|
[1]
|
Shewry, P.R. and Hey, S.J. (2015) Review: The Contribution of Wheat to Human Diet and Health. Food and Energy Security, 4, 178-202.
https://onlinelibrary.wiley.com/[CrossRef] [PubMed]
|
|
[2]
|
Saleh, B. (2012) Effect of Salt Stress on Growth and Chlorophyll Content of Some Cultivated Cotton Varieties Grown in Syria. Communications in Soil Science and Plant Analysis, 43, 1976-1983.
https://www.tandfonline.com/doi/full/10.1080/00103624.2012.693229[CrossRef]
|
|
[3]
|
Abdelaal, K.A.A., Hafez, M.H., Afry, M.M., Tantawy, D.S. and Alshaal, T. (2018) Effect of Some Osmo-regulators on Photosynthesis, Lipid Peroxidation, Antioxidative Capacity, and Productivity of Barley (Hordeum vulgare L.) under Water Deficit Stress, Environmental Science and Pollution Research, 25, 30199-30211.
https://pubmed.ncbi.nlm.nih.gov/30155630/[CrossRef] [PubMed]
|
|
[4]
|
Abd El-Samad, H.M., Mostafa, D. and Abd El-Hakeem, K.N. (2017) The Combined Action Strategy of Two Stresses, Salinity and Cu++ on Growth, Metabolites and Protein Pattern of Wheat Plant. American Journal of Plant Sciences, 8, Article ID: 625-643.
https://file.scirp.org/Html/22-2602920_74486.htm[CrossRef]
|
|
[5]
|
Abd El-Samad, M.H, Hassanien, A.M., Mostafa, D.M. and Taha, R.M. (2019) The Synergistic Effect of Zinc and Nickel with Osmotic Stress on Growth of Four Wheat Cultivars. Merit Research journal of Agricultural Science and Soil Sciences, 5, 187-200.
https://www.researchgate.net/publication/352983365_Original_Research_Article_ The_Synergistic_Effect_of_Zinc_and_Nickel_with_Osmotic_Stress_on_Growth_of_Four_Wheat_Cultivars
|
|
[6]
|
Jan, R,; Khan, M.A., Asaf, S., Lubna, Lee, I.J. and Kim, K.M. (2019) Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity and Enhances Expression of Metal Stress Related Gene with Improved Growth of Oryza sativa via Regulating Its Antioxidant Machinery and Endogenous Hormones. Plants, 8, Article No. 363.
https://pubmed.ncbi.nlm.nih.gov/31547575/[CrossRef] [PubMed]
|
|
[7]
|
Saleh, J. and And Maftoun, M. (2008) Interactive Effects of NaCl Levels and Zinc Sources and Levels on the Growth and Mineral Composition of Rice. Journal of Agricultural Science and Technology, 10, 325-336.
https://jast.modares.ac.ir/article-23-2346-en.html
|
|
[8]
|
Ain, Q., Akhtar, J., Amjad, M., Haq, M.A. and Saqib, Z.A. (2016) Effect of Enhanced Nickel Levels on Wheat Plant Growth and Physiology under Salt Stress. Communications in Soil Science Plant Analysis, 47, 2538-2546.
https://www.researchgate.net/publication/310435107[CrossRef]
|
|
[9]
|
Jagetiya, B., Soni, A. and Yada, S. (2013) Effect of Nickel on Plant Water Relations and Growth in Green Gram. Indian Journal of Plant Physiology, 18, 372-376.
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1596276[CrossRef]
|
|
[10]
|
Kumar, O., Singh, S.K., Latare, A.M. and Yadav, S.N. (2018) Effect of Foliar Fertilization of Nickel Affects Growth, Yield Component and Micronutrient Status of Barley (Hordeum vulgare) Grown in Low Nickel Soil. Archives of Agronomy and soil, 64, 1407-1418.
https://www.tandfonline.com/doi/full/10.1080/03650340.2018.1438600[CrossRef]
|
|
[11]
|
Kumar, O., Singh, S.K., Singh, A.P., Yadov, S.N. and Latare, A. (2018) Effect of Soil Application of Nickel on Growth, Micronutrient Concentration and Uptake in Barley (Hordeum vulgare L.) Grown in Inceptisols of Varanasi. Plant Nutrition, 41, 50-66.
https://www.researchgate.net/publication/319994620[CrossRef]
|
|
[12]
|
Beadle, C.L. (1993) Growth Analysis. In: Hall, D.O., Scurlock, J.M.O., Bolharnordenkampfh, R., Leegood, R.C. and Long, S.P., Eds., Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual, Chapman and Hall, London, 36-46.
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1987112
|
|
[13]
|
McKee, G.W. (1974) A Coefficient for Computing Leaf Area in Hybrid Corn. Agronomy Journal, 56, 240-241.
[CrossRef]
|
|
[14]
|
Bonhomme, R., Varlet, M., Grancher C. and Chartier P. (1974) The Use of Hemispherical Photographs for Determining Leaf Index of Young Crops. Photosynthetica, 8, 299-301.
|
|
[15]
|
Norman, J. and Campbell G.S. (1994) Canopy Structure. In: Pearcy, R.W., Ehleringer, J.R., Moony, H.A. and Rundel, P.W., Eds., Plant Physiological Ecology, Chapman & Hall, London, 301-325. [CrossRef]
|
|
[16]
|
Fales, F.W. (1951) The Assimilation and Degradation of Carbohydrate by Yeast Cells. Journal of Biology and Chemistry, 193, 113-124.
http://www.jbc.org/content/193/1/113.full.pdf[CrossRef]
|
|
[17]
|
Lowry, O.H., Rasebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent. Journal of Biology and Chemistry, 193, 265-275.
https://en.wikipedia.org/wiki/Journal_of_Biological_Chemistry[CrossRef]
|
|
[18]
|
Steel, R.G. and Torrie, J.H. (1960) Principles and Procedures of Statistics. McGraw-Hill Book Co., New York.
http://garfield.library.upenn.edu/classics1977/A1977DU23500002.pdf
|
|
[19]
|
Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M.S., Saleem, M.H., Adil, M., Heidari, P. and Chen, J.T. (2019) An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. International Journal of Molecular Sciences, 21, Article No. 148.
https://www.mdpi.com/1422-0067/21/1/148[CrossRef] [PubMed]
|
|
[20]
|
Shahid, M.A., Sarkhosh, A., Khan, N, Balal, R.M., Ali, S., Rossi, L., Gomez, C., Mattson, N., Nasim, W. and Garacia-Sanchez, F. (2020) Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy, 10, Article No. 938.
https://www.mdpi.com[CrossRef]
|
|
[21]
|
Rajput, V.D., Minkina,T., Kumari, A., Harish, Singh,V.K., Sushkova, S., Srivastava, S., Verma, K.K., Mandzhieva, S., Sudhakar, S., Srivastava, S. and Keswani, C. (2021) Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants, 10, Article No. 1221.
[CrossRef] [PubMed]
|
|
[22]
|
Karimi, H.R. and Kuhbanani, R. (2014) Evaluation of Inter-specific Hyprid of Pistachio altantica X Pistachio vera cv. Badami-Riz-zarand as Pistachio Root Stock to Salinity Stress According to Some Growth Indices, Eco-physiological and Biochemical Parameters. Journal of Stress Physiology and Biochemistry, 10, 5-17.
https://www.researchgate.net/publication/265382108
|
|
[23]
|
Rahneshan, Z., Nasibi, F. and Moghadam, A.A. (2018) Effects of Salinity on Some Growth, Physiological, Biochemical Parameters and Nutrients in Two Pistachio (Pistacia vera L.) Root Stocks. Journal of Plant Interactions, 13, 73-82.
https://www.tandfonline.com/doi/full/10.1080/17429145.2018.1424355[CrossRef]
|
|
[24]
|
Rajput, V.D., Yaning, C., Ayup, M., Minkina, T., Sushkova, S. and Mandzhieva, S. (2017) Physiological and Hydrological Changes in Populus euphratica Seedlings under Salinity Stress. Acta Ecologica Sinica, 37, 229-235.
[CrossRef]
|
|
[25]
|
Rani, S., Sharma, M.K., Kumar, N. and Neelam (2019) Impact of Salinity and Zinc Application on Growth, Physiological and Yield Traits in Wheat. Current Science, 8, 1324-1330.
https://www.researchgate.net/publication/334049940[CrossRef]
|
|
[26]
|
Arbona, V., Marco, J., Iglesias, D.J., López-Climent, M.F., Talon M. and Gómez-Cadenas, A. (2005) Carbohydrate Depletion in Roots and Leaves of Salt-stressed Potted Citrus clementina L. Plant Growth Regulation, 46,153-160.
[CrossRef]
|
|
[27]
|
Moradi, F. and Ismail, A.M. (2007) Responses of Photosynthesis, Chlorophyll Fluorescence and ROS Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice. Annual Botany Journal, 99, 1161-1173.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243573/[CrossRef] [PubMed]
|
|
[28]
|
Benabderrahim, M.A., Guiz, A.M. and Haddad, M. (2020) Genentic Diversity of Salt Tolerane in Tetraploid Alfalfa (Medicago sativa L.). Acta Phsiologiae Plantarum, 24, Article No. 5.
https://www.semanticscholar.org/paper/ [Google Scholar] [CrossRef]
|
|
[29]
|
Koselski, M., Trebacz, K. and Dziibinska, H. (2019) The Role of Vacuolar Ion Channels in Salt Stress Tolerance in the Liverwort Chenopodium coricum. Acta Physiologiae Plantarum, 41, Article No. 110.
[CrossRef]
|
|
[30]
|
Abd El-Samad, M.H, Hassanien, A.M., Mostafa, D.M. and Taha, R.M. (2019) The Physiological Strategy of Zinc and Nickel in Improvement of Osmotic Defense System of Two Wheat Cultivars. Sylwan, 64, 1-23.
|
|
[31]
|
Bagheri, A. and Sadeghipour, O. (2009) Effects of Salt Stress on Yield, Components and Carbohydrates Content on Four Hull Less Barely (Hordeum Vulgar L.) Cultivars. Journal of Biology Science, 9, 909-912.
https://scialert.net/abstract/?doi=jbs.2009.909.912[CrossRef]
|
|
[32]
|
Abd El-Samad, H.M.H.A. (2016) The Potential Role of Osmotic Pressure to Exogenous Application of Phytohormones on Crop Plants Grown under Different Osmotic Stress. American Journal of Plant Sciences, 7, 937-948.
http://www.scirp.org/journal/PaperInformation.aspx?paperID=65969[CrossRef]
|
|
[33]
|
Torre-Gonzalez, A.D., Leon, E.N., Blasco, B. and Ruiz, J.M. (2020) Nitrogen and Photorespiration Pathway, Salt Stress Genotypic Tolerance Effects in Tomato Plants (Solanum lyopersicum L.). Acta Physioloiae Plantarum, 42, Article No. 2.
[Google Scholar] [CrossRef]
|
|
[34]
|
Ashraf, M. and Harris, P.J.C. (2004) Potential Biochemical Indicators of Salinity Tolerance in Plant. Plant Science, 166, 3-16.
https://www.sciencedirect.com/science/article/pii/S0168945203004679[CrossRef]
|
|
[35]
|
Jiang, X., Qi, W., Xu, X., Li, Y., Liao, Y. and Wang, B. (2014) Higher Soil Salinity Causes More Physiological Stress in Female of Populous cathayana Cuttings. Acta Ecologica Sinica, 34, 225-231.
https://agris.fao.org/agris-search/search.do?recordID=US201700150693[CrossRef]
|
|
[36]
|
Manivasagaperumal, R., Vijayaranjan, P., Balamurugan, S., and Thiyagarajan, G. (2011) Effect of Copper on Growth, Dry Matter Yield and Nutrient Content of Vigna radiata (L.) Wilczek. Journal of Phytology, 3, 52-62.
https://updatepblishing.com>view
|
|
[37]
|
Osakabe, Y., Osakabe K., and Tran L.P. (2014) Response of Plants to Water Stress. Frontiers in Plant Science, 5, Article No. 86.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952189[CrossRef] [PubMed]
|
|
[38]
|
Alves, ZA.A.G. and Setter, T.L. (2004) Abscisic Acid Accumulation and Osmotic Adjustment in Cassava under Water Deficit. Environmental and Experimental Botany, 51, 259-279.
https://www.infona.pl/resource/bwmeta1.element.elsevier-3bb926c8-a890-3493-a735-b135d10a490f[CrossRef]
|
|
[39]
|
Abd El-Samad, H.M., Shaddad, M.A.K. and Ragaey, M.M. (2019) Drought Strategy Tolerance of Four Barley Cultivars and Combined Effect with Salicylic Acid Application. American Journal of Plant Sciences, 10, 512-535.
https://www.scirp.org/journal/paperinformation.aspx?paperid=91837[CrossRef]
|
|
[40]
|
Mohammed, H.A.M. (2007) Physiological Studies on the Antioxidative Responses and Some Related Metabolities of Lupin and Sorghum Plants Grown under Sea Water M.Sc. Thesis, South Valley University, Qena, 1-184.
https://www.svu.edu.eg/en
|
|
[41]
|
Khan, H., Mcdonald, G. and Rengel, Z. (2004) Zin Fertilization and Water Stress Affects Plant Water Relations, Stomata Conductance and Osmotic Adjustment in Chickpea (Cicer arientinum L.). Plant and Soil, 267, 271-284.
[Google Scholar] [CrossRef]
|
|
[42]
|
Bhatia, N.P., Baker, A.J., M., Walsh, K.B. and Midmore, D.J. (2005) A Role Nickel in Osmotic Adjustment in Drought-stressed Plants of the Nikel Hyperaccumulator Stackhousia Tryonii Bailey. Plana, 223, 134-139.
[CrossRef] [PubMed]
|
|
[43]
|
Hussein, M.M. and Abou-Baker, N.H. (2018) The Contribution of Nano-zinc to Alleviate Salinity Stress on Cotton Plants. Royal Society Open Science, 5, Article ID: 171809.
https://royalsocietypublishing.org[CrossRef] [PubMed]
|
|
[44]
|
Tavallali, V. (2016) The Effectiveness of Zinc in Alleviating Salinity Stress on Pistachio Seedlings. Fruits, 71, 433-445.
https://fruits.edpsciences.org/articles/fruits/pdf/2016/06/fruits150190.pdf[CrossRef]
|
|
[45]
|
Iqbal, M.N., Rasheed, R., Hussain, I., Muhammad, Y.A. and Muhammad, A.A. (2018) Exogenously Applied Zinc and Copper Mitigate Salinity Effect in Maize (Zea mays L.) by Improving Key Physiological and Biochemical Attributes. Environmental Science and Pollution Research, 25, 23883-23896.
https://pubmed.ncbi.nlm.nih.gov/29881963/[CrossRef] [PubMed]
|
|
[46]
|
Stetsenko, L.A., Kozhevnikova, A.D. and Kartashov, A.V. (2017) Salinity Attenuates Nickel-accumulating Capacity of Atropa belladonna L. Plants. Russian Journal of Plant Physiology, 64, 486-496.
https://link.springer.com/article/10.1134/S102144371704015X[CrossRef]
|
|
[47]
|
Sharma, A. and Dhiman, A. (2013) Nickel and Cadmium Toxicity in Plants. Journal of Pharmaceutical and Scientific Innovation, 2, 20-24.
https://www.researchgate.net/publication/272770423[CrossRef]
|
|
[48]
|
Nie, J., Pan, Y.; Shi, J., Guo Yan, Z., Duan, X. and Xu, M. (2015) A Comparative Study on the Uptake and Toxicity of Nickel Added in the Form of Different Salts to Maize Seedlings. International Journal of Environmental Research, Public Health, 12, 15075-15087.
https://pubmed.ncbi.nlm.nih.gov/26633435/[CrossRef] [PubMed]
|
|
[49]
|
Mohamed, A.M., Abdeldaym, E.A., Abdelaziz, S.M., Sawy, M.B.I. and Mottaleb, S.A. (2020) Synergistic Effect of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Tolerance of Potato Plants Subjected to Salinity. Agronomy, 10, Article No. 19.
https://www.mdpi.com/2073-4395/10/1/19[CrossRef]
|