[1]
|
Ambrosini, V., Fani, M., Fanti, S., Forrer, F. and Maecke, H.R. (2011) Radiopeptide Imaging and Therapy in Europe. Journal of Nuclear Medicine, 52, 42S-55S. https://doi.org/10.2967/jnumed.110.085753
|
[2]
|
Jamous, M., Haberkorn, U. and Mier, W. (2013) Synthesis of Peptides Radiopharmaceuticals for the Therapy and Diagnosis of Tumor Diseases. Molecules, 18, 3379-3409. https://doi.org/10.3390/molecules18033379
|
[3]
|
Opalinska, M., Hubalewska-Dydejczyk, A. and Sowa-Staszczak, A. (2017) Radiolabeled Peptides: Current and New Perspectives. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 61, 153-167. https://doi.org/10.23736/S1824-4785.17.02971-5
|
[4]
|
Richter, S., Wuest, M., Bergman, C.N., Way, J.D., Krieger, S., Rogers, B.E. and Wuest, F. (2015) Rerouting the Metabolic Pathway of 18F-Labeled Peptides: The Influence of Prosthetic Groups. Bioconjugate Chemistry, 26, 201-212. https://doi.org/10.1021/bc500599m
|
[5]
|
Fani, M., Maecke, H.R. and Okarvi, S.M. (2012) Radiolabeled Peptides: Valuable Tools for the Detection and Treatment of Cancer. Theranostics, 2, 481-501. https://doi.org/10.7150/thno.4024
|
[6]
|
Knight, L.C. (2003) Chapter 23: Radiolabeled Peptides for Tumor Imaging. In: Welch, M.J. and Redvanly, C.S., Eds., Handbook of Radiopharmaceuticals: Radiochemistry and Applications, Wiley, Chichester, 643-684. https://doi.org/10.1002/0470846380.ch23
|
[7]
|
Wynendaele, E., Bracke, N., Stalmans, S. and Spiegeleer, B.D. (2014) Development of Peptide and Protein Based Radiopharmaceuticals. Current Pharmaceutical Design, 20, 2250-2267. https://doi.org/10.2174/13816128113196660663
|
[8]
|
Li, X., Cai, H., Wu, X., Li, L., Wu, H. and Tian, R. (2020) New Frontiers in Molecular Imaging Using Peptide-Based Radiopharmaceuticals for Prostate Cancer. Frontiers in Chemistry, 8, Article 583309. https://doi.org/10.3389/fchem.2020.583309
|
[9]
|
McBride, W.J., Sharkey, R.M., Karacay, H., D’Souza, C.A., Rossi, E.A., Laverman, P., Chang, C.-H., Boergman, O.C. and Goldenberg, D.M. (2009) A Novel Method of 18F Radiolabeling for PET. Journal of Nuclear Medicine, 50, 991-998. https://doi.org/10.2967/jnumed.108.060418
|
[10]
|
Van der Born, D., Pees, A., Poot, A.J., Orru, R.V.A., Windhorst, A.D. and Vugts, D.J. (2017) Fluorine-18 Labelled Building Blocks for PET Tracer Synthesis. Chemical Society Reviews, 46, 4709-4773. https://doi.org/10.1039/C6CS00492J
|
[11]
|
Wester, H.J. and Schottelius, M. (2007) Chapter 4: Fluorine-18 Labeling of Peptides and Proteins. In: Schubiger, P.A., Lehmann, L. and Friebe, M., Eds., PET Chemistry: The Driving Force in Molecular Imaging. Ernst Schering Research Foundation Workshop, Springer, Berlin, 79-111. https://doi.org/10.1007/978-3-540-49527-7_4
|
[12]
|
Wuest, F., Hultsch, C., Berndt, M. and Bergmann, R. (2009) Direct Labelling of Peptides with 2-[18F]Fluoro-2-Deoxy-D-Glucose ([18F]FDG). Bioorganic and Medicinal Chemistry Letters, 19, 5426-5428. https://doi.org/10.1016/j.bmcl.2009.07.108
|
[13]
|
Chin, J. (2013) Methods for Carbon-11 and Fluorine-18 Labeling of Peptides as PET Radiopharmaceuticals: Direct Labeling with [11C]Methyl Triflate on Cysteine Residues and [18F]Fluoride on the Cationic Silicon-Based Fluoride Acceptor (SIFA) Moiety. Department of Chemistry, McGill University, Montreal.
|
[14]
|
Marik, J. and Sutcliffe, J.L. (2006) Click for PET: Rapid Preparation of [18F]Fluoro-peptides Using CuI Catalyzed 1,3-Dipolar Cycloaddiation. Tetrahedron Letters, 47, 6681-6684. https://doi.org/10.1016/j.tetlet.2006.06.176
|
[15]
|
Guhlke, S., Coenen, H.H. and Stöcklin, G. (1994) Fluoroacylation Agents Based on Small N.C.A. [18F]Fluorocarboxylic Acids. Applied Radiation Isotopes, 45, 715-727. https://doi.org/10.1016/0969-8043(94)90252-6
|
[16]
|
Li, Z.-B., Wu, Z., Chen, K., Chin, F.T. and Chen, X. (2007) Click Chemistry for 18F-Labeling of RGD Peptides and Micropet Imaging of Tumor Integrin Αvβ3 Expression. Bioconjugate Chemistry, 18, 1987-1994. https://doi.org/10.1021/bc700226v
|
[17]
|
Wester, H.-J., Hamacher, K. and Stöcklin, G. (1996) A Comparative Study of N.C.A. Fluorine-18 Labeling of Proteins Via Acylation and Photochemical Conjugation. Nuclear Medicine and Biology, 23, 365-372. https://doi.org/10.1016/0969-8051(96)00017-0
|
[18]
|
Poethko, T., Schottelius, M., Thumshirn, G., Hersel, U., Herz, M., Henriksen, G., Kessler, H., Schwaiger, M. and Wester, H.-J. (2004) Two-Step Methodology for High-Yield Routine Radiohalohenation of Peptides: 18F-Labeled RGD and Octreotide Analogs. Journal of Nuclear Medicine, 45, 892-902.
|
[19]
|
Bruus-Jensen, K., Poethko, T., Schottelius, M., Hauser, A., Schwaiger, M. and Wester, H.-J. (2006) Chemoselective Hydrazone Formation between HYNIC-Functionalized Peptides and 18F-Fluorinated Aldehydes. Nuclear Medicine and Biology, 33, 173-183. https://doi.org/10.1016/j.nucmedbio.2005.10.010
|
[20]
|
Glaser, M. and Arstad, E. (2007) “Click Labeling” with 2-[18F]Fluoroethylazide for Positron Emission Tomography. Bioconjugate Chemistry, 18, 989-993. https://doi.org/10.1021/bc060301j
|
[21]
|
Gill, H.S. and Marik, J. (2011) Preparation of 18F-Labeled Peptides Using the Copper(I)-Catalyzed Azide-Alkyne 1,3-Dipolar Cycloaddition. Nature Protocols, 6, 1718-1725. https://doi.org/10.1038/nprot.2011.390
|
[22]
|
Ala, A., Walker, A.P., Ashkan, K., Dooley, J.S. and Schilsky, M.L. (2007) Wilson’s Disease. The Lancet, 369, 397-408. https://doi.org/10.1016/S0140-6736(07)60196-2
|
[23]
|
Brewer, G.J. (2010) Copper Toxicity in the General Population. Clinical Neurophysiology, 121, 459-460. https://doi.org/10.1016/j.clinph.2009.12.015
|
[24]
|
Maschauer, S. and Prante, O. (2014) Sweetening Pharmaceutical Radiochemistry by 18F-Fluoroglycosylation: A Short Review. Biomed Research International, 2014, Article ID: 214748. https://doi.org/10.1155/2014/214748
|
[25]
|
Albert, R., Marbach, P., Bauer, W., Briner, U., Fricker, G., Bruns, C. and Pless, J. (1993) SDZ CO 611: A Highly Potent Glycated Analog of Somatostatin with Improved Oral Activity. Life Science, 53, 517-525. https://doi.org/10.1016/0024-3205(93)90703-6
|
[26]
|
Haubner, R., Kuhnast, B., Mang, C., Weber, W.A., Kessler, H., Wester, H.-J. and Schwaiger, M. (2004) [18F]Galacto-RGD: Synthesis, Radiolabeling, Metabolic Stability, and Radiation Dose Estimates. Bioconjugate Chemistry, 15, 61-69. https://doi.org/10.1021/bc034170n
|
[27]
|
Kihlberg, J. and Ahman, J. (1995) Glycosylated Peptide Hormones: Pharmacological Properties and Conformational Studies of Analogues of [1-Desamino 8-D-Arginine] Vasopressin. Journal of Medical Chemistry, 38, 161-169. https://doi.org/10.1021/jm00001a021
|
[28]
|
Schottelius, M., Wester, H.-J., Reubi, J.C., Senekowitsch-Schmidtke, R. and Schwaigner, M. (2002) Improvement of Pharmacokinetics of Radioiodinated Tyr3-Octreotide by Conjugation with Carbohydrates. Bioconjugate Chemistry, 13, 1021-1030. https://doi.org/10.1021/bc0200069
|
[29]
|
Hultsch, C., Schottelius, M., Auernheimer, J., Alke, A. and Wester, H.-J. (2009) 18F-Fluoroglucosylation of Peptides, Exemplified on cyclo(RGDFK). European Journal of Nuclear Medicine and Molecular Imaging, 36, 1469-1474. https://doi.org/10.1007/s00259-009-1122-0
|
[30]
|
Namavari, M., Cheng, Z., Zhang, R., De, A., Levi, J., Hoerner, J.K., Yaghoubi, S.S., Syud, F.A. and Gambhir, S.S. (2009) A Novel Method for Direct Site-Specific Radiolabeling of Peptides Using [18F]FDG. Bioconjugate Chemistry, 20, 432-436. https://doi.org/10.1021/bc800422b
|
[31]
|
Price, N.P.J., Bowman, M.J., Gall, S.L., Berhow, M.A., Kendra, D.F. and Lerouge, P. (2010) Functionalized C-Glycoside Ketohydrazones: Carbohydrate Derivatives that Retain the Ring Integrity of the Terminal Reducing Sugar. Analytical Chemistry, 82, 2893-2899. https://doi.org/10.1021/ac902894u
|
[32]
|
Thapa, U. (2014) Fluoride-18 Labeling and Simultaneous Glycosylation of the Model Peptide Demobesin 1 by the Novel Prosthetic Group, Keto-[18F]FDG. Ph.M. Dissertation, Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn.
|
[33]
|
Allott, L., Pieve, C.D., Turton, D.R. and Smith, G. (2017) A General [18F]ALF Radiochemistry Procedure on Two Automated Synthesis Platforms. Reaction Chemistry and Engineering, 2, 68-74. https://doi.org/10.1039/C6RE00204H
|
[34]
|
Ting, R., Adam, M.J., Ruth, T.J. and Perrin, D.M. (2005) Arylfluoroborates and Alkylfluorosilicates as Potential PET Imaging Agents: High-Yielding Aqueous Biomolecular 18F-Labeling. Journal of the American Chemical Society, 127, 13094-13095. https://doi.org/10.1021/ja053293a
|
[35]
|
Harwig, C.W., Ting, R., Adam, M.J., Ruth, T.J. and Perrin, D.M. (2008) Synthesis and Characterization of 2,6-Difluoro-4-Carboxyphenylboronic Acid and a Biotin Derivative Thereof as Captors of Anionic Aqueous [18F]-Fluoride for the Preparation of [18F/19F]-Labeled Aryltrifluoroborates with High Kinetic Stability. Tetrahedron Letters, 49, 3152-3156. https://doi.org/10.1016/j.tetlet.2008.03.021
|
[36]
|
Ting, R., Lo, J., Adam, M.J., Ruth, T.J. and Perrin, D.M. (2008) Capturing Aqueous [18F]-Fluoride with an Arylboronic Ester for PET: Synthesis and Aqueous Stability of a Fluorescent [18F]-Labeled Aryltrifluoroborate. Journal of Fluorine Chemistry, 129, 349-358. https://doi.org/10.1016/j.jfluchem.2008.01.011
|
[37]
|
Ting, R., Harwig, C.W., Lo, J., Li, Y., Adam, M.J., Ruth, T.J. and Perrin, D.M. (2008) Substituent Effects on Aryltrifluoroborate Solvolysis in Water: Implications for Suzuki-Miyaura Coupling and the Design of Stable 18F-Labeled Aryltrifluoroborates for Use in PET Imaging. Journal of Organic Chemistry, 73, 4662-4670. https://doi.org/10.1021/jo800681d
|
[38]
|
Elizarov, A.M., Van Dam, R.M., Shin, Y.S., Kolb, H.C., Padgett, H.C., Stout, D., Shu, J., Huang, J., Daridon, A. and Heath, J.R. (2010) Design and Optimization of Coin-Shaped Microreactor Chips for PET Radiopharmaceutical Synthesis. Journal of Nuclear Medicine, 51, 282-287. https://doi.org/10.2967/jnumed.109.065946
|
[39]
|
Liu, Z., Li, Y., Lozada, J., Pan, J., Lin, K.-S., Schaffer, P. and Perrin, D.M. (2012) Rapid, One-Step, High Yielding 18F-Labeling of an Aryltrifluoroborate Bioconjugate by Isotope Exchange at Very High Specific Activity. Labelled Compounds and Radiopharmaceuticals, 55, 491-496. https://doi.org/10.1002/jlcr.2990
|
[40]
|
Liu, Z., Li, Y., Lozada, J., Schaffer, P., Adam, M.J., Ruth, T.J. and Perrin, D.M. (2013) Stoichiometric Leverage: Rapid 18F-Aryltrifluoroborate Radiosynthesis at High Specific Activity for Click Conjugation. Angewandte Chemie International Edition, 52, 2303-2307. https://doi.org/10.1002/anie.201208551
|
[41]
|
Mu, L., Höhne, A., Schubiger, P.A., Ametamey, S.M., Graham, K., Cyr, J.E., Dinkelborg, L., Stellfeld, T., Srinivasan, A., Voigtmann, U. and Klar, U. (2008) Silicon-Based Building Blocks for One-Step 18F-Radiolabeling of Peptides for PET Imaging. Angewandte Chemie International Edition, 47, 4922-4925. https://doi.org/10.1002/anie.200705854
|
[42]
|
Höhne, A., Mu, L., Honer, M., Schubiger, P.A., Ametamey, S.M., Graham, K., Stellfeld, T., Borkowski, S., Berndorff, D., Klar, U., Voigtmann, U., Cyr, J.E., Friebe, M., Dinkelborg, L. and Srinivasan, A. (2008) Synthesis, 18F-Labeling, and in Vitro and in Vivo Studies of Bombesin Peptides Modified with Silicon-Based Building Blocks. Bioconjugate Chemistry, 19, 1871-1879. https://doi.org/10.1021/bc800157h
|
[43]
|
Höhne, A., Yu, L., Mu, L., Reiher, M., Voigtmann, U., Klar, U., Graham, K., Schubiger, P.A. and Ametamey, S.M. (2009) Organofluorosilanes as Model Compounds for 18F-Labeled Silicon-Based PET Tracers and Their Hydrolytic Stability: Experimental Data and Theoretical Calculations. Chemistry—A European Journal, 15, 3736-3743. https://doi.org/10.1002/chem.200802437
|
[44]
|
Laverman, P., McBride, W.J., Sharkey, R.M., Eek, A., Joosten, L., Oyen, W.J.G., Goldenberg, D.M. and Boerman, O.C. (2010) A Novel Facile Method of Labeling Octreotide with 18F-Fluorine. Journal of Nuclear Medicine, 51, 454-461. https://doi.org/10.2967/jnumed.109.066902
|
[45]
|
Iovkova, L., Wängler, B., Schirrmacher, E., Schirrmacher, R., Quandt, G., Boening, G., Schürmann, M. and Jurkschat, K. (2009) Para-Functionalized Aryl-di-tert-butylfluorosilanes as Potential Labeling Synthons for 18F Radiopharmaceuticals. Chemistry—A European Journal, 15, 2140-2147. https://doi.org/10.1002/chem.200802266
|
[46]
|
Schirrmacher, R., Bradtmöller, G., Schirrmacher, E., Thewsm, O., Tillmanns, J., Siessmeier, T., Buchholz, H.G., Bartenstein, P., Wängler, B., Neimeyer, C.M. and Jurkschat, K. (2006) 18F-Labeling of Peptides by Means of an Organosilicon-Based Fluoride Acceptor. Angewandte Chemie International Edition, 45, 6047-6050. https://doi.org/10.1002/anie.200600795
|
[47]
|
Schirrmacher, E., Wängler, B., Cypryk, M., Bradtmöller, G., Schäfer, M., Eisenhut, K.J. and Schirrmacher, R. (2007) Synthesis of P-(Di-Tert-Butyl[18F]Fluorosilyl) Benzaldehyde ([18F]SIFA-A) with High Specific Activity by Isotopic Exchange: A Convenient Labeling Synthon for the 18F-Labeling of N-Amino-Oxy Derivatized Peptides. Bioconjugate Chemistry, 18, 2085-2089. https://doi.org/10.1021/bc700195y
|
[48]
|
Kostikov, A.P., Chin, J., Orchowski, K., Niedermoses, S., Kovacevic, M.M., Aliaga, A., Jurkschat, K., Wängler, B., Wängler, C., Wester, H.-J. and Schirrmacher, R. (2012) Oxalic Acid Supported Si-18F-Radiofluorination: One-Step Radiosynthesis of N-Succinimidyl 3-(Di-tert-butyl[18F]fluorosilyl)benzoate ([18F]SIFB) for Protein Labeling. Bioconjugate Chemistry, 23, 106-114. https://doi.org/10.1021/bc200525x
|
[49]
|
Wängler, B., Quandt, G., Iovkova, L., Schirrmacher, E., Wängler, C., Boening, G., Hacker, M., Schmoeckel, M., Jurkschat, K., Bartenstein, P. and Schirrmacher, R. (2009) Kit-Like 18F-Labeling of Proteins: Synthesis of 4-(Di-tert-butyl[18F]fluorosilyl)benzenethiol (Si[18F]FA-SH) Labeled Rat Serum Albumin for Blood Pool Imaging with PET. Bioconjugate Chemistry, 20, 317-321. https://doi.org/10.1021/bc800413g
|
[50]
|
Archibald, S.J. and Allott, L. (2021) The Aluminium-[18F]Fluoride Revolution: Simple Radiochemistry with a Big Impact for Radiolabelled Biomolecules. EJNMMI Radiopharmacy and Chemistry, 6, Article No. 30. https://doi.org/10.1186/s41181-021-00141-0
|