[1]
|
Yousefi, A.M., Oudadesse, H., Akbarzadeh, R., Wers, E. and Lucas-Girot, A. (2014) Physical and Biological Characteristics of Nanohydroxyapatite and Bioactive Glasses Used for Bone Tissue Engineering. Nanotechnology Reviews, 3, 527-552. https://doi.org/10.1515/ntrev-2014-0013
|
[2]
|
Busquets, R. and Mbundi, L. (2017) Concepts of Nanotechnology. In: Busquets, R., Ed., Emerging Nanotechnologies in Food Science, Elsevier Inc., Amsterdam, 1-9. https://doi.org/10.1016/B978-0-323-42980-1.00001-7
|
[3]
|
Ramos, A.P., Cruz, M.A.E., Tovani, C.B. and Ciancaglini, P. (2017) Biomedical Applications of Nanotechnology. Biophysical Reviews, 9, 79-89. https://doi.org/10.1007/s12551-016-0246-2
|
[4]
|
Kiryczyński, H.G. and Łos, M.J. (2018) Biomaterials, Definition, Overview. In: Łos, M.J., Hudecki, A. and Wiecheć, E., Eds., Stem Cells and Biomaterials for Regenerative Medicine, Academic Press, Cambridge, 85-98. https://doi.org/10.1016/B978-0-12-812258-7.00007-1
|
[5]
|
Huang, J. and Best, S.M. (2007) Ceramic Biomaterials. In: Boccaccini, A.R. and Gough, J.E., Eds., Tissue Engineering Using Ceramics and Polymers, Woodhead Publishing, Sawston, 3-31. https://doi.org/10.1533/9781845693817.1.3
|
[6]
|
Saeed, K.K. and Khan, I. (2019) Nanoparticles: Properties, Applications and Toxicities. Arabian Journal of Chemistry, 12, 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
|
[7]
|
Yaqoob, S.B., Adnan, R., Rameez Khan, R.M. and Rashid, M. (2020) Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Frontiers in Chemistry, 8, Article No. 376. https://doi.org/10.3389/fchem.2020.00376
|
[8]
|
McNamara, K. and Tofail, S.A.M. (2017) Nanoparticles in Biomedical Applications. Advances in Physics: X, 2, 54-88. https://doi.org/10.1080/23746149.2016.1254570
|
[9]
|
Wurm, F.R. and Weiss, C.K. (2014) Nanoparticles from Renewable Polymers. Frontiers in Chemistry, 2, Article No. 49. https://doi.org/10.3389/fchem.2014.00049
|
[10]
|
Vasile, C. (2018) Polymeric Nanomaterials: Recent Developments, Properties and Medical Applications. Elsevier Inc., Amsterdam.
|
[11]
|
Mishra, R.K., Ha, S.K., Verma, K. and Tiwari, S.K. (2018) Recent Progress in Selected Bio-Nanomaterials and Their Engineering Applications: An Overview. Journal of Science: Advanced Materials and Devices, 3, 263-288. https://doi.org/10.1016/j.jsamd.2018.05.003
|
[12]
|
Ribas, R.G., Schatkoski, V.M., Montanheiro, T.L. do A., de Menezes, B.R.C., Stegemann, C., Leite, D.M.G. and Thim, G.P. (2019) Current Advances in Bone Tissue Engineering Concerning Ceramic and Bioglass Scaffolds: A Review. Ceramics International, 45, 21051-21061. https://doi.org/10.1016/j.ceramint.2019.07.096
|
[13]
|
Liu, X. and Sun, J. (2014) Potential Proinflammatory Effects of Hydroxyapatite Nanoparticles on Endothelial Cells in a Monocyte-Endothelial Cell Coculture Model. International Journal of Nanomedicine, 9, 1261-1273. https://doi.org/10.2147/IJN.S56298
|
[14]
|
Ferreira-Ermita, D.A.C., Valente, F.L., Carlo-Reis, E.C., Araújo, F.R., Ribeiro, I.M., Cintra, C.C.V. and Borges, A.P.B. (2020) Characterization and in Vivo Biocompatibility Analysis of Synthetic Hydroxyapatite Compounds Associated with Magnetite Nanoparticles for a Drug Delivery System in Osteomyelitis Treatment. Results in Materials, 5, Article ID: 100063. https://doi.org/10.1016/j.rinma.2020.100063
|
[15]
|
Lebre, F., Sridharan, R., Sawkins, M.J., Kelly, D.J., O’Brien, F.J. and Lavelle, E.C. (2017) The Shape and Size of Hydroxyapatite Particles Dictate Inflammatory Responses Following Implantation. Scientific Reports, 7, Article No. 2922. https://doi.org/10.1038/s41598-017-03086-0
|
[16]
|
Lee, J.-H., Parthiban, P., Jin, G.-Z., Knowles, J.C. and Kim, H.-W. (2021) Materials Roles for Promoting Angiogenesis in Tissue Regeneration. Progress in Materials Science, 117, Article ID: 100732. https://doi.org/10.1016/j.pmatsci.2020.100732
|
[17]
|
Kusumbe, A.P., Ramasamy, S.K. and Adams, R.H. (2014) Coupling of Angiogenesis and Osteogenesis by a Specific Vessel Subtype in Bone. Nature, 507, 323-328. https://doi.org/10.1038/nature13145
|
[18]
|
Okada, S., Ito, H., Nagai, A., Komotori, J. and Imai, H. (2010) Adhesion of Osteoblast-Like Cells on Nanostructured Hydroxyapatite. Acta Biomaterialia, 6, 591-597. https://doi.org/10.1016/j.actbio.2009.07.037
|
[19]
|
Wijerathne, H.M.C.S., Yan, D., Zeng, B., Xie, Y., Hu, H., Wickramaratne, M.N. and Han, Y. (2020) Effect of Nano-Hydroxyapatite on Protein Adsorption and Cell Adhesion of Poly (Lactic Acid)/Nano-Hydroxyapatite Composite Microspheres. SN Applied Sciences, 2, Article No. 722. https://doi.org/10.1007/s42452-020-2531-8
|
[20]
|
Malhotra, A. and Habibovic, P. (2016) Calcium Phosphates and Angiogenesis: Implications and Advances for Bone Regeneration. Trends in Biotechnology, 34, 983-992. https://doi.org/10.1016/j.tibtech.2016.07.005
|
[21]
|
Wang, R., Hu, H., Guo, J., Wang, Q., Cao, J., Wang, H., Li, G., Mao, J., Zou, X., Chen, D. and Tian, W. (2019) Nano-Hydroxyapatite Modulates Osteoblast Differentiation through Autophagy Induction via mTOR Signaling Pathway. Journal of Biomedical Nanotechnology, 15, 405-415. https://doi.org/10.1166/jbn.2019.2677
|
[22]
|
Shu, X., Liao, J., Wang, L., Shi, Q. and Xie, X. (2020) Osteogenic, Angiogenic, and Antibacterial Bioactive Nano-Hydroxyapatite Co-Synthesized Using γ-Polyglutamic Acid and Copper. ACS Biomaterials Science & Engineering, 6, 1920-1930. https://doi.org/10.1021/acsbiomaterials.0c00096
|
[23]
|
Gorojod, R.M., Alcon, S.P., Dittler, M.L., Gonzalez, M.C. and Kotler, M.L. (2019) Nanohydroxyapatite Exerts Cytotoxic Effects and Prevents Cellular Proliferation and Migration in Glioma Cells. Toxicological Sciences, 169, 34-42. https://doi.org/10.1093/toxsci/kfz019
|
[24]
|
Guo, G., Tian, A., Lan, X., Fu, C., Yan, Z. and Wang, C. (2019) Nano Hydroxyapatite Induces Glioma Cell Apoptosis by Suppressing NF-κB Signaling Pathway. Experimental and Therapeutic Medicine, 17, 4080-4088. https://doi.org/10.3892/etm.2019.7418
|
[25]
|
Zhang, S., Ma, X., Sha, D., Qian, J., Yuan, Y. and Liu, C. (2020) A Novel Strategy for Tumor Therapy: Targeted, PAA-Functionalized Nano-Hydroxyapatite Nanomedicine. Journal of Materials Chemistry B, 8, 9589-9600. https://doi.org/10.1039/D0TB01603A
|
[26]
|
Tay, C.Y., Fang, W., Setyawati, M.I., Chia, S.L., Tan, K.S., Hong, C.H.L. and Leong, D.T. (2014) Nano-Hydroxyapatite and Nano-Titanium Dioxide Exhibit Different Subcellular Distribution and Apoptotic Profile in Human Oral Epithelium. ACS Applied Materials & Interfaces, 6, 6248-6256. https://doi.org/10.1021/am501266a
|
[27]
|
Shi, X., Zhou, K., Huang, F., Zhang, J. and Wang, C. (2018) Endocytic Mechanisms and Osteoinductive Profile of Hydroxyapatite Nanoparticles in Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells. International Journal of Nanomedicine, 13, 1457-1470. https://doi.org/10.2147/IJN.S155814
|
[28]
|
Zheng, X., Wang, S., Wu, L. and Hou, X. (2018) Microwave-Assisted Facile Synthesis of Mono-Dispersed Ba/Ho Co-Doped Nanohydroxyapatite for Potential Application as Binary CT Imaging Contrast Agent. Microchemical Journal, 141, 330-336. https://doi.org/10.1016/j.microc.2018.05.044
|
[29]
|
Eskitoros-Togay,
Ş.M., Bulbul, Y.E. and Dilsiz, N. (2020) Combination of Nano-Hydroxyapatite and Curcumin in a Biopolymer Blend Matrix: Characteristics and Drug Release Performance of Fibrous Composite Material Systems. International Journal of Pharmaceutics, 590, Article ID: 119933. https://doi.org/10.1016/j.ijpharm.2020.119933
|
[30]
|
Cipreste, M.F., Mussel, W. da N., Batista da Silva, J., de Freitas Marques, M.B., Batista, R.J.C., Gastelois, P.L., Augusto de Almeida Macedo, W.A. de A. and de Sousa, E.M.B. (2020) A New Theranostic System for Bone Disorders: Functionalized Folate-MDP Hydroxyapatite Nanoparticles with Radiolabeled Copper-64. Materials Chemistry and Physics, 254, Article ID: 123265. https://doi.org/10.1016/j.matchemphys.2020.123265
|
[31]
|
Shi, X., Zhou, K., Huang, F. and Wang, C. (2017) Interaction of Hydroxyapatite Nanoparticles with Endothelial Cells: Internalization and Inhibition of Angiogenesis in Vitro through the PI3K/Akt Pathway. International Journal of Nanomedicine, 12, 5781-5795. https://doi.org/10.2147/IJN.S140179
|
[32]
|
Klimek, K., Belcarz, A., Pazik, R., Sobierajska, P., Han, T., Wiglusz, R.J. and Ginalska, G. (2016) “False” Cytotoxicity of Ions-Adsorbing Hydroxyapatite—Corrected Method of Cytotoxicity Evaluation for Ceramics of High Specific Surface Area. Materials Science and Engineering: C, 65, 70-79. https://doi.org/10.1016/j.msec.2016.03.105
|
[33]
|
Rao, C.-Y., Sun, X.-Y. and Ouyang, J.-M. (2019) Effects of Physical Properties of Nano-Sized Hydroxyapatite Crystals on Cellular Toxicity in Renal Epithelial Cells. Materials Science and Engineering: C, 103, Article ID: 109807. https://doi.org/10.1016/j.msec.2019.109807
|
[34]
|
Li, N., Wu, G., Yao, H., Tang, R., Gu, X. and Tu, C. (2019) Size Effect of Nano-Hydroxyapatite on Proliferation of Odontoblast-Like MDPC-23 Cells. Dental Materials Journal, 38, 534-539. https://doi.org/10.4012/dmj.2018-155
|
[35]
|
Zhang, H., Qing, F., Zhao, H., Fan, H., Liu, M. and Zhang, X. (2017) Cellular Internalization of Rod-Like Nano Hydroxyapatite Particles and Their Size and Dose-Dependent Effects on Pre-Osteoblasts. Journal of Materials Chemistry B, 5, 1205-1217. https://doi.org/10.1039/C6TB01401A
|
[36]
|
Shi, Y., van der Meel, R., Chen, X. and Lammers, T. (2020) The EPR Effect and Beyond: Strategies to Improve Tumor Targeting and Cancer Nanomedicine Treatment Efficacy. Theranostics, 10, 7921-7924. https://doi.org/10.7150/thno.49577
|
[37]
|
Cipreste, M.F., Gonzalez, I., Maria Da Mata Martins, T., Goes, A.M., Augusto De Almeida Macedo, W. and Barros De Sousa, E.M. (2016) Attaching Folic Acid on Hydroxyapatite Nanorod Surfaces: An Investigation of the HA-FA Interaction. RSC Advances, 6, 76390-76400. https://doi.org/10.1039/C6RA14068H
|
[38]
|
Narmani, A., Rezvani, M., Farhood, B., Darkhor, P., Mohammadnejad, J., Amini, B., et al. (2019) Folic Acid Functionalized Nanoparticles as Pharmaceutical Carriers in Drug Delivery Systems. Drug Development Research, 80, 404-424. https://doi.org/10.1002/ddr.21545
|
[39]
|
Chen, L., Mccrate, J.M., Lee, J.C.M. and Li, H. (2011) The Role of Surface Charge on the Uptake and Biocompatibility of Hydroxyapatite Nanoparticles with Osteoblast Cells. Nanotechnology, 22, Article ID: 105708. https://doi.org/10.1088/0957-4484/22/10/105708
|
[40]
|
Du, B., Liu, W., Deng, Y., Li, S., Liu, X., Gao, Y., Zhou, L. and Chen, J. (2015) Angiogenesis and Bone Regeneration of Porous Nano-Hydroxyapatite/Coralline Blocks Coated with rhVEGF165 in Critical-Size Alveolar Bone Defects in Vivo. International Journal of Nanomedicine, 10, 2555-2565. https://doi.org/10.2147/IJN.S78331
|
[41]
|
Priya, A., Senthilguru, K., Agarwal, T., Gautham Hari Narayana, S.N., Giri, S., Pramanik, K., Pal, K. and Banerjee, I. (2015) Nickel Doped Nanohydroxyapatite: Vascular Endothelial Growth Factor Inducing Biomaterial for Bone Tissue Engineering. RSC Advances, 5, 72515-72528. https://doi.org/10.1039/C5RA09560C
|
[42]
|
Lowe, B., Hardy, J.G. and Walsh, L.J. (2020) Optimizing Nanohydroxyapatite Nanocomposites for Bone Tissue Engineering. ACS Omega, 5, 1-9. https://doi.org/10.1021/acsomega.9b02917
|
[43]
|
Matsunaga, T., Iyoda, T. and Fukai, F. (2014) Adhesion-Dependent Cell Regulation via Adhesion Molecule, Integrin. In: Ohshima, H. and Makino, K., Eds., Colloid and Interface Science in Pharmaceutical Research and Development, Elsevier, Amsterdam, 243-260. https://doi.org/10.1016/B978-0-444-62614-1.00012-0
|
[44]
|
Fu, C., Yang, X., Tan, S. and Song, L. (2017) Enhancing Cell Proliferation and Osteogenic Differentiation of MC3T3-E1 Pre-Osteoblasts by BMP-2 Delivery in Graphene Oxide-Incorporated PLGA/HA Biodegradable Microcarriers. Scientific Reports, 7, Article No. 12549. https://doi.org/10.1038/s41598-017-12935-x
|
[45]
|
Hołysz, S.L. and Chibowski, E. (2017) Synthesis of Hydroxyapatite for Biomedical Applications. Advances in Colloid and Interface Science, 249, 321-330. https://doi.org/10.1016/j.cis.2017.04.007
|
[46]
|
Kucharska, M., Walenko, K., Lewandowska-Szumieł, M., Brynk, T., Jaroszewicz, J. and Ciach, T. (2015) Chitosan and Composite Microsphere-Based Scaffold for Bone Tissue Engineering: Evaluation of Tricalcium Phosphate Content Influence on Physical and Biological Properties. Journal of Materials Science: Materials in Medicine, 26, Article No. 143. https://doi.org/10.1007/s10856-015-5464-9
|
[47]
|
Lin, K., Xia, L., Gan, J., Zhang, Z., Chen, H., Jiang, X. and Chang, J. (2013) Tailoring the Nanostructured Surfaces of Hydroxyapatite Bioceramics to Promote Protein Adsorption, Osteoblast Growth, and Osteogenic Differentiation. ACS Applied Materials & Interfaces, 5, 8008-8017. https://doi.org/10.1021/am402089w
|
[48]
|
Yin, M., Yin, Y., Han, Y., Dai, H. and Li, S. (2014) Effects of Uptake of Hydroxyapatite Nanoparticles into Hepatoma Cells on Cell Adhesion and Proliferation. Journal of Nanomaterials, 2014, Article ID: 731897. https://doi.org/10.1155/2014/731897
|
[49]
|
Wang, X., Li, X., Ito, A., Watanabe, Y., Sogo, Y., Hirose, M., Ohno, T. and Tsuji, N.M. (2016) Rod-Shaped and Substituted Hydroxyapatite Nanoparticles Stimulating Type 1 and 2 Cytokine Secretion. Colloids Surfaces B: Biointerfaces, 139, 10-16. https://doi.org/10.1016/j.colsurfb.2015.12.004
|
[50]
|
Costa, D.O., Prowse, P.D.H., Chrones, T., Sims, S.M., Hamilton, D.W., Rizkalla, A.S. and Dixon, S.J. (2013) The Differential Regulation of Osteoblast and Osteoclast Activity Bysurface Topography of Hydroxyapatite Coatings. Biomaterials, 34, 7215-7226. https://doi.org/10.1016/j.biomaterials.2013.06.014
|
[51]
|
Siebers, M.C., Ter Brugge, P.J., Walboomers, X.F. and Jansen, J.A. (2005) Integrins as Linker Proteins between Osteoblasts and Bone Replacing Materials. A Critical Review. Biomaterials, 26, 137-146. https://doi.org/10.1016/j.biomaterials.2004.02.021
|
[52]
|
Brückner, B.R. and Janshoff, A. (2018) Importance of Integrity of Cell-Cell Junctions for the Mechanics of Confluent MDCK II Cells. Scientific Reports, 8, Article No. 14117. https://doi.org/10.1038/s41598-018-32421-2
|
[53]
|
Borsig, L. and Läubli, H. (2018) Cell Adhesion during Tumorigenesis and Metastasis. In: Boffetta, P. and Hainaut, P., Eds., Encyclopedia of Cancer, Academic Press, Cambridge, 307-314. https://doi.org/10.1016/B978-0-12-801238-3.64991-7
|
[54]
|
Sethu, S.N., Namashivayam, S., Devendran, S., Nagarajan, S., Tsai, W.B., Narashiman, S., Ramachandran, M. and Ambigapathi, M. (2017) Nanoceramics on Osteoblast Proliferation and Differentiation in Bone Tissue Engineering. International Journal of Biological Macromolecules, 98, 67-74. https://doi.org/10.1016/j.ijbiomac.2017.01.089
|
[55]
|
Yang. X., Li, Y., Liu, X., Zhang, R. and Feng, Q. (2018) In Vitro Uptake of Hydroxyapatite Nanoparticles and Their Effect on Osteogenic Differentiation of Human mesenchymal Stem Cells. Stem Cells International, 2018, Article ID: 2036176. https://doi.org/10.1155/2018/2036176
|
[56]
|
Wang, Y., Sun, N., Zhang, Y., Zhao, B., Zhang, Z., Zhou, X., Zhou, Y., Liu, H., Zhang, Y. and Liu, J. (2019) Enhanced Osteogenic Proliferation and Differentiation of Human Adipose-Derived Stem Cells on a Porous n-HA/PGS-M Composite Scaffold. Scientific Reports, 9, Article No. 7960. https://doi.org/10.1038/s41598-019-44478-8
|
[57]
|
Han, Y., Li, S., Cao, X., Yuan, L., Wang, Y., Yin, Y., Qiu, T., Dai, H. and Wang, X., (2014) Different Inhibitory Effect and Mechanism of Hydroxyapatite Nanoparticles on Normal Cells and Cancer Cells in Vitro and in Vivo. Scientific Reports, 4, Article No. 7134. https://doi.org/10.1038/srep07134
|
[58]
|
Lee, S.I., Lee, E.S., El-Fiqi, A., Lee, S.Y., Kim, E.C. and Kim, H.W. (2016) Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements through Integrin and Vegf Signaling Pathways. Journal of Biomedical Nanotechnology, 12, 1048-1062. https://doi.org/10.1166/jbn.2016.2209
|
[59]
|
Liu, W., Zhang, G., Wu, J., Zhang, Y., Liu, J., Luo, H. and Shao, L. (2020) Insights into the Angiogenic Effects of Nanomaterials: Mechanisms Involved and Potential Applications. Journal of Nanobiotechnology, 18, Article No. 9. https://doi.org/10.1186/s12951-019-0570-3
|
[60]
|
Stegen, S., van Gastel, N. and Carmeliet, G. (2015) Bringing New Life to Damaged Bone: The Importance of Angiogenesis in Bone Repair and Regeneration. Bone, 70, 19-27. https://doi.org/10.1016/j.bone.2014.09.017
|
[61]
|
Kargozar, S., Baino, F., Hamzehlou, S., Hamblin, M.R. and Mozafari, M. (2020) Nanotechnology for Angiogenesis: Opportunities and Challenges. Chemical Society Reviews, 49, 5008-5057. https://doi.org/10.1039/C8CS01021H
|
[62]
|
Bose, S., Fielding, G., Tarafder, S. and Bandyopadhyay, A. (2013) Understanding of Dopant-Induced Osteogenesis and Angiogenesis in Calcium Phosphate Ceramics. Trends in Biotechnology, 31, 594-605. https://doi.org/10.1016/j.tibtech.2013.06.005
|
[63]
|
Szyszka, K., Rewak-Soroczynska, J., Dorotkiewicz-Jach, A., Ledwa, K.A., Piecuch, A., Giersig, M., Drulis-Kawa, Z. and Wiglusz, R.J. (2020) Structural Modification of Nanohydroxyapatite Ca10(PO4)6(OH)2 Related to Eu3+ and Sr2+ Ions Doping and Its Spectroscopic and Antimicrobial Properties. Journal of Inorganic Biochemistry, 203, Article ID: 110884. https://doi.org/10.1016/j.jinorgbio.2019.110884
|
[64]
|
Callister, W.D. (2007) Materials Science and Engineering: an Introduction. 7th Edition, John Wiley & Sons, Inc., New York.
|
[65]
|
E Elrayah, A., Zhi, W., Feng, S., Al-Ezzi, S., Lei, H. and Weng, J. (2018) Preparation of Micro/Nano-Structure Copper-Substituted Hydroxyapatite Scaffolds with Improved Angiogenesis Capacity for Bone Regeneration. Materials, 11, Article No. 1516. https://doi.org/10.3390/ma11091516
|
[66]
|
Ran, J., Jiang, P., Sun, G., Ma, Z., Hu, J., Shen, X. and Tong, H. (2017) Comparisons among Mg, Zn, Sr, and Si Doped Nano-Hydroxyapatite/Chitosan Composites for Load-Bearing Bone Tissue Engineering Applications. Materials Chemistry Frontiers, 1, 900-910. https://doi.org/10.1039/C6QM00192K
|
[67]
|
Marycz, K., Sobierajska, P., Smieszek, A., Maredziak, M., Wiglusz, K. and Wiglusz, R.J. (2017) Li+ Activated Nanohydroxyapatite Doped with Eu3+ Ions Enhances Proliferative Activity and Viability of Human Stem Progenitor Cells of Adipose Tissue and Olfactory Ensheathing Cells. Further Perspective of nHAP: Li+, Eu3+ Application in Theranostics. Materials Science and Engineering: C, 78, 151-162. https://doi.org/10.1016/j.msec.2017.04.041
|
[68]
|
Geetha, C.S., Remya, N.S., Leji, K.B., Syama, S., Reshma, S.C., Sreekanth, P.J., Varma, H.K. and Mohanan, P.V. (2013) Cells-Nano Interactions and Molecular Toxicity after Delayed Hypersensitivity, in Guinea Pigs on Exposure to Hydroxyapatite Nanoparticles. Colloids Surfaces B: Biointerfaces, 112, 204-212. https://doi.org/10.1016/j.colsurfb.2013.07.058
|
[69]
|
Singh, S. and Nalwa, H.S. (2007) Nanotechnology and Health Safety—Toxicity and Risk Assessments of Nanostructured Materials on Human Health. Journal of Nanoscience and Nanotechnology, 7, 3048-3070. https://doi.org/10.1166/jnn.2007.922
|
[70]
|
Tang, W., Yuan, Y., Liu, C., Wu, Y., Lu, X. and Qian, J. (2014) Differential Cytotoxicity and Particle Action of Hydroxyapatite Nanoparticles in Human Cancer Cells. Nanomedicine, 9, 397-412. https://doi.org/10.2217/nnm.12.217
|
[71]
|
González Ocampo, J.I., Bassous, N., Ossa Orozco, C.P. and Webster, T.J. (2018) Evaluation of Cytotoxicity and Antimicrobial Activity of an Injectable Bone Substitute of Carrageenan and Nano Hydroxyapatite. Journal of Biomedical Materials Research Part A, 106, 2984-2993. https://doi.org/10.1002/jbm.a.36488
|
[72]
|
Turkez, H., Yousef, M.I., Sönmez, E., Togar, B., Bakan, F., Sozio, P. and Di Stefano, A. (2014) Evaluation of Cytotoxic, Oxidative Stress and Genotoxic Responses of Hydroxyapatite Nanoparticles on Human Blood Cells. Journal of Applied Toxicology, 34, 373-379. https://doi.org/10.1002/jat.2958
|
[73]
|
Szymonowicz, M., Korczynski, M., Dobrzynski, M., Zawisza, K., Mikulewic,z M., Karuga-Kuzniewska, E., Zywicka, B., Rybak, Z. and Wiglusz, R.J. (2017) Cytotoxicity Evaluation of High-Temperature Annealed Nanohydroxyapatite in Contact with Fibroblast Cells. Materials, 10, Article No. 590. https://doi.org/10.3390/ma10060590
|
[74]
|
Fu, P.P., Xia, Q., Hwang, H.M., Ray, P.C. and Yu, H. (2014) Mechanisms of Nanotoxicity: Generation of Reactive Oxygen Species. Journal of Food and Drug Analysis, 22, 64-75. https://doi.org/10.1016/j.jfda.2014.01.005
|
[75]
|
Dey, S., Das, M. and Balla, V.K. (2014) Effect of Hydroxyapatite Particle Size, Morphology and Crystallinity on Proliferation of Colon Cancer HCT116 Cells. Materials Science and Engineering: C, 39, 336-339. https://doi.org/10.1016/j.msec.2014.03.022
|
[76]
|
Jin, Y., Liu, X., Liu, H., Chen, S., Gao, C., Ge, K., Zhang, C. and Zhang, J. (2017) Oxidative Stress-Induced Apoptosis of Osteoblastic MC3T3-E1 Cells by Hydroxyapatite Nanoparticles through Lysosomal and Mitochondrial Pathways. RSC Advances, 7, 13010-13018. https://doi.org/10.1039/C7RA01008G
|
[77]
|
Li, Z., Tang, J., Wu, H., Ling, Z., Chen, S., Zhou, Y., Guo, B., Yang, X., Zhu, X., Wang, L., Tu, C. and Zhang, X. (2020) A Systematic Assessment of Hydroxyapatite Nanoparticles Used in the Treatment of Melanoma. Nano Research, 13, 2106-2117. https://doi.org/10.1007/s12274-020-2817-6
|
[78]
|
Obeng, E. (2021) Apoptosis (Programmed Cell Death) and Its Signals—A Review. Brazilian Journal of Biology, 81, 1133-1143.
|
[79]
|
Xu, J., Xu, P., Li, Z., Huang, J. and Yang, Z. (2012) Oxidative Stress and Apoptosis Induced by Hydroxyapatite Nanoparticles in C6 Cells. Journal of Biomedical Materials Research Part A, 100A, 738-745. https://doi.org/10.1002/jbm.a.33270
|
[80]
|
Wu, H., Li, Z., Tang, J., Yang, X., Zhou, Y., Guo, B., Wang, L., Zhu, X., Tu, C. and Zhang, X. (2019) The in Vitro and in Vivo Anti-Melanoma Effects of Hydroxyapatite Nanoparticles: Influences of Material Factors. International Journal of Nanomedicine, 14, 1177-1191. https://doi.org/10.2147/IJN.S184792
|
[81]
|
Meena, R., Kesari, K.K., Rani, M. and Paulraj, R. (2012) Effects of Hydroxyapatite Nanoparticles on Proliferation and Apoptosis of Human Breast Cancer cells (MCF-7). Journal of Nanoparticle Research, 14, Article No. 712. https://doi.org/10.1007/s11051-011-0712-5
|