[1]
|
Gowen, A., Shahjin, F., Chand, S., Odegaard, K.E. and Yelamanchili, S.V. (2020) Mesenchymal Stem Cell-Derived Extracellular Vesicles: Challenges in Clinical Applications. Frontiers in Cell and Developmental Biology, 8, Article No. 149. https://doi.org/10.3389/fcell.2020.00149
|
[2]
|
Saeedi, P., Halabian, R. and Imani Fooladi, A.A. (2019) A Revealing Review of Mesenchymal Stem Cells Therapy, Clinical Perspectives and Modification Strategies. Stem Cell Investigation, 6, 34.
|
[3]
|
Martin, I., Galipeau, J., Kessler, C., Le B.K. and Dazzi, F. (2019) Challenges for Mesenchymal Stromal Cell Therapies. Science Translational Medicine, 11, 480. https://doi.org/10.1126/scitranslmed.aat2189
|
[4]
|
Arthur, A., Zannettino, A. and Gronthos, S. (2009) The Therapeutic Applications of Multipotential Mesenchymal/Stromal Stem Cells in Skeletal Tissue Repair. Journal of Cellular Physiology, 218, 237-245. https://doi.org/10.1002/jcp.21592
|
[5]
|
Castelo-Branco, M.T., Soares, I.D., Lopes, D.V., Buongusto, F., Martinusso, C.A., do, R.A., et al. (2012) Intraperitoneal but Not Intravenous Cryopreserved Mesenchymal Stromal Cells Home to the Inflamed Colon and Ameliorate Experimental Colitis. PLoS ONE, 7, e33360. https://doi.org/10.1371/journal.pone.0033360
|
[6]
|
Tran-Dinh, A., Kubis, N., Tomita, Y., Karaszewski, B., Calando, Y., Oudina, K., et al. (2006) In Vivo Imaging with Cellular Resolution of Bone Marrow Cells Transplanted into the Ischemic brain of a Mouse. NeuroImage, 31, 958-967. https://doi.org/10.1016/j.neuroimage.2006.01.019
|
[7]
|
Gao, J., Dennis, J.E., Muzic, R.F., Lundberg, M. and Caplan, A.I. (2001) The Dynamic in Vivo Distribution of Bone Marrow-Derived Mesenchymal Stem Cells after Infusion. Cells Tissues Organs, 169, 12-20. https://doi.org/10.1159/000047856
|
[8]
|
Gonzalez-Rey, E., Gonzalez, M.A., Varela, N., O’Valle, F., Hernandez-Cortes, P., Rico, L., et al. (2010) Human Adipose-Derived Mesenchymal Stem Cells Reduce Inflammatory and T Cell Responses and Induce Regulatory T Cells in Vitro in Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 69, 241-248. https://doi.org/10.1136/ard.2008.101881
|
[9]
|
Kean, T.J., Lin, P., Caplan, A.I. and Dennis, J.E. (2013) MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation. Stem Cells International, 2013, Article ID: 732742. https://doi.org/10.1155/2013/732742
|
[10]
|
Kim, N. and Cho, S.G. (2013) Clinical Applications of Mesenchymal Stem Cells. The Korean Journal of Internal Medicine, 28, 387-402. https://doi.org/10.3904/kjim.2013.28.4.387
|
[11]
|
Russell, K.A., Garbin, L.C., Wong, J.M. and Koch, T.G. (2020) Mesenchymal Stromal Cells as Potential Antimicrobial for Veterinary Use—A Comprehensive Review. Frontiers in Microbiology, 11, Article ID: 606404. https://doi.org/10.3389/fmicb.2020.606404
|
[12]
|
Battah, B. (2021) Emerging of Bacterial Resistance: An Ongoing Threat during and after the Syrian Crisis. The Journal of Infection in Developing Countries, 15, 179-184.
|
[13]
|
Ventola, C.L. (2012) The Nanomedicine Revolution: Part 1: Emerging Concepts. P & T: A Peer-Reviewed Journal for Formulary Management, 37, 512-525.
|
[14]
|
Johnson, V., Webb, T., Norman, A., Coy, J., Kurihara, J., Regan, D., et al. (2017) Activated Mesenchymal Stem Cells Interact with Antibiotics and Host Innate Immune Responses to Control Chronic Bacterial Infections. Scientific Reports, 7, Article No. 9575. https://doi.org/10.1038/s41598-017-08311-4
|
[15]
|
Bjarnsholt, T. (2013) The Role of Bacterial Biofilms in Chronic Infections. APMIS Supplementum, No. 136, 1-51.
|
[16]
|
Fatima, S., Kamble, S.S., Dwivedi, V.P., Bhattacharya, D., Kumar, S., Ranganathan, A., et al. (2020) Mycobacterium Tuberculosis Programs Mesenchymal Stem Cells to Establish Dormancy and Persistence. Journal of Clinical Investigation, 130, 655-661.
|
[17]
|
Ren, Z.X., Zheng, X.E., Yang, H.M., Zhang, Q., Liu, X.H., Zhang, X.L., et al. (2019) Human Umbilical-Cord Mesenchymal Stem Cells Inhibit Bacterial Growth and Alleviate Antibiotic Resistance in Neonatal Imipenem-Resistant Pseudomonas aeruginosa Infection. Innate Immunity, 26, 215-221. https://doi.org/10.1177/1753425919883932
|
[18]
|
Bernardo, M.E. and Fibbe, W.E. (2013) Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation. Cell Stem Cell, 13, 392-402. https://doi.org/10.1016/j.stem.2013.09.006
|
[19]
|
Waterman, R.S., Tomchuck, S.L., Henkle, S.L. and Betancourt, A.M. (2010) A New Mesenchymal Stem Cell (MSC) Paradigm: Polarization into a Pro-Inflammatory MSC1 or an Immunosuppressive MSC2 Phenotype. PLoS ONE, 5, e10088. https://doi.org/10.1371/journal.pone.0010088
|
[20]
|
Terness, P., Bauer, T.M., Rose, L., Dufter, C., Watzlik, A., Simon, H., et al. (2002) Inhibition of Allogeneic T Cell Proliferation by Indoleamine 2,3-Dioxygenase—Expressing Dendritic Cells: Mediation of Suppression by Tryptophan Metabolites. Journal of Experimental Medicine, 196, 447-457. https://doi.org/10.1084/jem.20020052
|
[21]
|
Raffaghello, L., Bianchi, G., Bertolotto, M., Montecucco, F., Busca, A., Dallegri, F., et al. (2008) Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the Bone Marrow Niche. Stem Cells, 26, 151-162. https://doi.org/10.1634/stemcells.2007-0416
|
[22]
|
Hirano, T., Ishihara, K. and Hibi, M. (2000) Roles of STAT3 in Mediating the Cell Growth, Differentiation and Survival Signals Relayed through the IL-6 Family of Cytokine Receptors. Oncogene, 19, 2548-2556. https://doi.org/10.1038/sj.onc.1203551
|
[23]
|
Le Blanc, K. and Mougiakakos, D. (2012) Multipotent Mesenchymal Stromal Cells and the Innate Immune System. Nature Reviews Immunology, 12, 383-396. https://doi.org/10.1038/nri3209
|
[24]
|
Su, W., Wan, Q., Huang, J., Han, L., Chen, X., Chen, G., et al. (2015) Culture Medium from TNF-Alpha-Stimulated Mesenchymal Stem Cells Attenuates Allergic Conjunctivitis through Multiple Antiallergic Mechanisms. Journal of Allergy and Clinical Immunology, 136, 423-432.E8. https://doi.org/10.1016/j.jaci.2014.12.1926
|
[25]
|
Brown, J.M., Nemeth, K., Kushnir-Sukhov, N.M., Metcalfe, D.D. and Mezey, E. (2011) Bone Marrow Stromal Cells Inhibit Mast Cell Function via a COX2-Dependent Mechanism. Clinical & Experimental Allergy, 41, 526-534. https://doi.org/10.1111/j.1365-2222.2010.03685.x
|
[26]
|
Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E. and Ringden, O. (2003) HLA Expression and Immunologic Properties of Differentiated and Undifferentiated Mesenchymal Stem Cells. Experimental Hematology, 31, 890-896. https://doi.org/10.1016/S0301-472X(03)00110-3
|
[27]
|
Spaggiari, G.M., Capobianco, A., Becchetti, S., Mingari, M.C. and Moretta, L. (2006) Mesenchymal Stem Cell-Natural Killer Cell Interactions: Evidence that Activated NK Cells Are Capable of Killing MSCs, Whereas MSCs Can Inhibit IL-2-Induced NK-Cell Proliferation. Blood, 107, 1484-1490. https://doi.org/10.1182/blood-2005-07-2775
|
[28]
|
Jiang, W. and Xu, J.Y. (2019) Immune Modulation by Mesenchymal Stem Cells. Cell Proliferation, 53, e12712. https://doi.org/10.1111/cpr.12712
|
[29]
|
Dubois, B., Bridon, J.M., Fayette, J., Barthelemy, C., Banchereau, J., Caux, C., et al. (1999) Dendritic Cells Directly Modulate B cell Growth and Differentiation. Journal of Leukocyte Biology, 66, 224-230. https://doi.org/10.1002/jlb.66.2.224
|
[30]
|
Gerosa, F., Baldani-Guerra, B., Nisii, C., Marchesini, V., Carra, G. and Trinchieri, G. (2002) Reciprocal Activating Interaction between Natural Killer Cells and Dendritic Cells. Journal of Experimental Medicine, 195, 327-333. https://doi.org/10.1084/jem.20010938
|
[31]
|
Yen, B.L., Yen, M.L., Hsu, P.J., Liu, K.J., Wang, C.J., Bai, C.H., et al. (2013) Multipotent Human Mesenchymal Stromal Cells Mediate Expansion of Myeloid-Derived Suppressor Cells via Hepatocyte Growth Factor/c-Met and STAT3. Stem Cells Reports, 1, 51-139. https://doi.org/10.1016/j.stemcr.2013.06.006
|
[32]
|
Kim, J. and Hematti, P. (2009) Mesenchymal Stem Cell-Educated Macrophages: A Novel Type of Alternatively Activated Macrophages. Experimental Hematology, 37, 1445-1453. https://doi.org/10.1016/j.exphem.2009.09.004
|
[33]
|
Auffray, C., Sieweke, M.H. and Geissmann, F. (2009) Blood Monocytes: Development, Heterogeneity, and Relationship with Dendritic Cells. Annual Review of Immunology, 27, 669-692. https://doi.org/10.1146/annurev.immunol.021908.132557
|
[34]
|
Chen, L.W., Tredget, E.E., Wu, P.Y.G. and Wu, Y.J. (2008) Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS ONE, 3, e1886. https://doi.org/10.1371/journal.pone.0001886
|
[35]
|
Chen, P.M., Liu, K.J., Hsu, P.J., We, C.F., Bai, C.H., Ho, L.J., et al. (2014) Induction of Immunomodulatory Monocytes by Human Mesenchymal Stem Cell-Derived Hepatocyte Growth Factor through ERK1/2. Journal of Leukocyte Biology, 96, 295-303. https://doi.org/10.1189/jlb.3A0513-242R
|
[36]
|
Ylostalo, J.H., Bartosh, T.J., Coble, K. and Prockop, D.J. (2012) Human Mesenchymal Stem/Stromal Cells Cultured as Spheroids Are Self-Activated to Produce Prostaglandin E2 that Directs Stimulated Macrophages into an Anti-Inflammatory Phenotype. Stem Cells, 30, 2283-2296. https://doi.org/10.1002/stem.1191
|
[37]
|
Braza, F., Dirou, S., Forest, V., Sauzeau, V., Hassoun, D., Chesne, J., et al. (2016) Mesenchymal Stem Cells Induce Suppressive Macrophages through Phagocytosis in a Mouse Model of Asthma. Stem Cells, 34, 1836-1845. https://doi.org/10.1002/stem.2344
|
[38]
|
Hall, S.R.R., Tsoyi, K., Ith, B., Padera, R.F., Lederer, J.A., Wang, Z.H., et al. (2012) Mesenchymal Stromal Cells Improve Survival during Sepsis in the Absence of Heme Oxygenase-1: The Importance of Neutrophils. Stem Cells, 31, 397-407. https://doi.org/10.1002/stem.1270
|
[39]
|
Krasnodembskaya, A., Song, Y.L., Fang, X.H., Gupta, N., Serikov, V., et al. (2010) Antibacterial Effect of Human Mesenchymal Stem Cells Is Mediated in Part from Secretion of the Antimicrobial Peptide LL-37. Stem Cells, 28, 2229-2238. https://doi.org/10.1002/stem.544
|
[40]
|
Sunderkotter, C., Nikolic, T., Dillon, M.J., van Rooijen, N., Stehling, M., Drevets, D.A., et al. (2004) Subpopulations of Mouse Blood Monocytes Differ in Maturation Stage and Inflammatory Response. The Journal of Immunology, 172, 4410-4417. https://doi.org/10.4049/jimmunol.172.7.4410
|
[41]
|
Powers, J.H. (2004) Antimicrobial Drug Development—The Past, the Present, and the Future. Clinical Microbiology and Infection, 10, 23-31. https://doi.org/10.1111/j.1465-0691.2004.1007.x
|
[42]
|
Kumar, M., Sarma, D.K., Shubham, S., Kumawat, M., Verma, V., Nina, P.B., et al. (2021) Futuristic Non-Antibiotic Therapies to Combat Antibiotic Resistance: A Review. Frontiers in Microbiology, 12, Article ID: 609459. https://doi.org/10.3389/fmicb.2021.609459
|
[43]
|
Alcayaga-Miranda, F., Cuenca, J. and Khoury, M. (2017) Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies. Frontiers in Immunology, 8, Article No. 339. https://doi.org/10.3389/fimmu.2017.00339
|
[44]
|
Javaregowda, P.K., Yoon, J.W. and Jang, G. (2013) Roles of Mesenchymal Stem Cells (MSCs) in Bacterial Diseases. Journal of Biomedical Research, 14, 184-194.
|
[45]
|
Aggarwal, S. and Pittenger, M.F. (2005) Human Mesenchymal Stem Cells Modulate Allogeneic Immune Cell Responses. Blood, 105, 1815-1822. https://doi.org/10.1182/blood-2004-04-1559
|
[46]
|
Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. (2006) Role for Interferon-Gamma in the Immunomodulatory Activity of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells, 24, 386-398. https://doi.org/10.1634/stemcells.2005-0008
|
[47]
|
Nemeth, K., Leelahavanichkul, A., Yuen, P.S., Mayer, B., Parmelee, A., Doi, K., et al. (2009) Bone Marrow Stromal Cells Attenuate Sepsis via Prostaglandin E(2)-Dependent Reprogramming of Host Macrophages to Increase Their Interleukin-10 Production. Nature Medicine, 15, 42-49.
|
[48]
|
Gonzalez-Rey, E., Anderson, P., Gonzalez, M.A., Rico, L., Buscher, D. and Delgado, M. (2009) Human Adult Stem Cells Derived from Adipose Tissue Protect against Experimental Colitis and Sepsis. Gut, 58, 929-939. https://doi.org/10.1136/gut.2008.168534
|
[49]
|
Gupta, N., Krasnodembskaya, A., Kapetanaki, M., Mouded, M., Tan, X., Serikov, V., et al. (2012) Mesenchymal Stem Cells Enhance Survival and Bacterial Clearance in Murine Escherichia coli Pneumonia. Thorax, 67, 533-539. https://doi.org/10.1136/thoraxjnl-2011-201176
|
[50]
|
Krasnodembskaya, A., Samarani, G., Song, Y.L., Zhuo, H.J., Su, X., Lee, J.W., et al (2012) Human Mesenchymal Stem Cells Reduce Mortality and Bacteremia in Gram-Negative Sepsis in Mice in Part by Enhancing the Phagocytic Activity of Blood Monocytes. American Journal of Physiology-Lung Cellular and Molecular Physiology, 302, L1003-L1013. https://doi.org/10.1152/ajplung.00180.2011
|
[51]
|
Chow, L., Johnson, V., Impastato, R., Coy, J., Strumpf, A. and Dow, S. (2020) Antibacterial Activity of Human Mesenchymal Stem Cells Mediated Directly by Constitutively Secreted Factors and Indirectly by Activation of Innate Immune Effector Cells. Stem Cells Translational Medicine, 9, 235-249. https://doi.org/10.1002/sctm.19-0092
|
[52]
|
Yagi, H., Chen, A.F., Hirsch, D., Rothenberg, A.C., Tan, J., Alexander, P.G., et al. (2020) Antimicrobial Activity of Mesenchymal Stem Cells against Staphylococcus aureus. Stem Cell Research & Therapy, 11, Article No. 293. https://doi.org/10.1186/s13287-020-01807-3
|
[53]
|
Scherr, T.D., Hanke, M.L., Huang, O., James, D.B., Horswill, A.R., Bayles, K.W., et al. (2015) Staphylococcus aureus Biofilms Induce Macrophage Dysfunction through Leukocidin AB and Alpha-Toxin. mBio, 6, e01021-15.
|
[54]
|
Yuan, Y., Lin, S.Y., Guo, N., Zhao, C.C., Shen, S.X., Bu, X.J., et al. (2014) Marrow Mesenchymal Stromal Cells Reduce Methicillin-Resistant Staphylococcus aureus Infection in Rat Models. Cytotherapy, 16, 56-63. https://doi.org/10.1016/j.jcyt.2013.06.002
|
[55]
|
Saberpour, M., Bakhshi, B. and Najar-Peerayeh, S. (2020) Evaluation of the Antimicrobial and Antibiofilm Effect of Chitosan Nanoparticles as Carrier for Supernatant of Mesenchymal Stem Cells on Multidrug-Resistant Vibrio cholerae. Infection and Drug Resistance, 13, 2251-2260.
|
[56]
|
Sutton, M.T., Fletcher, D., Ghosh, S.K., Weinberg, A., Van, H.R., Kaur, S., et al. (2016) Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment. Stem Cells International, 2016, Article ID: 5303048. https://doi.org/10.1155/2016/5303048
|
[57]
|
Hackstein, H., Lippitsch, A., Krug, P., Schevtschenko, I., Kranz, S., Hecker, M., et al. (2015) Prospectively Defined Murine Mesenchymal Stem Cells Inhibit Klebsiella pneumoniae-Induced Acute Lung Injury and Improve Pneumonia Survival. Respiratory Research, 16, Article No. 123. https://doi.org/10.1186/s12931-015-0288-1
|
[58]
|
Perlee, D., de Vos, A.F., Scicluna, B.P., Mancheno, P., de la Rosa, O., Dalemans, W., et al. (2019) Human Adipose-Derived Mesenchymal Stem Cells Modify Lung Immunity and Improve Antibacterial Defense in Pneumosepsis Caused by Klebsiella pneumoniae. Stem Cells Translational Medicine, 8, 785-796. https://doi.org/10.1002/sctm.18-0260
|
[59]
|
Li, L.L., Zhu, Y.G., Jia, X.M., Liu, D. and Qu, J.M. (2021) Adipose-Derived Mesenchymal Stem Cells Ameliorating Pseudomonas aeruginosa-Induced Acute Lung Infection via Inhibition of NLRC4 Inflammasome. Frontiers in Cellular and Infection Microbiology, 10, Article ID: 581535. https://doi.org/10.3389/fcimb.2020.581535
|
[60]
|
Caplan, A.I. and Dennis, J.E. (2006) Mesenchymal Stem Cells as Trophic Mediators. Journal of Cellular Biochemistry, 98, 1076-1084.
|
[61]
|
Jordan, N. and D’Cruz, D. (2016) Current and Emerging Treatment Options in the Management of Lupus. ImmunoTargets and Therapy, 5, 9-20.
|
[62]
|
Stankiewicz, J.M., Kolb, H., Karni, A. and Weiner, H.L. (2013) Role of Immunosuppressive Therapy for the Treatment of Multiple Sclerosis. Neurotherapeutics, 10, 77-88. https://doi.org/10.1007/s13311-012-0172-3
|
[63]
|
Hughes, E., Scurr, M., Campbell, E., Jones, E., Godkin, A. and Gallimore, A. (2018) T-Cell Modulation by Cyclophosphamide for tumour therapy. Immunology, 154, 62-68.
|
[64]
|
Li, W.C., Chen, W.W., Huang, S.S., Tang, X.J., Yao, G.H. and Sun, L.Y. (2020) Mesenchymal Stem Cells Enhance Pulmonary Antimicrobial Immunity and Prevent Following Bacterial Infection. Stem Cells International, 2020, Article ID: 3169469. https://doi.org/10.1155/2020/3169469
|
[65]
|
Khan, F.N., Zaidi, K.U. and Thawani, V. (2017) Stem Cell Therapy: An Adjunct in the Treatment of mdr Tuberculosis. Journal of Stem Cell Research & Therapeutics, 3, 259-261. https://doi.org/10.15406/jsrt.2017.03.00099
|
[66]
|
Palucci, I. and Delogu, G. (2018) Host Directed Therapies for Tuberculosis: Futures Strategies for an Ancient Disease. Chemotherapy, 63, 172-180. https://doi.org/10.1159/000490478
|
[67]
|
Reyes, N., Bettin, A., Reyes, I. and Geliebter, J. (2015) Microarray Analysis of the in Vitro Granulomatous Response to Mycobacterium tuberculosis H37Ra. Colombia Médica, 46, 26-32. https://doi.org/10.25100/cm.v46i1.1570
|
[68]
|
Raghuvanshi, S., Sharma, P., Singh, S., Van, K.L. and Das, G. (2010) Mycobacterium tuberculosis Evades Host Immunity by Recruiting Mesenchymal Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 21653-21658. https://doi.org/10.1073/pnas.1007967107
|
[69]
|
Garhyan, J., Bhuyan, S., Pulu, I., Kalita, D., Das, B. and Bhatnagar, R. (2015) Preclinical and Clinical Evidence of Mycobacterium tuberculosis Persistence in the Hypoxic Niche of Bone Marrow Mesenchymal Stem Cells after Therapy. The American Journal of Pathology, 185, 1924-1934. https://doi.org/10.1016/j.ajpath.2015.03.028
|
[70]
|
Khan, A., Mann, L., Papanna, R., Lyu, M.A., Singh, C.R., Olson, S., et al. (2017) Mesenchymal Stem Cells Internalize Mycobacterium tuberculosis through Scavenger Receptors and Restrict Bacterial Growth through Autophagy. Scientific Reports, 7, Article No. 15010. https://doi.org/10.1038/s41598-017-15290-z
|
[71]
|
Vasandan, A.B., Jahnavi, S., Shashank, C., Prasad, P., Kumar, A. and Prasanna, S.J. (2016) Human Mesenchymal Stem Cells Program Macrophage Plasticity by Altering Their Metabolic Status via a PGE2-Dependent Mechanism. Scientific Reports, 6, Article No. 38308. https://doi.org/10.1038/srep38308
|
[72]
|
van der Laan, L.J., Dopp, E.A., Haworth, R., Pikkarainen, T., Kangas, M., Elomaa, O., et al. (1999) Regulation and Functional Involvement of Macrophage Scavenger Receptor MARCO in Clearance of Bacteria in Vivo. The Journal of Immunology, 162, 939-947.
|
[73]
|
Gengenbacher, M. and Kaufmann, S.H. (2012) Mycobacterium tuberculosis: Success through Dormancy. FEMS Microbiology Reviews, 36, 514-532. https://doi.org/10.1111/j.1574-6976.2012.00331.x
|
[74]
|
Russell, D.G., Cardona, P.J., Kim, M.J., Allain, S. and Altare, F. (2009) Foamy Macrophages and the Progression of the Human Tuberculosis Granuloma. Nature Immunology, 10, 943-948. https://doi.org/10.1038/ni.1781
|
[75]
|
Skrahin, A., Ahmed, R.K., Ferrara, G., Rane, L., Poiret, T., Isaikina, Y., et al. (2014) Autologous Mesenchymal Stromal Cell Infusion as Adjunct Treatment in Patients with Multidrug and Extensively Drug-Resistant Tuberculosis: An Open-Label Phase 1 Safety Trial. The Lancet Respiratory Medicine, 2, 108-122. https://doi.org/10.1016/S2213-2600(13)70234-0
|
[76]
|
Rocha, J.L.M., de Oliveira, W.C.F., Noronha, N.C., Dos Santos, N.C.D. and Covas, D.T. (2021) Picanco-Castro V, et al. Mesenchymal Stromal Cells in Viral Infections: Implications for COVID-19. Stem Cell Reviews and Reports, 17, 71-93. https://doi.org/10.1007/s12015-020-10032-7
|
[77]
|
Kane, M., Zang, T.M., Rihn, S.J., Zhang, .F, Kueck, T., Alim, M., et al. (2016) Identification of Interferon-Stimulated Genes with Antiretroviral Activity. Cell Host & Microbe, 20, 392-405. https://doi.org/10.1016/j.chom.2016.08.005
|
[78]
|
Qian, X.J., Xu, C., Fang, S., Zhao, P., Wang, Y., Liu, H.Q., et al. (2021) Exosomal MicroRNAs Derived From Umbilical Mesenchymal Stem Cells Inhibit Hepatitis C Virus Infection. Stem Cells Translational Medicine, 5, 1190-1203. https://doi.org/10.5966/sctm.2015-0348
|
[79]
|
Khatri, M., Richardson, L.A. and Meulia, T. (2018) Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Influenza Virus-Induced Acute Lung Injury in a Pig Model. Stem Cell Research & Therapy, 9, Article No. 17. https://doi.org/10.1186/s13287-018-0774-8
|
[80]
|
Hung, C.F., Wilson, C.L. and Schnapp, L.M. (2019) Pericytes in the Lung. In: Birbrair, A., Ed., Advances in Experimental Medicine and Biology, Springer, Cham, 41-58. https://doi.org/10.1007/978-3-030-11093-2_3
|
[81]
|
Rolandsson, E.S., Ahrman, E., Palani, A., Hallgren, O., Bjermer, L., Malmstrom, A., et al. (2017) Quantitative Proteomic Characterization of Lung-MSC and Bone Marrow-MSC Using DIA-Mass Spectrometry. Scientific Reports, 7, Article No. 9316.
|
[82]
|
Bulut, O. and Gursel, I. (2020) Mesenchymal Stem Cell Derived Extracellular Vesicles: Promising Immunomodulators against Autoimmune, Autoinflammatory Disorders and SARS-CoV-2 Infection. Turkish Journal of Biology, 44, 273-282.
https://doi.org/10.1038/s41598-017-09127-y
|
[83]
|
Atluri, S., Manchikanti, L. and Hirsch, J.A. (2020) Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain Physician, 23, E71-E83. https://doi.org/10.36076/ppj.2020/23/E71
|
[84]
|
Leng, Z., Zhu, R., Hou, W., Feng, Y., Yang, Y., Han, Q., et al. (2020) Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging and Disease, 11, 216-228. https://doi.org/10.14336/AD.2020.0228
|
[85]
|
Zhang, Y., Ding, J., Ren, S., Wang, W., Yang, Y., Li, S., et al. (2020) Intravenous Infusion of Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells as a Potential Treatment for Patients with COVID-19 Pneumonia. Stem Cell Research & Therapy, 11, Article No. 207. https://doi.org/10.1186/s13287-020-01725-4
|
[86]
|
Zhou, Y., Chen, Y.Q., Wang, S.Y., Qin, F.Y. and Wang, L.Y. (2019) MSCs Helped Reduce Scarring in the Cornea after Fungal Infection When Combined with Anti-Fungal Treatment. BMC Ophthalmology, 19, Article No. 226. https://doi.org/10.1186/s12886-019-1235-6
|
[87]
|
Lopez-Garcia, B., Lee, P.H., Yamasaki, K. and Gallo, R.L. (2005) Anti-Fungal Activity of Cathelicidins and Their Potential Role in Candida albicans Skin Infection. Journal of Investigative Dermatology, 125, 108-115. https://doi.org/10.1111/j.0022-202X.2005.23713.x
|
[88]
|
Yang, R.L., Liu, Y., Kelk, P., Qu, C.Y., Akiyama, K., Chen, C., et al. (2013) A Subset of IL-17+ Mesenchymal Stem Cells Possesses Anti-Candida albicans Effect. Cell Research, 23, 107-121. https://doi.org/10.1038/cr.2012.179
|
[89]
|
Schmidt, S., Tramsen, L., Schneider, A., Schubert, R., Balan, A., Degistirici, O., et al. (2017) Impact of Human Mesenchymal Stromal Cells on Antifungal Host Response against Aspergillus fumigatus. Oncotarget, 8, 95495-95503. https://doi.org/10.18632/oncotarget.20753
|