|
[1]
|
The Human Microbiome Project Consortium (2012) Structure, Function and Diversity of the Healthy Human Microbiome. Nature, 486, 207-214.
[Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Guarner, F. and Malagelada, J.R. (2003) Gut Flora in Health and Disease. The Lancet, 361, 512-519. [Google Scholar] [CrossRef]
|
|
[3]
|
Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de Los Reyes-Gavilán, C.G. and Salazar, N. (2016) Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health. Frontiers in Microbiology, 7, Article 185.
[Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352.
[Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. and Gordon, J.I. (2005) Host-Bacterial Mutualism in the Human Intestine. Science, 307, 1915-1920.
[Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Garrett, W.S. (2019) The Gut Microbiota and Colon Cancer. Science, 364, 1133-1135. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Mentella, M.C., Scaldaferri, F., Pizzoferrato, M., Gasbarrini, A. and Miggiano, G.A.D. (2020) Nutrition, IBD and Gut Microbiota: A Review. Nutrients, 12, Article 944. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cox, A.J., West, N.P. and Cripps, A.W. (2015) Obesity, Inflammation, and the Gut Microbiota. The Lancet Diabetes & Endocrinology, 3, 207-215.
[Google Scholar] [CrossRef]
|
|
[10]
|
Witkowski, M., Weeks, T.L. and Hazen, S.L. (2020) Gut Microbiota and Cardiovascular Disease. Circulation Research, 127, 553-570.
[Google Scholar] [CrossRef]
|
|
[11]
|
Miller, T.L. and Wolin, M.J. (1996) Pathways of Acetate, Propionate, and Butyrate Formation by the Human Fecal Microbial Flora. Applied and Environmental Microbiology, 62, 1589-1592. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Macfarlane, S. and Macfarlane, G.T. (2003) Regulation of Short-Chain Fatty Acid Production. Proceedings of the Nutrition Society, 62, 67-72.
[Google Scholar] [CrossRef]
|
|
[13]
|
He, J., Zhang, P., Shen, L., Niu, L., Tan, Y., Chen, L., Zhao, Y., Bai, L., Hao, X., Li, X., Zhang, S. and Zhu, L. (2020) Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. International Journal of Molecular Sciences, 21, Article 6356.
[Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Stumpff, F. (2018) A Look at the Smelly Side of Physiology: Transport of Short Chain Fatty Acids. Pflügers Archiv, 470, 571-598.
[Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Schönfeld, P. and Wojtczak, L. (2016) Short- and Medium-Chain Fatty Acids in Energy Metabolism: The Cellular Perspective. Journal of Lipid Research, 57, 943-954. [Google Scholar] [CrossRef]
|
|
[16]
|
Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P. and Macfarlane, G.T. (1987) Short Chain Fatty Acids in Human Large Intestine, Portal, Hepatic and Venous Blood. Gut, 28, 1221-1227. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tan, J., McKenzie, C., Potamitis, M., Thorburn, A.N., Mackay, C.R. and Macia, L. (2014) The Role of Short-Chain Fatty Acids in Health and Disease. Advances in Immunology, 121, 91-119. [Google Scholar] [CrossRef]
|
|
[19]
|
Michaudel, C. and Sokol, H. (2020) The Gut Microbiota at the Service of Immunometabolism. Cell Metabolism, 32, 514-523.
[Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F. and Babu, M.M. (2013) Molecular Signatures of G-Protein-Coupled Receptors. Nature, 494, 185-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wu, F., Song, G., de Graaf, C. and Stevens, R.C. (2017) Structure and Function of Peptide-Binding G Protein-Coupled Receptors. Journal of Molecular Biology, 429, 2726-2745. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tan, J.K., McKenzie, C., Mariño, E., Macia, L. and Mackay, C.R. (2017) Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation. Annual Review of Immunology, 35, 371-402.
[Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, L., Ma, L. and Fu, P. (2017) Gut Microbiota-Derived Short-Chain Fatty Acids and Kidney Diseases. Drug Design, Development and Therapy, 11, 3531-3542.
[Google Scholar] [CrossRef]
|
|
[24]
|
Fellows, R., Denizot, J., Stellato, C., Cuomo, A., Jain, P., Stoyanova, E., Balázsi, S., Hajnády, Z., Liebert, A., Kazakevych, J., Blackburn, H., Corrêa, R.O., Fachi, J.L., Sato, F.T., Ribeiro, W.R., Ferreira, C.M., Perée, H., Spagnuolo, M., Mattiuz, R., Matolcsi, C., Guedes, J., Clark, J., Veldhoen, M., Bonaldi, T., Vinolo, M.A.R. and Varga-Weisz, P. (2018) Microbiota Derived Short Chain Fatty Acids Promote Histone Crotonylation in the Colon through Histone Deacetylases. Nature Communications, 9, Article No. 105. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Oldendorf, W.H. (1973) Carrier-Mediated Blood-Brain Barrier Transport of Short-Chain Monocarboxylic Organic Acids. American Physiological Society, 224, 1450-1453. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Corrêa-Oliveira, R., Fachi, J.L., Vieira, A., Sato, F.T. and Vinolo, M.A. (2016) Regulation of Immune Cell Function by Short-Chain Fatty Acids. Clinical & Translational Immunology, 5, e73. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Duscha, A., Gisevius, B., Hirschberg, S., Yissachar, N., Stangl, G.I., Eilers, E., Bader, V., Haase, S., Kaisler, J., David, C., Schneider, R., Troisi, R., Zent, D., Hegelmaier, T., Dokalis, N., Gerstein, S., Del Mare-Roumani, S., Amidror, S., Staszewski, O., Poschmann, G., Stühler, K., Hirche, F., Balogh, A., Kempa, S., Träger, P., Zaiss, M.M., Holm, J.B., Massa, M.G., Nielsen, H.B., Faissner, A., Lukas, C., Gatermann, S.G., Scholz, M., Przuntek, H., Prinz, M., Forslund, S.K., Winklhofer, K.F., Müller, D.N., Linker, R.A., Gold, R. and Haghikia, A. (2020) Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell, 180, 1067-1080.e1016. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Haghikia, A., Jörg, S., Duscha, A., Berg, J., Manzel, A., Waschbisch, A., Hammer, A., Lee, D.H., May, C., Wilck, N., Balogh, A., Ostermann, A.I., Schebb, N.H., Akkad, D.A., Grohme, D.A., Kleinewietfeld, M., Kempa, S., Thöne, J., Demir, S., Müller, D.N., Gold, R. and Linker, R.A. (2015) Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity, 43, 817-829. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mizuno, M., Noto, D., Kaga, N., Chiba, A. and Miyake, S. (2017) The Dual Role of Short Fatty Acid Chains in the Pathogenesis of Autoimmune Disease Models. PLOS ONE, 12, e0173032. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chitrala, K.N., Guan, H., Singh, N.P., Busbee, B., Gandy, A., Mehrpouya-Bahrami, P., Ganewatta, M.S., Tang, C., Chatterjee, S., Nagarkatti, P. and Nagarkatti, M. (2017) CD44 Deletion Leading to Attenuation of Experimental Autoimmune Encephalomyelitis Results from Alterations in Gut Microbiome in Mice. European Journal of Immunology, 47, 1188-1199. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, T., Noto, D., Hoshino, Y., Mizuno, M. and Miyake, S. (2019) Butyrate Suppresses Demyelination and Enhances Remyelination. Journal of Neuroinflammation, 16, Article No. 165. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hardoff, R., Sula, M., Tamir, A., Soil, A., Front, A., Badarna, S., Honigman, S. and Giladi, N. (2001) Gastric Emptying Time and Gastric Motility in Patients with Parkinson’s Disease. Movement Disorders, 16, 1041-1047.
[Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Cersosimo, M.G., Raina, G.B., Pecci, C., Pellene, A., Calandra, C.R., Gutiérrez, C., Micheli, F.E. and Benarroch, E.E. (2013) Gastrointestinal Manifestations in Parkinson’s Disease: Prevalence and Occurrence before Motor Symptoms. Journal of Neurology, 260, 1332-1338. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Braak, H., de Vos, R.A., Bohl, J. and Del Tredici, K. (2006) Gastric Alpha-Synuclein Immunoreactive Inclusions in Meissner’s and Auerbach’s Plexuses in Cases Staged for Parkinson’s Disease-Related Brain Pathology. Neuroscience Letters, 396, 67-72.
[Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wakabayashi, K., Takahashi, H., Takeda, S., Ohama, E. and Ikuta, F. (1988) Parkinson’s Disease: The Presence of Lewy Bodies in Auerbach’s and Meissner’s Plexuses. Acta Neuropathologica, 76, 217-221. [Google Scholar] [CrossRef]
|
|
[36]
|
Barichella, M., Severgnini, M., Cilia, R., Cassani, E., Bolliri, C., Caronni, S., Ferri, V., Cancello, R., Ceccarani, C., Faierman, S., Pinelli, G., De Bellis, G., Zecca, L., Cereda, E., Consolandi, C. and Pezzoli, G. (2019) Unraveling Gut Microbiota in Parkinson’s Disease and Atypical Parkinsonism. Movement Disorders, 34, 396-405.
[Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Aho, V.T.E., Pereira, P.A.B., Voutilainen, S., Paulin, L., Pekkonen, E., Auvinen, P. and Scheperjans, F. (2019) Gut Microbiota in Parkinson’s Disease: Temporal Stability and Relations to Disease Progression. eBioMedicine, 44, 691-707.
[Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Unger, M.M., Spiegel, J., Dillmann, K.U., Grundmann, D., Philippeit, H., Bürmann, J., Faßbender, K., Schwiertz, A. and Schäfer, K.H. (2016) Short Chain Fatty Acids and Gut Microbiota Differ between Patients with Parkinson’s Disease and Age-Matched Controls. Parkinsonism & Related Disorders, 32, 66-72.
[Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Liu, J., Wang, F., Liu, S., Du, J., Hu, X., Xiong, J., Fang, R., Chen, W. and Sun, J. (2017) Sodium Butyrate Exerts Protective Effect against Parkinson’s Disease in Mice via Stimulation of Glucagon Like Peptide-1. Journal of the Neurological Sciences, 381, 176-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, X., Fan, X., Yuan, X., Pang, L., Hu, S., Wang, Y., Huang, X. and Song, X. (2021) The Role of Butyric Acid in Treatment Response in Drug-Naïve First Episode Schizophrenia. Frontiers in Psychiatry, 12, Article ID: 724664.
[Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Malhi, G.S. and Mann, J.J. (2018) Depression. The Lancet, 392, 2299-2312.
[Google Scholar] [CrossRef]
|
|
[42]
|
Harmer, C.J., Duman, R.S. and Cowen, P.J. (2017) How Do Antidepressants Work? New Perspectives for Refining Future Treatment Approaches. The Lancet Psychiatry, 4, 409-418. [Google Scholar] [CrossRef]
|
|
[43]
|
Cruz-Pereira, J.S., Rea, K., Nolan, Y.M., O’Leary, O.F., Dinan, T.G. and Cryan, J.F. (2020) Depression’s Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annual Review of Psychology, 71, 49-78.
[Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., Zeng, L., Chen, J., Fan, S., Du, X., Zhang, X., Yang, D., Yang, Y., Meng, H., Li, W., Melgiri, N.D., Licinio, J., Wei, H. and Xie, P. (2016) Gut Microbiome Remodeling Induces Depressive-Like Behaviors through a Pathway Mediated by the Host’s Metabolism. Molecular Psychiatry, 21, 786-796. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wu, M., Tian, T., Mao, Q., Zou, T., Zhou, C.J., Xie, J. and Chen, J.J. (2020) Associations between Disordered Gut Microbiota and Changes of Neurotransmitters and Short-Chain Fatty Acids in Depressed Mice. Translational Psychiatry, 10, Article No. 350. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Müller, B., Rasmusson, A.J., Just, D., Jayarathna, S., Moazzami, A., Novicic, Z.K. and Cunningham, J.L. (2021) Fecal Short-Chain Fatty Acid Ratios as Related to Gastrointestinal and Depressive Symptoms in Young Adults. Psychosomatic Medicine, 83, 693-699. [Google Scholar] [CrossRef]
|
|
[47]
|
Yan, Q., Gu, Y., Li, X., Yang, W., Jia, L., Chen, C., Han, X., Huang, Y., Zhao, L., Li, P., Fang, Z., Zhou, J., Guan, X., Ding, Y., Wang, S., Khan, M., Xin, Y., Li, S. and Ma, Y. (2017) Alterations of the Gut Microbiome in Hypertension. Frontiers in Cellular and Infection Microbiology, 7, Article 381.
[Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sun, S., Lulla, A., Sioda, M., Winglee, K., Wu, M.C., Jacobs Jr., D.R., Shikany, J.M., Lloyd-Jones, D.M., Launer, L.J., Fodor, A.A. and Meyer, K.A. (2019) Gut Microbiota Composition and Blood Pressure. Hypertension, 73, 998-1006.
[Google Scholar] [CrossRef]
|
|
[49]
|
Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., Wu, S., Liu, W., Cui, Q., Geng, B., Zhang, W., Weldon, R., Auguste, K., Yang, L., Liu, X., Chen, L., Yang, X., Zhu, B. and Cai, J. (2017) Gut Microbiota Dysbiosis Contributes to the Development of Hypertension. Microbiome, 5, Article No. 14.
[Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kim, S., Goel, R., Kumar, A., Qi, Y., Lobaton, G., Hosaka, K., Mohammed, M., Handberg, E.M., Richards, E.M., Pepine, C.J. and Raizada, M.K. (2018) Imbalance of Gut Microbiome and Intestinal Epithelial Barrier Dysfunction in Patients with High Blood Pressure. Clinical Science (Lond), 132, 701-718.
[Google Scholar] [CrossRef]
|
|
[51]
|
Bartolomaeus, H., Balogh, A., Yakoub, M., Homann, S., Markó, L., Höges, S., Tsvetkov, D., Krannich, A., Wundersitz, S., Avery, E.G., Haase, N., Kräker, K., Hering, L., Maase, M., Kusche-Vihrog, K., Grandoch, M., Fielitz, J., Kempa, S., Gollasch, M., Zhumadilov, Z., Kozhakhmetov, S., Kushugulova, A., Eckardt, K.U., Dechend, R., Rump, L.C., Forslund, S.K., Müller, D.N., Stegbauer, J. and Wilck, N. (2019) Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation, 139, 1407-1421.
[Google Scholar] [CrossRef]
|
|
[52]
|
Liu, W., Luo, X., Tang, J., Mo, Q., Zhong, H., Zhang, H. and Feng, F. (2021) A Bridge for Short-Chain Fatty Acids to Affect Inflammatory Bowel Disease, Type 1 Diabetes, and Non-Alcoholic Fatty Liver Disease Positively: By Changing Gut Barrier. European Journal of Nutrition, 60, 2317-2330.
[Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Vinolo, M.A., Rodrigues, H.G., Hatanaka, E., Sato, F.T., Sampaio, S.C. and Curi, R. (2011) Suppressive Effect of Short-Chain Fatty Acids on Production of Proinflammatory Mediators by Neutrophils. The Journal of Nutritional Biochemistry, 22, 849-855. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Pluznick, J. (2014) A Novel SCFA Receptor, the Microbiota, and Blood Pressure Regulation. Gut Microbes, 5, 202-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Natarajan, N., Hori, D., Flavahan, S., Steppan, J., Flavahan, N.A., Berkowitz, D.E. and Pluznick, J.L. (2016) Microbial Short Chain Fatty Acid Metabolites Lower Blood Pressure via Endothelial G Protein-Coupled Receptor 41. Physiological Genomics, 48, 826-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Yancy, C.W., Jessup, M., Bozkurt, B., Butler, J., Casey Jr., D.E., Colvin, M.M., Drazner, M.H., Filippatos, G.S., Fonarow, G.C., Givertz, M.M., Hollenberg, S.M., Lindenfeld, J., Masoudi, F.A., McBride, P.E., Peterson, P.N., Stevenson, L.W. and Westlake, C. (2017) 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation, 136, e137-e161.
[Google Scholar] [CrossRef]
|
|
[57]
|
Tang, W.H.W., Li, D.Y. and Hazen, S.L. (2019) Dietary Metabolism, the Gut Microbiome, and Heart Failure. Nature Reviews Cardiology, 16, 137-154.
[Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Munger, M.A., Johnson, B., Amber, I.J., Callahan, K.S. and Gilbert, E.M. (1996) Circulating Concentrations of Proinflammatory Cytokines in Mild or Moderate Heart Failure Secondary to Ischemic or Idiopathic Dilated Cardiomyopathy. American Journal of Cardiology, 77, 723-727.
[Google Scholar] [CrossRef]
|
|
[59]
|
Sandek, A., Bauditz, J., Swidsinski, A., Buhner, S., Weber-Eibel, J., von Haehling, S., Schroedl, W., Karhausen, T., Doehner, W., Rauchhaus, M., Poole-Wilson, P., Volk, H.D., Lochs, H. and Anker, S.D. (2007) Altered Intestinal Function in Patients with Chronic Heart Failure. Journal of the American College of Cardiology, 50, 1561-1569. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Carley, A.N., Maurya, S.K., Fasano, M., Wang, Y., Selzman, C.H., Drakos, S.G. and Lewandowski, E.D. (2021) Short-Chain Fatty Acids Outpace Ketone Oxidation in the Failing Heart. Circulation, 143, 1797-1808.
[Google Scholar] [CrossRef]
|
|
[61]
|
Zuo, K., Li, J., Li, K., Hu, C., Gao, Y., Chen, M., Hu, R., Liu, Y., Chi, H., Wang, H., Qin, Y., Liu, X., Li, S., Cai, J., Zhong, J. and Yang, X. (2019) Disordered Gut Microbiota and Alterations in Metabolic Patterns Are Associated with Atrial Fibrillation. Gigascience, 8, giz058. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Zuo, K., Li, J., Wang, P., Liu, Y., Liu, Z., Yin, X., Liu, X. and Yang, X. (2019) Duration of Persistent Atrial Fibrillation Is Associated with Alterations in Human Gut Microbiota and Metabolic Phenotypes. mSystems, 4, e00422-19.
[Google Scholar] [CrossRef]
|
|
[63]
|
Zuo, K., Yin, X., Li, K., Zhang, J., Wang, P., Jiao, J., Liu, Z., Liu, X., Liu, J., Li, J. and Yang, X. (2020) Different Types of Atrial Fibrillation Share Patterns of Gut Microbiota Dysbiosis. mSphere, 5, e00071-20. [Google Scholar] [CrossRef]
|
|
[64]
|
Nattel, S., Heijman, J., Zhou, L. and Dobrev, D. (2020) Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy: A Translational Perspective. Circulation Research, 127, 51-72. [Google Scholar] [CrossRef]
|
|
[65]
|
Van Wagoner, D.R. and Chung, M.K. (2018) Inflammation, Inflammasome Activation, and Atrial Fibrillation. Circulation, 138, 2243-2246.
[Google Scholar] [CrossRef]
|
|
[66]
|
Feng, Y., Wang, Y., Wang, P., Huang, Y. and Wang, F. (2018) Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy. Cellular Physiology and Biochemistry, 49, 190-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Xu, M., Jiang, Z., Wang, C., Li, N., Bo, L., Zha, Y., Bian, J., Zhang, Y. and Deng, X. (2019) Acetate Attenuates Inflammasome Activation through GPR43-Mediated Ca2+-Dependent NLRP3 Ubiquitination. Experimental & Molecular Medicine, 51, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Zhou, M., Li, D., Xie, K., Xu, L., Kong, B., Wang, X., Tang, Y., Liu, Y. and Huang, H. (2021) The Short-Chain Fatty Acid Propionate Improved Ventricular Electrical Remodeling in a Rat Model with Myocardial Infarction. Food & Function, 12, 12580-12593. [Google Scholar] [CrossRef]
|
|
[69]
|
Budden, K.F., Gellatly, S.L., Wood, D.L., Cooper, M.A., Morrison, M., Hugenholtz, P. and Hansbro, P.M. (2017) Emerging Pathogenic Links between Microbiota and the Gut-Lung Axis. Nature Reviews Microbiology, 15, 55-63.
[Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Liu, Q., Tian, X., Maruyama, D., Arjomandi, M. and Prakash, A. (2021) Lung Immune Tone via Gut-Lung Axis: Gut-Derived LPS and Short-Chain Fatty Acids’ Immunometabolic Regulation of Lung IL-1β, FFAR2, and FFAR3 Expression. American Journal of Physiology-Lung Cellular and Molecular Physiology, 321, L65-L78. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Marsland, B.J., Trompette, A. and Gollwitzer, E.S. (2015) The Gut-Lung Axis in Respiratory Disease. Annals of the American Thoracic Society, 12, S150-S156. [Google Scholar] [CrossRef]
|
|
[72]
|
Ichinohe, T., Pang, I.K., Kumamoto, Y., Peaper, D.R., Ho, J.H., Murray, T.S. and Iwasaki, A. (2011) Microbiota Regulates Immune Defense against Respiratory Tract Influenza A Virus Infection. Proceedings of the National Academy of Sciences of the United States of America, 108, 5354-5359.
[Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Fagundes, C.T., Amaral, F.A., Vieira, A.T., Soares, A.C., Pinho, V., Nicoli, J.R., Vieira, L.Q., Teixeira, M.M. and Souza, D.G. (2012) Transient TLR Activation Restores Inflammatory Response and Ability to Control Pulmonary Bacterial Infection in Germfree Mice. The Journal of Immunology, 188, 1411-1420.
[Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Dang, A.T. and Marsland, B.J. (2019) Microbes, Metabolites, and the Gut-Lung Axis. Mucosal Immunology, 12, 843-850.
[Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Roe, A.J., O’Byrne, C., McLaggan, D. and Booth, I.R. (2002) Inhibition of Escherichia coli Growth by Acetic Acid: A Problem with Methionine Biosynthesis and Homocysteine Toxicity. Microbiology (Reading), 148, 2215-2222.
[Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Roe, A.J., McLaggan, D., Davidson, I., O’Byrne, C. and Booth, I.R. (1998) Perturbation of Anion Balance during Inhibition of Growth of Escherichia coli by Weak Acids. Journal of Bacteriology, 180, 767-772.
[Google Scholar] [CrossRef]
|
|
[77]
|
Lawhon, S.D., Maurer, R., Suyemoto, M. and Altier, C. (2002) Intestinal Short-Chain Fatty Acids Alter Salmonella typhimurium Invasion Gene Expression and Virulence through BarA/SirA. Molecular Microbiology, 46, 1451-1464.
[Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Ang, Z., Xiong, D., Wu, M. and Ding, J.L. (2018) FFAR2-FFAR3 Receptor Heteromerization Modulates Short-Chain Fatty Acid Sensing. The FASEB Journal, 32, 289-303. [Google Scholar] [CrossRef]
|
|
[79]
|
Sunkara, L.T., Jiang, W. and Zhang, G. (2012) Modulation of Antimicrobial Host Defense Peptide Gene Expression by Free Fatty Acids. PLOS ONE, 7, e49558.
[Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Cait, A., Hughes, M.R., Antignano, F., Cait, J., Dimitriu, P.A., Maas, K.R., Reynolds, L.A., Hacker, L., Mohr, J., Finlay, B.B., Zaph, C., McNagny, K.M. and Mohn, W.W. (2018) Microbiome-Driven Allergic Lung Inflammation Is Ameliorated by Short-Chain Fatty Acids. Mucosal Immunology, 11, 785-795.
[Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Roduit, C., Frei, R., Ferstl, R., Loeliger, S., Westermann, P., Rhyner, C., Schiavi, E., Barcik, W., Rodriguez-Perez, N., Wawrzyniak, M., Chassard, C., Lacroix, C., Schmausser-Hechfellner, E., Depner, M., von Mutius, E., Braun-Fahrländer, C., Karvonen, A.M., Kirjavainen, P.V., Pekkanen, J., Dalphin, J.C., Riedler, J., Akdis, C., Lauener, R. and O’Mahony, L. (2019) High Levels of Butyrate and Propionate in Early Life Are Associated with Protection Against Atopy. Allergy, 74, 799-809.
[Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Theiler, A., Bärnthaler, T., Platzer, W., Richtig, G., Peinhaupt, M., Rittchen, S., Kargl, J., Ulven, T., Marsh, L.M., Marsche, G., Schuligoi, R., Sturm, E.M. and Heinemann, A. (2019) Butyrate Ameliorates Allergic Airway Inflammation by Limiting Eosinophil Trafficking and Survival. The Journal of Allergy and Clinical Immunology, 144, 764-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Folkerts, J., Redegeld, F., Folkerts, G., Blokhuis, B., van den Berg, M.P.M., de Bruijn, M.J.W., van, I.W.F.J., Junt, T., Tam, S.Y., Galli, S.J., Hendriks, R.W., Stadhouders, R. and Maurer, M. (2020) Butyrate Inhibits Human Mast Cell Activation via Epigenetic Regulation of FcεRI-Mediated Signaling. Allergy, 75, 1966-1978.
[Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Wypych, T.P., Marzi, R., Wu, G.F., Lanzavecchia, A. and Sallusto, F. (2018) Role of B Cells in TH Cell Responses in a Mouse Model of Asthma. The Journal of Allergy and Clinical Immunology, 141, 1395-1410.
[Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Sanchez, H.N., Moroney, J.B., Gan, H., Shen, T., Im, J.L., Li, T., Taylor, J.R., Zan, H. and Casali, P. (2020) B Cell-Intrinsic Epigenetic Modulation of Antibody Responses by Dietary Fiber-Derived Short-Chain Fatty Acids. Nature Communications, 11, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Hu, Y., Feng, Y., Wu, J., Liu, F., Zhang, Z., Hao, Y., Liang, S., Li, B., Li, J., Lv, N., Xu, Y., Zhu, B. and Sun, Z. (2019) The Gut Microbiome Signatures Discriminate Healthy from Pulmonary Tuberculosis Patients. Frontiers in Cellular and Infection Microbiology, 9, Article 90. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Lee, H.Y., Nam, S., Kim, M.J., Kim, S.J., Back, S.H. and Yoo, H.J. (2021) Butyrate Prevents TGF-β1-Induced Alveolar Myofibroblast Differentiation and Modulates Energy Metabolism. Metabolites, 11, Article 258.
[Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Gülden, E., Ihira, M., Ohashi, A., Reinbeck, A.L., Freudenberg, M.A., Kolb, H. and Burkart, V. (2013) Toll-Like Receptor 4 Deficiency Accelerates the Development of Insulin-Deficient Diabetes in Non-Obese Diabetic Mice. PLOS ONE, 8, e75385.
[Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Regard, J.B., Kataoka, H., Cano, D.A., Camerer, E., Yin, L., Zheng, Y.W., Scanlan, T.S., Hebrok, M. and Coughlin, S.R. (2007) Probing Cell Type-Specific Functions of Gi in Vivo Identifies GPCR Regulators of Insulin Secretion. Journal of Clinical Investigation, 117, 4034-4043. [Google Scholar] [CrossRef]
|
|
[90]
|
Stumvoll, M., Goldstein, B.J. and van Haeften, T.W. (2005) Type 2 Diabetes: Principles of Pathogenesis and Therapy. The Lancet, 365, 1333-1346.
[Google Scholar] [CrossRef]
|
|
[91]
|
Hong, Y.H., Nishimura, Y., Hishikawa, D., Tsuzuki, H., Miyahara, H., Gotoh, C., Choi, K.C., Feng, D.D., Chen, C., Lee, H.G., Katoh, K., Roh, S.G. and Sasaki, S. (2005) Acetate and Propionate Short Chain Fatty Acids Stimulate Adipogenesis via GPCR43. Endocrinology, 146, 5092-5099. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Tolhurst, G., Heffron, H., Lam, Y.S., Parker, H.E., Habib, A.M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F. and Gribble, F.M. (2012) Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2. Diabetes, 61, 364-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Reimer, R.A., Darimont, C., Gremlich, S., Nicolas-Métral, V., Rüegg, U.T. and Macé, K. (2001) A Human Cellular Model for Studying the Regulation of Glucagon-Like Peptide-1 Secretion. Endocrinology, 142, 4522-4528.
[Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Larraufie, P., Martin-Gallausiaux, C., Lapaque, N., Dore, J., Gribble, F.M., Reimann, F. and Blottiere, H.M. (2018) SCFAs Strongly Stimulate PYY Production in Human Enteroendocrine Cells. Scientific Reports, 8, Article No. 74.
[Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Blaak, E.E., Canfora, E.E., Theis, S., Frost, G., Groen, A.K., Mithieux, G., Nauta, A., Scott, K., Stahl, B., van Harsselaar, J., van Tol, R., Vaughan, E.E. and Verbeke, K. (2020) Short Chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes, 11, 411-455. [Google Scholar] [CrossRef]
|
|
[96]
|
Frost, G., Sleeth, M.L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., Carling, D., Swann, J.R., Gibson, G., Viardot, A., Morrison, D., Louise Thomas, E. and Bell, J.D. (2014) The Short-Chain Fatty Acid Acetate Reduces Appetite via a Central Homeostatic Mechanism. Nature Communications, 5, Article No. 3611. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Davies, T.F., Andersen, S., Latif, R., Nagayama, Y., Barbesino, G., Brito, M., Eckstein, A.K., Stagnaro-Green, A. and Kahaly, G.J. (2020) Graves’ Disease. Nature Reviews Disease Primers, 6, Article No. 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., Bohlooly, Y.M., Glickman, J.N. and Garrett, W.S. (2013) The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science, 341, 569-573.
[Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Su, X., Yin, X., Liu, Y., Yan, X., Zhang, S., Wang, X., Lin, Z., Zhou, X., Gao, J., Wang, Z. and Zhang, Q. (2020) Gut Dysbiosis Contributes to the Imbalance of Treg and Th17 Cells in Graves’ Disease Patients by Propionic Acid. The Journal of Clinical Endocrinology & Metabolism, 105, 3526-3547.
[Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Albillos, A., de Gottardi, A. and Rescigno, M. (2020) The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy. Journal of Hepatology, 72, 558-577.
[Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Son, G., Kremer, M. and Hines, I.N. (2010) Contribution of Gut Bacteria to Liver Pathobiology. Gastroenterology Research and Practice, 2010, Article ID: 453563.
[Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Zhou, D., Pan, Q., Xin, F.Z., Zhang, R.N., He, C.X., Chen, G.Y., Liu, C., Chen, Y.W. and Fan, J.G. (2017) Sodium Butyrate Attenuates High-Fat Diet-Induced Steatohepatitis in Mice by Improving Gut Microbiota and Gastrointestinal Barrier. World Journal of Gastroenterology, 23, 60-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Ye, J., Lv, L., Wu, W., Li, Y., Shi, D., Fang, D., Guo, F., Jiang, H., Yan, R., Ye, W. and Li, L. (2018) Butyrate Protects Mice against Methionine-Choline-Deficient Diet-Induced Non-Alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels. Frontiers in Microbiology, 9, Article 1967. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Jin, C.J., Sellmann, C., Engstler, A.J., Ziegenhardt, D. and Bergheim, I. (2015) Supplementation of Sodium Butyrate Protects Mice from the Development of Non-Alcoholic Steatohepatitis (NASH). British Journal of Nutrition, 114, 1745-1755.
[Google Scholar] [CrossRef]
|
|
[105]
|
Rau, M., Rehman, A., Dittrich, M., Groen, A.K., Hermanns, H.M., Seyfried, F., Beyersdorf, N., Dandekar, T., Rosenstiel, P. and Geier, A. (2018) Fecal SCFAs and SCFA-Producing Bacteria in Gut Microbiome of Human NAFLD as a Putative Link to Systemic T-Cell Activation and Advanced Disease. United European Gastroenterology Journal, 6, 1496-1507. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
Kelly, C.J., Zheng, L., Campbell, E.L., Saeedi, B., Scholz, C.C., Bayless, A.J., Wilson, K.E., Glover, L.E., Kominsky, D.J., Magnuson, A., Weir, T.L., Ehrentraut, S.F., Pickel, C., Kuhn, K.A., Lanis, J.M., Nguyen, V., Taylor, C.T. and Colgan, S.P. (2015) Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host & Microbe, 17, 662-671.
[Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Demigné, C., Morand, C., Levrat, M.A., Besson, C., Moundras, C. and Rémésy, C. (1995) Effect of Propionate on Fatty Acid and Cholesterol Synthesis and on Acetate Metabolism in Isolated Rat Hepatocytes. British Journal of Nutrition, 74, 209-219.
[Google Scholar] [CrossRef]
|
|
[108]
|
Deng, M., Qu, F., Chen, L., Liu, C., Zhang, M., Ren, F., Guo, H., Zhang, H., Ge, S., Wu, C. and Zhao, L. (2020) SCFAs Alleviated Steatosis and Inflammation in Mice with NASH Induced by MCD. Journal of Endocrinology, 245, 425-437.
[Google Scholar] [CrossRef]
|
|
[109]
|
Canfora, E.E., van der Beek, C.M., Jocken, J.W.E., Goossens, G.H., Holst, J.J., Olde Damink, S.W.M., Lenaerts, K., Dejong, C.H.C. and Blaak, E.E. (2017) Colonic Infusions of Short-Chain Fatty Acid Mixtures Promote Energy Metabolism in Overweight/Obese Men: A Randomized Crossover Trial. Scientific Reports, 7, Article No. 2360. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Wang, Z., Zhang, X., Zhu, L., Yang, X., He, F., Wang, T., Bao, T., Lu, H., Wang, H. and Yang, S. (2020) Inulin Alleviates Inflammation of Alcoholic Liver Disease via SCFAs-Inducing Suppression of M1 and Facilitation of M2 Macrophages in Mice. International Immunopharmacology, 78, Article ID: 106062.
[Google Scholar] [CrossRef] [PubMed]
|
|
[111]
|
Grosicki, G.J., Fielding, R.A. and Lustgarten, M.S. (2018) Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. Calcified Tissue International, 102, 433-442.
[Google Scholar] [CrossRef] [PubMed]
|
|
[112]
|
Ticinesi, A., Lauretani, F., Milani, C., Nouvenne, A., Tana, C., Del Rio, D., Maggio, M., Ventura, M. and Meschi, T. (2017) Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut-Muscle Axis? Nutrients, 9, Article 1303. [Google Scholar] [CrossRef] [PubMed]
|
|
[113]
|
Lahiri, S., Kim, H., Garcia-Perez, I., Reza, M.M., Martin, K.A., Kundu, P., Cox, L.M., Selkrig, J., Posma, J.M., Zhang, H., Padmanabhan, P., Moret, C., Gulyás, B., Blaser, M.J., Auwerx, J., Holmes, E., Nicholson, J., Wahli, W. and Pettersson, S. (2019) The Gut Microbiota Influences Skeletal Muscle Mass and Function in Mice. Science Translational Medicine, 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[114]
|
Nay, K., Jollet, M., Goustard, B., Baati, N., Vernus, B., Pontones, M., Lefeuvre-Orfila, L., Bendavid, C., Rué, O., Mariadassou, M., Bonnieu, A., Ollendorff, V., Lepage, P., Derbré, F. and Koechlin-Ramonatxo, C. (2019) Gut Bacteria Are Critical for Optimal Muscle Function: A Potential Link with Glucose Homeostasis. American Journal of Physiology-Endocrinology and Metabolism, 317, E158-e171.
[Google Scholar] [CrossRef] [PubMed]
|
|
[115]
|
Hsu, Y.J., Chiu, C.C., Li, Y.P., Huang, W.C., Huang, Y.T., Huang, C.C. and Chuang, H.L. (2015) Effect of Intestinal Microbiota on Exercise Performance in Mice. The Journal of Strength & Conditioning Research, 29, 552-558.
[Google Scholar] [CrossRef]
|
|
[116]
|
Chen, Y.M., Wei, L., Chiu, Y.S., Hsu, Y.J., Tsai, T.Y., Wang, M.F. and Huang, C.C. (2016) Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients, 8, Article 205.
[Google Scholar] [CrossRef] [PubMed]
|
|
[117]
|
Buigues, C., Fernández-Garrido, J., Pruimboom, L., Hoogland, A.J., Navarro-Martínez, R., Martínez-Martínez, M., Verdejo, Y., Mascarós, M.C., Peris, C. and Cauli, O. (2016) Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial. International Journal of Molecular Sciences, 17, Article 932. [Google Scholar] [CrossRef] [PubMed]
|
|
[118]
|
Liu, L., Fu, C. and Li, F. (2019) Acetate Affects the Process of Lipid Metabolism in Rabbit Liver, Skeletal Muscle and Adipose Tissue. Animals (Basel), 9, Article 799.
[Google Scholar] [CrossRef] [PubMed]
|
|
[119]
|
Maruta, H., Yoshimura, Y., Araki, A., Kimoto, M., Takahashi, Y. and Yamashita, H. (2016) Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells. PLOS ONE, 11, e0158055.
[Google Scholar] [CrossRef] [PubMed]
|
|
[120]
|
Han, J.H., Kim, I.S., Jung, S.H., Lee, S.G., Son, H.Y. and Myung, C.S. (2014) The Effects of Propionate and Valerate on Insulin Responsiveness for Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myotubes via G Protein-Coupled Receptor 41. PLOS ONE, 9, e95268. [Google Scholar] [CrossRef] [PubMed]
|
|
[121]
|
Fushimi, T., Tayama, K., Fukaya, M., Kitakoshi, K., Nakai, N., Tsukamoto, Y. and Sato, Y. (2001) Acetic Acid Feeding Enhances Glycogen Repletion in Liver and Skeletal Muscle of Rats. The Journal of Nutrition, 131, 1973-1977.
[Google Scholar] [CrossRef] [PubMed]
|
|
[122]
|
Kelley, G.A. and Kelley, K.S. (2017) Is Sarcopenia Associated with an Increased Risk of All-Cause Mortality and Functional Disability? Experimental Gerontology, 96, 100-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[123]
|
Beaudart, C., Rizzoli, R., Bruyère, O., Reginster, J.Y. and Biver, E. (2014) Sarcopenia: Burden and Challenges for Public Health. Archives of Public Health, 72, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[124]
|
Beaudart, C., Dawson, A., Shaw, S.C., Harvey, N.C., Kanis, J.A., Binkley, N., Reginster, J.Y., Chapurlat, R., Chan, D.C., Bruyère, O., Rizzoli, R., Cooper, C. and Dennison, E.M. (2017) Nutrition and Physical Activity in the Prevention and Treatment of Sarcopenia: Systematic Review. Osteoporosis International, 28, 1817-1833.
[Google Scholar] [CrossRef] [PubMed]
|
|
[125]
|
Ticinesi, A., Mancabelli, L., Tagliaferri, S., Nouvenne, A., Milani, C., Del Rio, D., Lauretani, F., Maggio, M.G., Ventura, M. and Meschi, T. (2020) The Gut-Muscle Axis in Older Subjects with Low Muscle Mass and Performance: A Proof of Concept Study Exploring Fecal Microbiota Composition and Function with Shotgun Metagenomics Sequencing. International Journal of Molecular Sciences, 21, Article 8946.
[Google Scholar] [CrossRef] [PubMed]
|
|
[126]
|
Lv, W.Q., Lin, X., Shen, H., Liu, H.M., Qiu, X., Li, B.Y., Shen, W.D., Ge, C.L., Lv, F.Y., Shen, J., Xiao, H.M. and Deng, H.W. (2021) Human Gut Microbiome Impacts Skeletal Muscle Mass via Gut Microbial Synthesis of the Short-Chain Fatty Acid Butyrate among Healthy Menopausal Women. Journal of Cachexia, Sarcopenia and Muscle, 12, 1860-1870. [Google Scholar] [CrossRef] [PubMed]
|
|
[127]
|
Soares, A.D.N., Wanner, S.P., Morais, E.S.S., Hudson, A.S.R., Martins, F.S. and Cardoso, V.N. (2019) Supplementation with Saccharomyces boulardii Increases the Maximal Oxygen Consumption and Maximal Aerobic Speed Attained by Rats Subjected to an Incremental-Speed Exercise. Nutrients, 11, Article 2352.
[Google Scholar] [CrossRef] [PubMed]
|
|
[128]
|
Chen, L.H., Huang, S.Y., Huang, K.C., Hsu, C.C., Yang, K.C., Li, L.A., Chan, C.H. and Huang, H.Y. (2019) Lactobacillus paracasei PS23 Decelerated Age-Related Muscle Loss by Ensuring Mitochondrial Function in SAMP8 Mice. Aging (Albany NY), 11, 756-770. [Google Scholar] [CrossRef] [PubMed]
|
|
[129]
|
Walsh, M.E., Bhattacharya, A., Sataranatarajan, K., Qaisar, R., Sloane, L., Rahman, M.M., Kinter, M. and Van Remmen, H. (2015) The Histone Deacetylase Inhibitor Butyrate Improves Metabolism and Reduces Muscle Atrophy during Aging. Aging Cell, 14, 957-970. [Google Scholar] [CrossRef] [PubMed]
|
|
[130]
|
Okamoto, T., Morino, K., Ugi, S., Nakagawa, F., Lemecha, M., Ida, S., Ohashi, N., Sato, D., Fujita, Y. and Maegawa, H. (2019) Microbiome Potentiates Endurance Exercise through Intestinal Acetate Production. American Journal of Physiology-Endocrinology and Metabolism, 316, E956-e966.
[Google Scholar] [CrossRef] [PubMed]
|
|
[131]
|
Thadhani, R., Pascual, M. and Bonventre, J.V. (1996) Acute Renal Failure. The New England Journal of Medicine, 334, 1448-1460.
[Google Scholar] [CrossRef]
|
|
[132]
|
Mikami, D., Kobayashi, M., Uwada, J., Yazawa, T., Kamiyama, K., Nishimori, K., Nishikawa, Y., Nishikawa, S., Yokoi, S., Kimura, H., Kimura, I., Taniguchi, T. and Iwano, M. (2020) Short-Chain Fatty Acid Mitigates Adenine-Induced Chronic Kidney Disease via FFA2 and FFA3 Pathways. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1865, Article ID: 158666.
[Google Scholar] [CrossRef] [PubMed]
|
|
[133]
|
Huang, W., Zhou, L., Guo, H., Xu, Y. and Xu, Y. (2017) The Role of Short-Chain Fatty Acids in Kidney Injury Induced by Gut-Derived Inflammatory Response. Metabolism, 68, 20-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[134]
|
Machado, R.A., Constantino Lde, S., Tomasi, C.D., Rojas, H.A., Vuolo, F.S., Vitto, M.F., Cesconetto, P.A., de Souza, C.T., Ritter, C. and Dal-Pizzol, F. (2012) Sodium Butyrate Decreases the Activation of NF-κB Reducing Inflammation and Oxidative Damage in the Kidney of Rats Subjected to Contrast-Induced Nephropathy. Nephrology Dialysis Transplantation, 27, 3136-3140. [Google Scholar] [CrossRef] [PubMed]
|
|
[135]
|
Magliocca, G., Mone, P., Di Iorio, B.R., Heidland, A. and Marzocco, S. (2022) Short-Chain Fatty Acids in Chronic Kidney Disease: Focus on Inflammation and Oxidative Stress Regulation. International Journal of Molecular Sciences, 23, Article 5354. [Google Scholar] [CrossRef] [PubMed]
|
|
[136]
|
Gluba-Brzózka, A., Franczyk, B., Olszewski, R. and Rysz, J. (2020) The Influence of Inflammation on Anemia in CKD Patients. International Journal of Molecular Sciences, 21, Article 725. [Google Scholar] [CrossRef] [PubMed]
|
|
[137]
|
Yilmaz, M.I., Solak, Y., Covic, A., Goldsmith, D. and Kanbay, M. (2011) Renal Anemia of Inflammation: The Name Is Self-Explanatory. Blood Purification, 32, 220-225.
[Google Scholar] [CrossRef] [PubMed]
|
|
[138]
|
Al Bander, Z., Nitert, M.D., Mousa, A. and Naderpoor, N. (2020) The Gut Microbiota and Inflammation: An Overview. International Journal of Environmental Research and Public Health, 17, Article 7618. [Google Scholar] [CrossRef] [PubMed]
|
|
[139]
|
Wu, H., Singer, J., Kwan, T.K., Loh, Y.W., Wang, C., Tan, J., Li, Y.J., Lai, S.W.C., Macia, L., Alexander, S.I. and Chadban, S.J. (2020) Gut Microbial Metabolites Induce Donor-Specific Tolerance of Kidney Allografts through Induction of T Regulatory Cells by Short-Chain Fatty Acids. Journal of the American Society of Nephrology, 31, 1445-1461. [Google Scholar] [CrossRef]
|
|
[140]
|
Furue, K., Ito, T. and Furue, M. (2018) Differential Efficacy of Biologic Treatments Targeting the TNF-α/IL-23/IL-17 Axis in Psoriasis and Psoriatic Arthritis. Cytokine, 111, 182-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[141]
|
Nussbaum, L., Chen, Y.L. and Ogg, G.S. (2021) Role of Regulatory T Cells in Psoriasis Pathogenesis and Treatment. British Journal of Dermatology, 184, 14-24.
[Google Scholar] [CrossRef] [PubMed]
|
|
[142]
|
Kanda, N., Hoashi, T. and Saeki, H. (2021) The Defect in Regulatory T Cells in Psoriasis and Therapeutic Approaches. Journal of Clinical Medicine, 10, Article 3880.
[Google Scholar] [CrossRef] [PubMed]
|
|
[143]
|
Luu, M. and Visekruna, A. (2019) Short-Chain Fatty Acids: Bacterial Messengers Modulating the Immunometabolism of T Cells. The European Journal of Immunology, 49, 842-848. [Google Scholar] [CrossRef] [PubMed]
|
|
[144]
|
Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., Liu, H., Cross, J.R., Pfeffer, K., Coffer, P.J. and Rudensky, A.Y. (2013) Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory T-Cell Generation. Nature, 504, 451-455. [Google Scholar] [CrossRef] [PubMed]
|
|
[145]
|
Schwarz, A., Philippsen, R. and Schwarz, T. (2021) Induction of Regulatory T Cells and Correction of Cytokine Disbalance by Short-Chain Fatty Acids: Implications for Psoriasis Therapy. Journal of Investigative Dermatology, 141, 95-104.e102.
[Google Scholar] [CrossRef] [PubMed]
|
|
[146]
|
Yao, Y., Cai, X., Fei, W., Ren, F., Wang, F., Luan, X., Chen, F. and Zheng, C. (2020) Regulating Gut Microbiome: Therapeutic Strategy for Rheumatoid Arthritis during Pregnancy and Lactation. Frontiers in Pharmacology, 11, Article 594042.
[Google Scholar] [CrossRef] [PubMed]
|
|
[147]
|
Yao, Y., Cai, X., Zheng, Y., Zhang, M., Fei, W., Sun, D., Zhao, M., Ye, Y. and Zheng, C. (2022) Short-Chain Fatty Acids Regulate B Cells Differentiation via the FFA2 Receptor to Alleviate Rheumatoid Arthritis. British Journal of Pharmacology, 179, 4315-4329. [Google Scholar] [CrossRef] [PubMed]
|
|
[148]
|
Mirzaei, R., Afaghi, A., Babakhani, S., Sohrabi, M.R., Hosseini-Fard, S.R., Babolhavaeji, K., Khani Ali Akbari, S., Yousefimashouf, R. and Karampoor, S. (2021) Role of Microbiota-Derived Short-Chain Fatty Acids in Cancer Development and Prevention. Biomedicine & Pharmacotherapy, 139, Article ID: 111619.
[Google Scholar] [CrossRef] [PubMed]
|
|
[149]
|
Bodai, B.I. and Nakata, T.E. (2020) Breast Cancer: Lifestyle, the Human Gut Microbiota/Microbiome, and Survivorship. The Permanente Journal, 24, Article 129.
[Google Scholar] [CrossRef]
|
|
[150]
|
Walker, G.E., Wilson, E.M., Powell, D. and Oh, Y. (2001) Butyrate, a Histone Deacetylase Inhibitor, Activates the Human IGF Binding Protein-3 Promoter in Breast Cancer Cells: Molecular Mechanism Involves an Sp1/Sp3 Multiprotein Complex. Endocrinology, 142, 3817-3827. [Google Scholar] [CrossRef] [PubMed]
|
|
[151]
|
Bindels, L.B., Porporato, P., Dewulf, E.M., Verrax, J., Neyrinck, A.M., Martin, J.C., Scott, K.P., Buc Calderon, P., Feron, O., Muccioli, G.G., Sonveaux, P., Cani, P.D. and Delzenne, N.M. (2012) Gut Microbiota-Derived Propionate Reduces Cancer Cell Proliferation in the Liver. British Journal of Cancer, 107, 1337-1344.
[Google Scholar] [CrossRef] [PubMed]
|
|
[152]
|
Maruyama, T., Yamamoto, S., Qiu, J., Ueda, Y., Suzuki, T., Nojima, M. and Shima, H. (2012) Apoptosis of Bladder Cancer by Sodium Butyrate and Cisplatin. Journal of Infection and Chemotherapy, 18, 288-295.
[Google Scholar] [CrossRef] [PubMed]
|
|
[153]
|
Luu, M., Riester, Z., Baldrich, A., Reichardt, N., Yuille, S., Busetti, A., Klein, M., Wempe, A., Leister, H., Raifer, H., Picard, F., Muhammad, K., Ohl, K., Romero, R., Fischer, F., Bauer, C.A., Huber, M., Gress, T.M., Lauth, M., Danhof, S., Bopp, T., Nerreter, T., Mulder, I.E., Steinhoff, U., Hudecek, M. and Visekruna, A. (2021) Microbial Short-Chain Fatty Acids Modulate CD8+ T Cell Responses and Improve Adoptive Immunotherapy for Cancer. Nature Communications, 12, Article No. 4077. [Google Scholar] [CrossRef] [PubMed]
|
|
[154]
|
Nomura, M., Nagatomo, R., Doi, K., Shimizu, J., Baba, K., Saito, T., Matsumoto, S., Inoue, K. and Muto, M. (2020) Association of Short-Chain Fatty Acids in the Gut Microbiome with Clinical Response to Treatment with Nivolumab or Pembrolizumab in Patients with Solid Cancer Tumors. JAMA Network Open, 3, e202895.
[Google Scholar] [CrossRef] [PubMed]
|
|
[155]
|
Yang, F., Chen, H., Gao, Y., An, N., Li, X., Pan, X., Yang, X., Tian, L., Sun, J., Xiong, X. and Xing, Y. (2020) Gut Microbiota-Derived Short-Chain Fatty Acids and Hypertension: Mechanism and Treatment. Biomedicine & Pharmacotherapy, 130, Article ID: 110503. [Google Scholar] [CrossRef] [PubMed]
|