress Markers. Pathophysiology, 24, 51-62.
[Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Anestopoulos, I., Sfakianos, A.P., Franco, R., Chlichlia, K., Panayiotidis, M.I., Kroll, D.J., et al. (2017) A Novel Role of Silibinin as a Putative Epigenetic Modulator in Human Prostate Carcinoma. Molecules, 22, Article 62.
[Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gorhe, A., Kulkarni, A., Kandalkar, P. and Jagtap, S. (2020) Silymarin Loaded Novel Drug Delivery for Oral and Topical Administration. Journal of Drug Delivery & Therapeutics, 10, 262-270. [Google Scholar] [CrossRef]
|
|
[13]
|
Abenavoli, L., Capasso, R., Milic, N. and Capasso, F. (2010) Milk Thistle in Liver Diseases: Past, Present, Future. Phytotherapy Research, 24, 1423-1432.
[Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tvrdy, V., Pourová, J., Jirkovsky, E., Křen, V., Valentová, K. and Mladěnka, P. (2021) Systematic Review of Pharmacokinetics and Potential Pharmacokinetic Interactions of Flavonolignans from Silymarin. Medicinal Research Reviews, 41, 2195-2246.
[Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wen, Z., Dumas, T.E., Schrieber, S.J., Hawke, R.L., Fried, M.W. and Smith, P.C. (2008) Pharmacokinetics and Metabolic Profile of Free, Conjugated, and Total Silymarin Flavonolignans in Human Plasma after Oral Administration of Milk Thistle Extract. Drug Metabolism and Disposition, 36, 65-72.
[Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hawke, R.L., Schrieber, S.J., Soule, T.A., Wen, Z., Smith, P.C., Reddy, K.R., et al. (2010) Silymarin Ascending Multiple Oral Dosing Phase I Study in Noncirrhotic Patients with Chronic Hepatitis C. The Journal of Clinical Pharmacology, 50, 434-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Marhol, P., Bednář, P., Kolářová, P., Večeřa, R., Ulrichová, J., Tesařová, E., et al. (2015) Pharmacokinetics of Pure Silybin Diastereoisomers and Identification of Their Metabolites in Rat Plasma. Journal of Functional Foods, 14, 570-580.
[Google Scholar] [CrossRef]
|
|
[18]
|
Di Costanzo, A. and Angelico, R. (2019) Formulation Strategies for Enhancing the Bioavailability of Silymarin: The State of the Art. Molecules, 24, Article 2155.
[Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Leone, F. and Cavalli, R. (2015) Drug Nanosuspensions: A ZIP Tool between Traditional and Innovative Pharmaceutical Formulations. Expert Opinion on Drug Delivery, 12, 1607-1625. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kellici, T.F., Ntountaniotis, D., Leonis, G., Chatziathanasiadou, M., Chatzikonstantinou, A.V., Becker-Baldus, J., et al. (2015) Investigation of the Interactions of Silibinin with 2-Hydroxypropyl-β-Cyclodextrin through Biophysical Techniques and Computational Methods. Molecular Pharmaceutics, 12, 954-965.
[Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gharbia, S., Balta, C., Herman, H., Rosu, M., Váradi, J., Bácskay, I., et al. (2018) Enhancement of Silymarin Anti-Fibrotic Effects by Complexation with Hydroxypropyl (HPBCD) and Randomly Methylated (RAMEB) β-Cyclodextrins in a Mouse Model of Liver Fibrosis. Frontiers in Pharmacology, 9, Article 883.
[Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ma, X. and Williams, R.O. (2018) Polymeric Nanomedicines for Poorly Soluble Drugs in Oral Delivery Systems: An Update. Journal of Pharmaceutical Investigation, 48, 61-75. [Google Scholar] [CrossRef]
|
|
[23]
|
Chen, S., Hao, X., Liang, X., Zhang, Q., Zhang, C., Zhou, G., et al. (2016) Inorganic Nanomaterials as Carriers for Drug Delivery. Journal of Biomedical Nanotechnology, 12, 1-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, C.H., Lin, C.C., Hsu, W.C., Chung, C.Y., Lin, C.C., Jassey, A., et al. (2017) Highly Bioavailable Silibinin Nanoparticles Inhibit HCV Infection. Gut, 66, 1853-1861. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gillessen, A. and Schmidt, H.H. (2020) Silymarin as Supportive Treatment in Liver Diseases: A Narrative Review. Advances in Therapy, 37, 1279-1301.
[Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Anand, A.V., Balamuralikrishnan, B., Kaviya, M., Bharathi, K., Parithathvi, A., Arun, M., et al. (2021) Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including Sars-cov-2. Molecules, 26, Article 1775.
[Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Blaising, J., Lévy, P.L., Gondeau, C., Phelip, C., Varbanov, M., Teissier, E., et al. (2013) Silibinin Inhibits Hepatitis C Virus Entry into Hepatocytes by Hindering Clathrin-Dependent Trafficking. Cellular Microbiology, 15, 1866-1882.
[Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Camini, F.C., da Silva, T.F., da Silva Caetano, C.C., Almeida, L.T., Ferraz, A.C., Alves Vitoreti, V.M., et al. (2018) Antiviral Activity of Silymarin against Mayaro Virus and Protective Effect in Virus-Induced Oxidative Stress. Antiviral Research, 158, 8-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lani, R., Hassandarvish, P., Chiam, C.W., Moghaddam, E., Chu, J.J., Rausalu, K., et al. (2015) Antiviral Activity of Silymarin against Chikungunya Virus. Scientific Reports, 5, Article No. 11421. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Dai, J.P., Wu, L.Q., Li, R., Zhao, X.F., Wan, Q.Y., Chen, X.X., et al. (2013) Identification of 23-(s)-2-Amino-3-Phenylpropanoyl-Silybin as an Antiviral Agent for Influenza A Virus Infection in Vitro and in Vivo. Antimicrobial Agents and Chemotherapy, 57, 4433-4443. [Google Scholar] [CrossRef]
|
|
[31]
|
McClure, J., Margineantu, D.H., Sweet, I.R. and Polyak, S.J. (2014) Inhibition of HIV by Legalon-SIL Is Independent of Its Effect on Cellular Metabolism. Virology, 449, 96-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Palit, P., Mukhopadhyay, A. and Chattopadhyay, D. (2021) Phyto-Pharmacological Perspective of Silymarin: A Potential Prophylactic or Therapeutic Agent for COVID-19, Based on Its Promising Immunomodulatory, Anti-Coagulant and Anti-Viral Property. Phytotherapy Research, 35, 4246-4257. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Šebera, J., Dubankova, A., Sychrovsky, V., et al. (2018) The Structural Model of Zika Virus RNA-Dependent RNA Polymerase in Complex with RNA for Rational Design of Novel Nucleotide Inhibitors. Scientific Reports, 8, Article No. 11132.
[Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rupprecht, C.E. (1996) Rhabdoviruses: Rabies Virus. In: Baron, S., Ed., Medical Microbiology (4th Edition), University of Texas Medical Branch at Galveston, Galveston, Chapter 61. https://www.ncbi.nlm.nih.gov/books/NBK8618/
|
|
[35]
|
Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E., et al. (2018) Structure of Dengue Virus: Implications for Flavivirus Organization, Maturation, and Fusion. Cell, 108, 717-725.
[Google Scholar] [CrossRef]
|
|
[36]
|
Jilani, T.N., Jamil, R.T. and Siddiqui, A.H. (2022) H1N1 Influenza. StatPearls, Treasure Island.
|
|
[37]
|
Ganesan, V.K., Duan, B. and Reid, S.P. (2017) Chikungunya Virus: Pathophysiology, Mechanism, and Modeling. Viruses, 9, Article 368.
[Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lee, J.E. and Saphire, E.O. (2009) Ebolavirus Glycoprotein Structure and Mechanism of Entry. Future Virology, 4, 621-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Bafna, K., Krug, R.M. and Montelione, G.T. (2020) Structural Similarity of Sars-Cov-2 Mpro and HCV NS3/4A Proteases Suggests New Approaches for Identifying Existing Drugs Useful as COVID-19 Therapeutics. ChemRxiv 2020.
[Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Biswas, A., Bhattacharjee, U., Chakrabarti, A.K., Tewari, D.N., Banu, H. and Dutta, S. (2020) Emergence of Novel Coronavirus and COVID-19: Whether to Stay or Die out? Critical Reviews in Microbiology, 46, 182-193.
[Google Scholar] [CrossRef]
|
|
[41]
|
Sikander, M., Malik, S., Rodriguez, A., Yallapu, M.M., Narula, A.S., Satapathy, S.K., Dhevan, V., Chauhan, S.C. and Jaggi, M. (2020) Role of Nutraceuticals in COVID-19 Mediated Liver Dysfunction. Molecules, 25, Article 5905.
[Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Glowacka, I., Bertram, S., Müller, M.A., Allen, P., Soilleux, E., Pfefferle, S., et al. (2011) Evidence That TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. Journal of Virology, 85, 4122-4134.
[Google Scholar] [CrossRef]
|
|
[43]
|
Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A. and Li, F. (2020) Cell Entry Mechanisms of Sars-Cov-2. Proceedings of the National Academy of Sciences of the United States of America, 117, 11727-11734.
[Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.L., Abiona, O., et al. (2020) Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion confoRmation. Science, 367, 1260-1263. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Palit, P., Chattopadhyay, D., Thomas, S., Kundu, A., Kim, H.S. and Rezaei, N. (2021) Phytopharmaceuticals Mediated Furin and TMPRSS2 Receptor Blocking: Can It Be a Potential Therapeutic Option for COVID-19? Phytomedicine, 85, Article ID: 153396. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Wang, W.Y., Xie, Y., Zhou, H. and Liu, L. (2021) Contribution of Traditional Chinese Medicine to the Treatment of COVID-19. Phytomedicine, 85, Article ID: 153279. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wang, Y., Liu, Y., Lv, Q., Zheng, D., Zhou, L., Ouyang, W., et al. (2021) Effect and Safety of Chinese Herbal Medicine Granules in Patients with Severe Coronavirus Disease 2019 in Wuhan, China: A Retrospective, Single-Center Study with Propensity Score Matching. Phytomedicine, 85, Article ID: 153404.
[Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Garg, S., Garg, M., Prabhakar, N., Malhotra, P. and Agarwal, R. (2020) Unraveling the Mystery of Covid-19 Cytokine Storm: From Skin to Organ Systems. Dermatologic Therapy, 33, e13859. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Helms, J., Tacquard, C., Severac, F., Leonard-Lorant, I., Ohana, M., Delabranche, X., et al. (2020) High Risk of Thrombosis in Patients with Severe Sars-Cov-2 Infection: A Multicenter Prospective Cohort Study. Intensive Care Medicine, 46, 1089-1098. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Penman, S.L., Kiy, R.T., Jensen, R.L., Beoku-Betts, C., Alfirevic, A., Back, D., Khoo, S.H., Owen, A., Pirmohamed, M., Park, B.K., Meng, X., Goldring, C.E. and Chadwick, A.E. (2020) Safety Perspectives on Presently Considered Drugs for the Treatment of COVID-19. British Journal of Pharmacology, 177, 4353-4374.
[Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Toyoshima, Y., Nemoto, K., Matsumoto, S., et al. (2020) SARS-CoV-2 Genomic Variations Associated with Mortality Rate of COVID-19. Journal of Human Genetics, 65, 1075-1082. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Severe Covid-19 GWAS Group, Ellinghaus, D., Degenhardt, F., Bujanda, L., Buti, M., Albillos, A., et al. (2020) Genomewide Association Study of Severe Covid-19 with Respiratory Failure. The New England Journal of Medicine, 383, 1522-1534.
[Google Scholar] [CrossRef]
|
|
[53]
|
Carter, C., Thi Lan Anh, N. and Notter, J. (2020) COVID-19 Disease: Perspectives in Low- and Middle-Income Countries. Clinics in Integrated Care, 1, Article ID: 100005. [Google Scholar] [CrossRef]
|
|
[54]
|
Renu, K., Prasanna, P.L. and Valsala Gopalakrishnan, A. (2020) Coronaviruses Pathogenesis, Comorbidities and Multi-Organ Damage—A Review. Life Sciences, 255, Article ID: 117839. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S. and Yuen, K.Y. (2016) Coronaviruses—Drug Discovery and Therapeutic Options. Nature Reviews Drug Discovery, 15, 327-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Li, X., Xu, S., Yu, M., Wang, K., Tao, Y., Zhou, Y., et al. (2020) Risk Factors for Severity and Mortality in Adult COVID-19 Inpatients in Wuhan. J Allergy Clin Immunol 2020, 146, 110-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Al-Samkari, H., Karp Leaf, R.S., Dzik, W.H., Carlson, J.C., Fogerty, A.E., Waheed, A., et al. (2020) COVID and Coagulation: Bleeding and Thrombotic Manifestations of Sars-Cov-2 Infection. Blood, 136, 489-500.
[Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Coppola, A., Lombardi, M., Tassoni, M.I., Carolla, G., Tala, M., Morandini, R., et al. (2020) COVID-19, Thromboembolic Risk and Thromboprophylaxis: Learning Lessons from the Bedside, Awaiting Evidence. Blood Transfusion, 18, 226-229.
|
|
[59]
|
Lemke, G. and Silverman, G.J. (2020) Blood Clots and TAM Receptor Signalling in COVID-19 Pathogenesis. Nature Reviews Immunology, 20, 395-396.
[Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Fakhri, S., Piri, S., Majnooni, M.B., Farzaei, M.H. and Echeverría, J. (2021) Targeting Neurological Manifestations of Coronaviruses by Candidate Phytochemicals: A Mechanistic Approach. Frontiers in Pharmacology, 20, Article 621099.
[Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Guan, W.J., Ni, Z.Y., Hu, Y., Liang, W.H., Ou, C.Q., He, J.X., et al. (2020) China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 382, 1708-1720. [Google Scholar] [CrossRef]
|
|
[62]
|
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., et al. (2020) Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet, 395, 507-513.
[Google Scholar] [CrossRef]
|
|
[63]
|
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet, 395, 497-506. [Google Scholar] [CrossRef]
|
|
[64]
|
Bellik, Y., Hammoudi, S.M., Abdellah, F., Iguer-Ouada, M. and Boukraa, L. (2012) Phytochemicals to Prevent Inflammation and Allergy. Recent Patents on Inflammation & Allergy Drug Discovery, 6, 147-158.
[Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Favarin, D.C., de Oliveira, J.R., de Oliveira, C.J. and Rogerio Ade, P. (2013) Potential Effects of Medicinal Plants and Secondary Metabolites on Acute Lung Injury. BioMed Research International, 2013, Article ID: 576479.
[Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Majnooni, M.B., Fakhri, S., Shokoohinia, Y., Kiyani, N., Stage, K., Mohammadi, P., et al. (2020) Phytochemicals: Potential Therapeutic Interventions against Coronavirus-Associated Lung Injury. Frontiers in Pharmacology, 11, Article 588467.
[Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Karimi, G., Vahabzadeh, M., Lari, P., Rashedinia, M. and Moshiri, M. (2011) “Silymarin”, a Promising Pharmacological Agent for Treatment of Diseases. Iranian Journal of Basic Medical Sciences, 14, 308-317.
|
|
[68]
|
Sahibzada, M.U.K., Sadiq, A., Khan, S., Faidah, H.S., Naseemullah Khurram, M., et al. (2017) Fabrication, Characterization and in Vitro Evaluation of Silibinin Nanoparticles: An Attempt to Enhance Its Oral Bioavailability. Drug Design, Development and Therapy, 11, 1453-1464. [Google Scholar] [CrossRef]
|
|
[69]
|
Sardanelli, A.M., Isgrò, C. and Palese, L.L. (2021) Sars-Cov-2 Main Protease Active Site Ligands in the Human Metabolome. Molecules, 26, Article 1409.
[Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Speciale, A., Muscarà, C., Molonia, M.S., Cimino, F., Saija, A. and Giofrè, S.V. (2021) Silibinin as Potential Tool against Sars-Cov-2: In Silico Spike Receptor-Binding Domain and Main Protease Molecular Docking Analysis, and in Vitro Endothelial Protective Effects. Phytotherapy Research, 35, 4616-4625.
[Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Kumar, S., Kashyap, P., Chowdhury, S., Kumar, S., Panwar, A. and Kumar, A. (2021) Identification of Phytochemicals as Potential Therapeutic Agents That Binds to Nsp15 Protein Target of Coronavirus (Sars-Cov-2) That Are Capable of Inhibiting Virus Replication. Phytomedicine, 85, Article ID: 153317.
[Google Scholar] [CrossRef] [PubMed]
|