[1]
|
Liang, S., et al. (2018) Gut-Brain Psychology: Rethinking Psychology from the Microbiota-Gut-Brain Axis. Frontiers in Integrative Neuroscience, 12, Article No. 33.
https://doi.org/10.3389/fnint.2018.00033
|
[2]
|
Ma, Q.Q., et al. (2019) Impact of Microbiota on Central Nervous System and Neurological Diseases: The Gut Brain Axis. Journal of Neuroinflammation, 16, 53.
https://doi.org/10.1186/s12974-019-1434-3
|
[3]
|
Carabotti, M., Scirocco, A., Maselli, M.A. and Severi, C. (2015) The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Annals of Gastroenterology, 28, 203-209.
|
[4]
|
Yoko, A.M., Dana, B., Anumantha, K., Hyun, J.K., Auriel, A.W., Albert, J., Karin, A. and Jonathan, P.M. (2019) The Gut Brain Axis in Neurodegenerative Diseases and Relevance of the Canine Model: A Review. Frontiers in Aging Neuroscience, 11, Article No. 130. https://doi.org/10.3389/fnagi.2019.00130
|
[5]
|
Ebere, S.O., Gerard, C., Fergus, S., Timothy, G.D., John, F.C. and Olivia, F.O. (2015) Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biological Psychiatry, 78, 7-9. https://doi.org/10.1016/j.biopsych.2014.12.023
|
[6]
|
Emeran, A.M., Kirsten, T. and Arpana, G. (2020) Gut/Brain Axis and the Microbiota. Journal of Clinical Investigation, 125, 926-938.
https://doi.org/10.1172/JCI76304
|
[7]
|
Ismael, P.G. and Francisco, J.P. (2020) Measuring the Brain-Gut Axis in Psychological Sciences: A Necessary Challenge. Frontiers in Integrative Neuroscience, 13, Article No. 73. https://doi.org/10.3389/fnint.2019.00073
|
[8]
|
Corinne, B., Camille, M.G., Jean-Pierre, T., Philip, M., Arthur, L. and Paul, W. (2020) The Microbiome Gut-Brain-Axis in Acute and Chronic Brain Disease. Current Opinion in Neurobiology, 61, 1-9. https://doi.org/10.1016/j.conb.2019.11.009
|
[9]
|
Wan, Y., et al. (2019) Effects of Dietry Fat on Gut Microbiota and Faecal Metabolites, and Their Relationship with Cardiometabolic Risk Factors: A 6 Month Randomized Controlled-Feeding Trial. Gut, 68, 1417-1429.
https://doi.org/10.1136/gutjnl-2018-317609
|
[10]
|
Su, J.K., Sung-Eun, K., A-Reum, K., Saemyi, K., Mi-Young, P. and Mi-Kyung, S. (2019) Dietry Fat Intake and Age Modulate the Composition of the Gut Microbiota and Colonic Inflammation in C57BL/6J Mice. BMC Microbiology, 19, Article No. 193. https://doi.org/10.1186/s12866-019-1557-9
|
[11]
|
Francesco, A., Katerina, C., Jana, A. and Jakub, H. (2019) Antibiotics, Gut Microbiota, and Alzheimer’s Disease. Journal of Neuroinflammation, 16, 108.
https://doi.org/10.1186/s12974-019-1494-4
|
[12]
|
Murphy, E.A., Velazquez, K.T. and Herbert, K.M. (2015) Influence of High Fat Diet on Gut Microbiota: A Driving Force for Chronic Disease Risk. Current Opinion in Clinical Nutrition & Metabolic Care, 18, 515-520.
https://doi.org/10.1097/MCO.0000000000000209
|
[13]
|
Julia, A.L., Katrina, P.N. and Wambura, C.F. (2018) Why Do Mice Over-Eat? How High Fat Diet Alters the Regulation of Daily Caloric Intake in Mice. Obesity, 26, 1026-1033. https://doi.org/10.1002/oby.22195
|
[14]
|
Fawole, M.O. and Oso, B.A. (2004) Characterization of Bacteria: Laboratory Manual of Microbiology. 4th Edition, Spectrum Book Ltd., Ibadan, 24-33.
|
[15]
|
Cheesbrough, M. (2006) District Laboratory Practice in Tropical Countries. 2nd Edition, Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511543470
|
[16]
|
Donald, L. (2005) Triple Sugar Iron Agar Protocols. American Society for Microbiology, 1-7.
|
[17]
|
Hughes, R.N. (2004) The Value of Spontaneous Alternation Behaviour (SAB) as a Test of Retention in Pharmacological Investigations of Memory. Neuroscience and Biobehavioural Reviews, 28, 497-504.
https://doi.org/10.1016/j.neubiorev.2004.06.006
|
[18]
|
Abi, I., Magaji, R.A. and Magaji, M.G. (2015) Acute Administration of Methionine Affects Performance of Swiss Mice in Learning and Memory Paradigms. Nigerian Journal of Physiological Sciences, 30, 65-72.
|
[19]
|
Kraeuter, A.K., Guest, P.C. and Sarnyai, Z. (2019) The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods in Molecular Biology, 1916, 105-111. https://doi.org/10.1007/978-1-4939-8994-2_10
|
[20]
|
Elysse, M.K., Isaura, V.A.M., Sarah, G., Stuart, M.A. and Catherine, B.L. (2014) High-Fat-Diet-Induced Memory Impairment in Triple-Transgenic Alzheimer’s Disease (3xTgAD) Mice Is Independent of Changes in Amyloid and Tau Pathology. Neurobiology of Aging, 35, 1821-1832.
https://doi.org/10.1016/j.neurobiolaging.2014.02.010
|
[21]
|
Oliver, B., Lindsay, K.V., Jean, C.C.H., Nancy, E.R., Mohammed, H. and Kaja, F. (2020) High Fat Diet Worsens Alzheimer’s Disease-Related Behavioral Abnormalities and Neuropathology in APP/PS1 Mice, But Not by Synergistically Decreasing Cerebral Blood Flow. Scientific Reports, 10, Article No. 9884.
https://doi.org/10.1038/s41598-020-65908-y
|
[22]
|
Lisa, S.R., Olivia, G.J., Melissa, A.T., Abigail, E.S., Charly, A., Yannick, P., Sophie, B. and Kristen, L.Z. (2020) Role of Sex and High-Fat-Diet in Metabolic and Hypothalamic Disturbances in the 3xTG-AD Mouse Model of Alzheimer’s Disease. Journal of Neuroinflammation, 17, 285. https://doi.org/10.1186/s12974-020-01956-5
|
[23]
|
Colleen, P.E., Rollins, D.G., Vincent, K., Gabriel, A.D., Jürgenm, G.M. and Mallar, C. (2019) Contributions of a High-Fat Diet to Alzheimer’s Disease-Related Decline: A Longitudinal Behavioural and Structural Neuroimaging Study in Mouse Models. NeuroImage: Clinical, 21, Article ID: 101606.
https://doi.org/10.1016/j.nicl.2018.11.016
|
[24]
|
Külzow, N., Witte, A.V., Kerti, L., Grittner, U., Schuchardt, J.P., Hahn, A. and Flöel, A. (2016) Impact of Omega-3 Fatty Acid Supplementation on Memory Functions in Healthy Older Adults. Journal of Alzheimer’s Disease, 51, 713-725.
https://doi.org/10.3233/JAD-150886
|
[25]
|
Rajesh, N., William, G.F., Neale, S.M., Matthew, F.M. and Bita, M. (2012) Improved Working Memory But No Effect on Striatal Vesicular Monoamine Transporter Type 2 after Omega-3 Polyunsaturated Fatty Acid Supplementation. PLoS ONE, 7, e46832. https://doi.org/10.1371/journal.pone.0046832
|
[26]
|
Michael, A.P.B., Sebastian, F.G., Chandni, H., Yumeya, Y., Jocelyn, L.L.Y., Augustus, P.M.J., Hannah, R.W., Pawel, T., Ben, S., Oliver, D.H., Curran, V.H. and Tom, P.F. (2020) The Effects of Acute Cannabidiol on Cerebral Blood Flow and Its Relationship to Memory: An Arterial Spin Labelling Magnetic Resonance Imaging Study. Journal of Psychopharmacology, 34, 981-989.
https://doi.org/10.1177/0269881120936419
|
[27]
|
Scott, J.H. (2002) E. coli Bacteria Make Alzheimer’s-Linked Fibers.
https://www.sciencedaily.com/releases/2002/02/020201080207
|
[28]
|
Naoto, T., Giuseppe, P., Cortese, R.M., Barrientos, S.F. and Susan, L.P. (2018) Aging and an Immune Challenge Interact to Produce Prolonged, But Not Permanent Reductions in Hippocampal L-LTP and mBDNF in a Rodent Model with Features of Delirium. Eneuro, 9, 18.
|
[29]
|
Xinhua, Z., Boryana, S., Lee-Way, J., Charles, D. and Brett, P. (2016) Gram-Negative Bacterial Molecules Associate with Alzheimer Disease Pathology. Neurology, 87, 2324-2332. https://doi.org/10.1212/WNL.0000000000003391
|
[30]
|
Duthei,l, S., Ota, K.T., Wohleb, E.S., Rasmussen, K. and Duman, R.S. (2016) High-Fat Diet Induced Anxiety and Anhedonia: Impact on Brain Homeostasis and Inflammation. Neuropsychopharmacology, 41, 1874-1887.
https://doi.org/10.1038/npp.2015.357
|
[31]
|
Ana, P.S.D., Valter, T.B., Amanda, P.P., Lorenza, O.T.C., Iracema, S.A., Tania, M.V., Carla, C.C.S., Cláudia, M.P., Oller, N. and Lila, M.O. (2018) High-Fat Feeding Improves Anxiety-Type Behavior Induced by Ovariectomy in Rats. Frontiers in Neuroscience, 12, Article No. 557. https://doi.org/10.3389/fnins.2018.00738
|