[1]
|
Wheless, J.W., Gienapp, A.J. and Ryvlin, P. (2018) Vagus Nerve Stimulation (VNS) Therapy Update. Epilepsy & Behavior, 88, 2-10. https://doi.org/10.1016/j.yebeh.2018.06.032
|
[2]
|
Ueno, N., Sudo, H., Hattori, Y., et al. (1993) Innervation of the External Ear in Humans and the Musk Shrew. Nihon Jibiinkoka Gakkai Kaiho, 96, 212-218. https://doi.org/10.3950/jibiinkoka.96.212
|
[3]
|
Tekdemir, I., Aslan, A. and Elhan, A. (1998) A Clinico-Anatomic Study of the Auricular Branch of the Vagus Nerve and Arnold’s Ear-Cough Reflex. Surgical and Radiologic Anatomy, 20, 253-257. https://doi.org/10.1007/BF01628484
|
[4]
|
Peuker, E.T. and Filler, T.J. (2002) The Nerve Supply of the Human Auricle. Clinical Anatomy, 15, 35-37. https://doi.org/10.1002/ca.1089
|
[5]
|
Kiyokawa, J., Yamaguchi, K., Okada, R., et al. (2014) Origin, Course and Distribution of the Nerves to the Posterosuperior Wall of the External Acoustic Meatus. Anatomical Science International, 89, 238-245. https://doi.org/10.1007/s12565-014-0231-4
|
[6]
|
Watanabe, K., Tubbs, R.S., Satoh, S., et al. (2016) Isolated Deep Ear Canal Pain: Possible Role of Auricular Branch of Vagus Nerve-Case Illustrations with Cadaveric Correlation. World Neurosurgery, 96, 293-301. https://doi.org/10.1016/j.wneu.2016.08.102
|
[7]
|
Safi, S., Ellrich, J. and Neuhuber, W. (2016) Myelinated Axons in the Auricular Branch of the Human Vagus Nerve. Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 299, 1184-1191. https://doi.org/10.1002/ar.23391
|
[8]
|
Cakmak, Y.O., Cotofana, S., Jager, C., et al. (2018) Peri-Arterial Autonomic Innervation of the Human Ear. Scientific Reports, 8, 11469. https://doi.org/10.1038/s41598-018-29839-z
|
[9]
|
Ventureyra, E.C.G. (2000) Transcutaneous Vagus Nerve Stimulation for Partial Onset Seizure Therapy—A New Concept. Child’s Nervous System, 16, 101-102. https://doi.org/10.1007/s003810050021
|
[10]
|
Thompson, S.L., O’Leary, G.H., Austelle, C.W., et al. (2021) A Review of Parameter Settings for Invasive and Non-Invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Frontiers in Neuroscience, 15, Article ID: 709436. https://doi.org/10.3389/fnins.2021.709436
|
[11]
|
Hays, S.A., Khodaparast, N., Ruiz, A., et al. (2014) The Timing and Amount of Vagus Nerve Stimulation during Rehabilitative Training Affect Poststroke Recovery of Forelimb Strength. Neuroreport, 25, 676-682. https://doi.org/10.1097/WNR.0000000000000154
|
[12]
|
Cook, D.N., Thompson, S., Stomberg-Firestein, S., et al. (2020) Design and Validation of a Closed-Loop, Motor-Activated Auricular Vagus Nerve Stimulation (MAAVNS) System for Neurorehabilitation. Brain Stimulation, 13, 800-803. https://doi.org/10.1016/j.brs.2020.02.028
|
[13]
|
Garcia, R.G., Lin, R.L., Lee, J., et al. (2017) Modulation of Brainstem Activity and Connectivity by Respiratory-Gated Auricular Vagal Afferent Nerve Stimulation in Migraine Patients. Pain, 158, 1461-1472. https://doi.org/10.1097/j.pain.0000000000000930
|
[14]
|
Follesa, P., Biggio, F., Gorini, G., et al. (2007) Vagus Nerve Stimulation Increases Norepinephrine Concentration and the Gene Expression of BDNF and bFGF in the Rat Brain. Brain Research, 1179, 28-34. https://doi.org/10.1016/j.brainres.2007.08.045
|
[15]
|
Hulsey, D.R., Riley, J.R., Loerwald, K.W., et al. (2017) Parametric Characterization of Neural Activity in the Locus Coeruleus in Response to Vagus Nerve Stimulation. Experimental Neurology, 289, 21-30. https://doi.org/10.1016/j.expneurol.2016.12.005
|
[16]
|
Loerwald, K.W., Buell, E.P., Borland, M.S., et al. (2018) Varying Stimulation Parameters to Improve Cortical Plasticity Generated by VNS-Tone Pairing. Neuroscience, 388, 239-247. https://doi.org/10.1016/j.neuroscience.2018.07.038
|
[17]
|
Ben-Menachem, E., Manon-Espaillat, R., Ristanovic, R., et al. (1994) Vagus Nerve Stimulation for Treatment of Partial Seizures: 1. A Controlled Study of Effect on Seizures. First International Vagus Nerve Stimulation Study Group. Epilepsia, 35, 616-626. https://doi.org/10.1111/j.1528-1157.1994.tb02482.x
|
[18]
|
He, W., Jing, X., Wang, X., et al. (2013) Transcutaneous Auricular Vagus Nerve Stimulation as a Complementary Therapy for Pediatric Epilepsy: A Pilot Trial. Epilepsy & Behavior, 28, 343-346. https://doi.org/10.1016/j.yebeh.2013.02.001
|
[19]
|
Zagon, A. and Kemeny, A.A. (2000) Slow Hyperpolarization in Cortical Neurons: A Possible Mechanism behind Vagus Nerve Simulation Therapy for Refractory Epilepsy? Epilepsia, 41, 1382-1389. https://doi.org/10.1111/j.1528-1157.2000.tb00113.x
|
[20]
|
Nichols, J.A., Nichols, A.R., Smirnakis, S.M., et al. (2011) Vagus Nerve Stimulation Modulates Cortical Synchrony and Excitability through the Activation of Muscarinic Receptors. Neuroscience, 189, 207-214. https://doi.org/10.1016/j.neuroscience.2011.05.024
|
[21]
|
Ellrich, J. (2019) Transcutaneous Auricular Vagus Nerve Stimulation. Journal of Clinical Neurophysiology, 36, 437-442. https://doi.org/10.1097/WNP.0000000000000576
|
[22]
|
Rong, P., Liu, A., Zhang, J., et al. (2014) Transcutaneous Vagus Nerve Stimulation for Refractory Epilepsy: A Randomized Controlled Trial. Clinical Science (London, England: 1979), 1, Article ID: CS20130518. https://doi.org/10.1042/CS20130518
|
[23]
|
Bauer, S., Baier, H., Baumgartner, C., et al. (2016) Transcutaneous Vagus Nerve Stimulation (tVNS) for Treatment of Drug-Resistant Epilepsy: A Randomized, Double Blind Clinical Trial (cMPsE02). Brain Stimulation, 9, 356-363. https://doi.org/10.1016/j.brs.2015.11.003
|
[24]
|
Stefan, H., Kreiselmeyer, G., Kerling, F., et al. (2012) Transcutaneous Vagus Nerve Stimulation (t-VNS) in Pharmacoresistant Epilepsies: A Proof of Concept Trial. Epilepsia, 53, e115-e118. https://doi.org/10.1111/j.1528-1167.2012.03492.x
|
[25]
|
Beekwilder, J.P. and Beems, T. (2010) Overview of the Clinical Applications of Vagus Nerve Stimulation. Journal of Clinical Neurophysiology, 27, 130-138. https://doi.org/10.1097/WNP.0b013e3181d64d8a
|
[26]
|
Liu, A., Rong, P., Gong, L., et al. (2018) Efficacy and Safety of Treatment with Transcutaneous Vagus Nerve Stimulation in 17 Patients with Refractory Epilepsy Evaluated by Electroencephalogram, Seizure Frequency, and Quality of Life. Medical Science Monitor, 24, 8439-8448. https://doi.org/10.12659/MSM.910689
|
[27]
|
Zabara, J. (1992) Inhibition of Experimental Seizures in Canines by Repetitive Vagal-Stimulation. Epilepsia, 33, 1005-1012. https://doi.org/10.1111/j.1528-1157.1992.tb01751.x
|
[28]
|
Lockard, J.S., Congdon, W.C. and Ducharme, L.L. (1990) Feasibility and Safety of Vagal-Stimulation in Monkey Model. Epilepsia, 31, S20-S26. https://doi.org/10.1111/j.1528-1157.1990.tb05844.x
|
[29]
|
Woodbury, D.M. and Woodbury, J.W. (1990) Effects of Vagal-Stimulation on Experimentally Induced Seizures in Rats. Epilepsia, 31, S7-S19. https://doi.org/10.1111/j.1528-1157.1990.tb05852.x
|
[30]
|
Kraus, T., Hoesl, K., Kiess, O., et al. (2007) BOLD fMRI Deactivation of Limbic and Temporal Brain Structures and Mood Enhancing Effect by Transcutaneous Vagus Nerve Stimulation. Journal of Neural Transmission, 114, 1485-1493. https://doi.org/10.1007/s00702-007-0755-z
|
[31]
|
Hein, E., Nowak, M., Kiess, O., et al. (2013) Auricular Transcutaneous Electrical Nerve Stimulation in Depressed Patients: A Randomized Controlled Pilot Study. Journal of Neural Transmission, 120, 821-827. https://doi.org/10.1007/s00702-012-0908-6
|
[32]
|
Fang, J., Rong, P., Hong, Y., et al. (2016) Transcutaneous Vagus Nerve Stimulation Modulates Default Mode Network in Major Depressive Disorder. Biological Psychiatry, 79, 266-273. https://doi.org/10.1016/j.biopsych.2015.03.025
|
[33]
|
Li, H., Zhang, J.-B., Xu, C., et al. (2015) Effects and Mechanisms of Auricular Vagus Nerve Stimulation on High-Fat-Diet-Induced Obese Rats. Nutrition, 31, 1416-1422. https://doi.org/10.1016/j.nut.2015.05.007
|
[34]
|
Liu, R.-P., Fang, J.-L., Rong, P.-J., et al. (2013) Effects of Electroacupuncture at Auricular Concha Region on the Depressive Status of Unpredictable Chronic Mild Stress Rat Models. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 789674. https://doi.org/10.1155/2013/789674
|
[35]
|
Fang, J., Egorova, N., Rong, P., et al. (2017) Early Cortical Biomarkers of Longitudinal Transcutaneous Vagus Nerve Stimulation Treatment Success in Depression. Neuroimage Clinical, 14, 105-111. https://doi.org/10.1016/j.nicl.2016.12.016
|
[36]
|
Jayaraj, R.L., Azimullah, S., Beiram, R., et al. (2019) Neuroinflammation: Friend and Foe for Ischemic Stroke. Journal of Neuroinflammation, 16, 142. https://doi.org/10.1186/s12974-019-1516-2
|
[37]
|
Ay, I., Napadow, V. and Ay, H. (2015) Electrical Stimulation of the Vagus Nerve Dermatome in the External Ear Is Protective in Rat Cerebral Ischemia. Brain Stimulation, 8, 7-12. https://doi.org/10.1016/j.brs.2014.09.009
|
[38]
|
Jiang, Y., Li, L., Liu, B., et al. (2014) Vagus Nerve Stimulation Attenuates Cerebral Ischemia and Reperfusion Injury via Endogenous Cholinergic Pathway in Rat. PLOS ONE, 9, e102342. https://doi.org/10.1371/journal.pone.0102342
|
[39]
|
Capone, F., Miccinilli, S., Pellegrino, G., et al. (2017) Transcutaneous Vagus Nerve Stimulation Combined with Robotic Rehabilitation Improves Upper Limb Function after Stroke. Neural Plasticity, 2017, Article ID: 7876507. https://doi.org/10.1155/2017/7876507
|
[40]
|
Baig, S.S., Falidas, K., Laud, P.J., et al. (2019) Transcutaneous Auricular Vagus Nerve Stimulation with Upper Limb Repetitive Task Practice May Improve Sensory Recovery in Chronic Stroke. Journal of Stroke and Cerebrovascular Diseases, 28, Article ID: 104348. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104348
|
[41]
|
Redgrave, J.N., Moore, L., Oyekunle, T., et al. (2018) Transcutaneous Auricular Vagus Nerve Stimulation with Concurrent Upper Limb Repetitive Task Practice for Poststroke Motor Recovery: A Pilot Study. Journal of Stroke & Cerebrovascular Diseases, 27, 1998-2005. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.056
|
[42]
|
Porter, B.A., Khodaparast, N., Fayyaz, T., et al. (2012) Repeatedly Pairing Vagus Nerve Stimulation with a Movement Reorganizes Primary Motor Cortex. Cerebral Cortex, 22, 2365-2374. https://doi.org/10.1093/cercor/bhr316
|
[43]
|
Engineer, N.D., Riley, J.R., Seale, J.D., et al. (2011) Reversing Pathological Neural Activity Using Targeted Plasticity. Nature, 470, 101-104. https://doi.org/10.1038/nature09656
|
[44]
|
Hays, S.A., Khodaparast, N., Hulsey, D.R., et al. (2014) Vagus Nerve Stimulation during Rehabilitative Training Improves Functional Recovery after Intracerebral Hemorrhage. Stroke, 45, 3097-3100. https://doi.org/10.1161/STROKEAHA.114.006654
|
[45]
|
Buell, E.P., Loerwald, K.W., Engineer, C.T., et al. (2018) Cortical Map Plasticity as a Function of Vagus Nerve Stimulation Rate. Brain Stimulation, 11, 1218-1224. https://doi.org/10.1016/j.brs.2018.07.045
|
[46]
|
Hulsey, D.R., Hays, S.A., Khodaparast, N., et al. (2016) Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation. Brain Stimulation, 9, 174-181. https://doi.org/10.1016/j.brs.2015.12.007
|
[47]
|
Zhang, L., Liu, Y., Wang, S., et al. (2021) Vagus Nerve Stimulation Mediates Microglia (Macrophages) M1/2 Polarization via Inhibition of TLR4 Pathway after Ischemic Stroke. Biochemical and Biophysical Research Communications, 577, 71-79. https://doi.org/10.1016/j.bbrc.2021.09.004
|
[48]
|
Ma, J., Zhang, L., He, G., et al. (2016) Transcutaneous Auricular Vagus Nerve Stimulation Regulates Expression of Growth Differentiation Factor 11 and Activin-Like Kinase 5 in Cerebral Ischemia/Reperfusion Rats. Journal of the Neurological Sciences, 369, 27-35. https://doi.org/10.1016/j.jns.2016.08.004
|
[49]
|
Zhang, L., Ma, J., Jin, X., et al. (2017) L-PGDS Mediates Vagus Nerve Stimulation-Induced Neuroprotection in a Rat Model of Ischemic Stroke by Suppressing the Apoptotic Response. Neurochemical Research, 42, 644-655. https://doi.org/10.1007/s11064-016-2121-8
|
[50]
|
Mathew, E., Tabet, M.N., Robertson, N.M., et al. (2020) Vagus Nerve Stimulation Produces Immediate Dose-Dependent Anxiolytic Effect in Rats. Journal of Affective Disorders, 265, 552-557. https://doi.org/10.1016/j.jad.2019.11.090
|
[51]
|
Ballaz, S.J., Bourin, M., Akil, H., et al. (2020) Blockade of the Cholecystokinin CCK-2 Receptor Prevents the Normalization of Anxiety Levels in the Rat. Progress in NeuroPsychopharmacology & Biological Psychiatry, 96, Article ID: 109761. https://doi.org/10.1016/j.pnpbp.2019.109761
|
[52]
|
Burger, A.M., Verkuil, B., Van Diest, I., et al. (2016) The Effects of Transcutaneous Vagus Nerve Stimulation on Conditioned Fear Extinction in Humans. Neurobiology of Learning and Memory, 132, 49-56. https://doi.org/10.1016/j.nlm.2016.05.007
|
[53]
|
Genheimer, H. andreatta, M., Asan, E., et al. (2017) Reinstatement of Contextual Conditioned Anxiety in Virtual Reality and the Effects of Transcutaneous Vagus Nerve Stimulation in Humans. Scientific Reports, 7, Article No. 17886. https://doi.org/10.1038/s41598-017-18183-3
|
[54]
|
Burger, A.M., Van Diest, I., Van der Does, W., et al. (2019) The Effect of Transcutaneous Vagus Nerve Stimulation on Fear Generalization and Subsequent Fear Extinction. Neurobiology of Learning and Memory, 161, 192-201. https://doi.org/10.1016/j.nlm.2019.04.006
|
[55]
|
Noble, L.J., Meruva, V.B., Hays, S.A., et al. (2019) Vagus Nerve Stimulation Promotes Generalization of Conditioned Fear Extinction and Reduces Anxiety in Rats. Brain Stimulation, 12, 9-18. https://doi.org/10.1016/j.brs.2018.09.013
|
[56]
|
Noble, L.J., Gonzalez, I.J., Meruva, V.B., et al. (2017) Effects of Vagus Nerve Stimulation on Extinction of Conditioned Fear and Post-Traumatic Stress Disorder Symptoms in Rats. Translational Psychiatry, 7, e1217. https://doi.org/10.1038/tp.2017.191
|
[57]
|
Corazzol, M., Lio, G., Lefevre, A., et al. (2017) Restoring Consciousness with Vagus Nerve Stimulation. Current Biology, 27, R994-R996. https://doi.org/10.1016/j.cub.2017.07.060
|
[58]
|
Shi, C., Flanagan, S.R. and Samadani, U. (2013) Vagus Nerve Stimulation to Augment Recovery from Severe Traumatic Brain Injury Impeding Consciousness: A Prospective Pilot Clinical Trial. Neurological Research, 35, 263-276. https://doi.org/10.1179/1743132813Y.0000000167
|
[59]
|
Hakon, J., Moghiseh, M., Poulsen, I., et al. (2020) Transcutaneous Vagus Nerve Stimulation in Patients with Severe Traumatic Brain Injury: A Feasibility Trial. Neuromodulation, 23, 859-864. https://doi.org/10.1111/ner.13148
|
[60]
|
Noe, E., Ferri, J., Colomer, C., et al. (2020) Feasibility, Safety and Efficacy of Transauricular Vagus Nerve Stimulation in a Cohort of Patients with Disorders of Consciousness. Brain Stimulation, 13, 427-429. https://doi.org/10.1016/j.brs.2019.12.005
|
[61]
|
Yu, L., Huang, B., Po, S.S., et al. (2017) Low-Level Tragus Stimulation for the Treatment of Ischemia and Reperfusion Injury in Patients with ST-Segment Elevation Myocardial Infarction: A Proof-of-Concept Study. JACC: Cardiovascular Interventions, 10, 1511-1520. https://doi.org/10.1016/j.jcin.2017.04.036
|
[62]
|
Sharon, O., Fahoum, F. and Nir, Y. (2021) Transcutaneous Vagus Nerve Stimulation in Humans Induces Pupil Dilation and Attenuates Alpha Oscillations. Journal of Neuroscience, 41, 320-330. https://doi.org/10.1523/JNEUROSCI.1361-20.2020
|
[63]
|
Smith, D.C., Modglin, A.A., Roosevelt, R.W., et al. (2005) Electrical Stimulation of the Vagus Nerve Enhances Cognitive and Motor Recovery Following Moderate Fluid Percussion Injury in the Rat. Journal of Neurotrauma, 22, 1485-1502. https://doi.org/10.1089/neu.2005.22.1485
|
[64]
|
Smith, D.C., Tan, A.A., Duke, A., et al. (2006) Recovery of Function after Vagus Nerve Stimulation Initiated 24 Hours after Fluid Percussion Brain Injury. Journal of Neurotrauma, 23, 1549-1560. https://doi.org/10.1089/neu.2006.23.1549
|
[65]
|
Clough, R.W., Neese, S.L., Sherill, L.K., et al. (2007) Cortical Edema in Moderate Fluid Percussion Brain Injury Is Attenuated by Vagus Nerve Stimulation. Neuroscience, 147, 286-293. https://doi.org/10.1016/j.neuroscience.2007.04.043
|
[66]
|
Neese, S.L., Sherill, L.K., Tan, A.A., et al. (2007) Vagus Nerve Stimulation May Protect GABAergic Neurons Following Traumatic Brain Injury in Rats: An Immunocytochemical Study. Brain Research, 1128, 157-163. https://doi.org/10.1016/j.brainres.2006.09.073
|
[67]
|
Lopez, N.E., Krzyzaniak, M.J., Costantini, T.W., et al. (2012) Vagal Nerve Stimulation Decreases Blood-Brain Barrier Disruption after Traumatic Brain Injury. Journal of Trauma and Acute Care Surgery, 72, 1562-1566. https://doi.org/10.1097/TA.0b013e3182569875
|
[68]
|
Zhou, L., Lin, J., Lin, J., et al. (2014) Neuroprotective Effects of Vagus Nerve Stimulation on Traumatic Brain Injury. Neural Regeneration Research, 9, 1585-1591. https://doi.org/10.4103/1673-5374.141783
|
[69]
|
Cimpianu, C.-L., Strube, W., Falkai, P., et al. (2017) Vagus Nerve Stimulation in Psychiatry: A Systematic Review of the Available Evidence. Journal of Neural Transmission, 124, 145-158. https://doi.org/10.1007/s00702-016-1642-2
|
[70]
|
Jin, Y. and Kong, J. (2017) Transcutaneous Vagus Nerve Stimulation: A Promising Method for Treatment of Autism Spectrum Disorders. Frontiers in Neuroscience, 10, 609. https://doi.org/10.3389/fnins.2016.00609
|
[71]
|
Hasan, A., Wolff-Menzler, C., Pfeiffer, S., et al. (2015) Transcutaneous Noninvasive Vagus Nerve Stimulation (tVNS) in the Treatment of Schizophrenia: A Bicentric Randomized Controlled Pilot Study. European Archives of Psychiatry and Clinical Neuroscience, 265, 589-600. https://doi.org/10.1007/s00406-015-0618-9
|
[72]
|
Jacobs, H.I.L., Riphagen, J.M., Razat, C.M., et al. (2015) Transcutaneous Vagus Nerve Stimulation Boosts Associative Memory in Older Individuals. Neurobiology of Aging, 36, 1860-1867. https://doi.org/10.1016/j.neurobiolaging.2015.02.023
|
[73]
|
Thakkar, V.J., Engelhart, A.S., Khodaparast, N., et al. (2020) Transcutaneous Auricular Vagus Nerve Stimulation Enhances Learning of Novel Letter-Sound Relationships in Adults. Brain Stimulation, 13, 1813-1820. https://doi.org/10.1016/j.brs.2020.10.012
|
[74]
|
Mertens, A., Naert, L., Miatton, M., et al. (2020) Transcutaneous Vagus Nerve Stimulation does Not Affect Verbal Memory Performance in Healthy Volunteers. Frontiers in Psychology, 11, 551. https://doi.org/10.3389/fpsyg.2020.00551
|
[75]
|
Vazquez-Oliver, A., Brambilla-Pisoni, C., Domingo-Gainza, M., et al. (2020) Auricular Transcutaneous Vagus Nerve Stimulation Improves Memory Persistence in Naive Mice and in an Intellectual Disability Mouse Model. Brain Stimulation, 13, 494-498. https://doi.org/10.1016/j.brs.2019.12.024
|