[1]
|
Caricchio, R., Gallucci, M., Dass, C., Zhang, X., Gallucci, S., Fleece, D., et al. (2021) Preliminary Predictive Criteria for COVID-19 Cytokine Storm. Annals of the Rheumatic Diseases, 80, 88-95. https://doi.org/10.1136/annrheumdis-2020-218323
|
[2]
|
Lithander, F.E., Neumann, S., Tenison, E., Lloyd, K., Welsh, T.J., Rodrigues, J.C.L., et al. (2020) COVID-19 in Older People: A Rapid Clinical Review. Age and Ageing, 49, 501-515. https://doi.org/10.1093/ageing/afaa093
|
[3]
|
Younger, D.S. (2021) Postmortem Neuropathology in COVID-19. Brain Pathology, 31, 385-386. https://doi.org/10.1111/bpa.12915
|
[4]
|
Kabeerdoss, J., Pilania, R.K., Karkhele, R., Sathish Kumar, T., Danda, D. and Singh, S. (2021) Severe COVID-19, Multisystem Inflammatory Syndrome in Children, and Kawasaki Disease: Immunological Mechanisms, Clinical Manifestations and Management. Rheumatology International, 41, 19-32. https://doi.org/10.1007/s00296-020-04749-4
|
[5]
|
Wilson, R.F., Sharma, A.J., Schluechtermann, S., Currie, D.W., Mangan, J., Kaplan, B., et al. (2020) Factors Influencing Risk for COVID-19 Exposure among Young Adults Aged 18-23 Years—Winnebago County, Wisconsin, March-July 2020. Morbidity and Mortality Weekly Report, 69, 1497-1502. https://doi.org/10.15585/mmwr.mm6941e2
|
[6]
|
Rankin, D.A., Talj, R., Howard, L.M. and Halasa, N.B. (2021) Epidemiologic Trends and Characteristics of SARS-CoV-2 Infections among Children in the United States. Current Opinion in Pediatrics, 33, 114-121. https://doi.org/10.1097/MOP.0000000000000971
|
[7]
|
Leeb, R.T., Price, S., Sliwa, S., Kimball, A., Kimball, A., Szucs, L., Caruso, E., et al. (2020) Trends among School-Aged Children—United States, March 1-September 19, 2020. Morbidity and Mortality Weekly Report, 69, 1410-1415. https://doi.org/10.15585/mmwr.mm6939e2
|
[8]
|
Younger, D.S. (2019) Autoimmune Encephalitides. Neurologic Clinics, 37, 359-381. https://doi.org/10.1016/j.ncl.2019.01.015
|
[9]
|
Galeotti, C., Kaveri, S.V. and Bayry, J. (2020) Intravenous Immunoglobulin Immunotherapy for Coronavirus Disease-19 (COVID-19). Clinical & Translational Immunology, 9, e1198. https://doi.org/10.1002/cti2.1198
|
[10]
|
Younger, D.S. (2021) Post-Acute Sequelae of SARS-CoV-2 Infection Associating Peripheral, Autonomic, and Central Nervous System Disturbances. Case Report and Review of the Literature. World Journal of Neuroscience, 11, 17-21. https://doi.org/10.4236/wjns.2021.111003
|
[11]
|
National Institutes of Health (2021) Post-Acute Sequelae of SARS-CoV-2 Infection Initiative: SARS-CoV-2 Recovery Cohort Studies. No. OTA-21-015B. National Institutes of Health, Bethesda. https://covid19.nih.gov/sites/default/files/2021-02/PASC-ROA-OTA-Recovery-Cohort-Studies.pdf
|
[12]
|
Younger, D.S. (2020) Immunotherapy for the Post-Infectious Sequela of SARS- COV-2 Infection. World Journal of Neuroscience, 10, 117-120.
|
[13]
|
Shao, Z., Feng, Y., Zhong, L., Xie, Q., Lei, M., Liu, Z., et al. (2020) Clinical Efficacy of Intravenous Immunoglobulin Therapy in Critical Ill Patients with COVID-19: A Multicenter Retrospective Cohort Study. Clinical & Translational Immunology, 9, e1192. https://doi.org/10.1002/cti2.1192
|
[14]
|
Zhou, Z.G., Xie, S.M., Zhang, J., Zheng, F., Jiang, D., Li, K., et al. (2020) Short-Term Moderate-Dose Corticosteroid plus Immunoglobulin Effectively Reverses COVID-19 Patients Who Have Failed Low-Dose Therapy. Preprints, 2020, Article ID: 2020030065. https://doi.org/10.20944/preprints202003.0065.v1
|
[15]
|
Xie, Y., Cao, S., Dong, H., Li, Q., Chen, E., Zhang, W., et al. (2020) Effect of Regular Intravenous Immunoglobulin Therapy on Prognosis of Severe Pneumonia in Patients with COVID-19. Journal of Infection, 81, 318-356. https://doi.org/10.1016/j.jinf.2020.03.044
|
[16]
|
Zantah, M., Castillo, E.D., Gangemi, A.J., Patel, M., Chowdhury, J., Verga, S., et al. (2020) Anakinra and Intravenous IgG versus Tocilizumab in the Treatment of COVID-19 Pneumonia. medRxiv. [Preprint] https://doi.org/10.1101/2020.09.11.20192401
|
[17]
|
Cao, W., Liu, X., Bai, T., Fan, H., Hong, K., Song, H., et al. (2020) High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients with Coronavirus Disease 2019. Open Forum Infectious Diseases, 7, ofaa102. https://doi.org/10.1093/ofid/ofaa102
|
[18]
|
Mohtadi, N., Ghaysouri, A., Shirazi, S., Ansari, S., Shafiee, E., Bastani, E., et al. (2020) Recovery of Severely Ill COVID-19 Patients by Intravenous Immunoglobulin (IVIG) Treatment: A Case Series. Virology, 548, 1-5. https://doi.org/10.1016/j.virol.2020.05.006
|
[19]
|
Sakoulas, G., Geriak, M., Kullar, R., Greenwood, K.L., Habib, M., Vyas, A., et al. (2020) Intravenous Immunoglobulin (IVIG) Significantly Reduces Respiratory Morbidity in COVID-19 Pneumonia: A Prospective Randomized Trial. medRxiv. [Preprint] https://doi.org/10.1101/2020.07.20.20157891
|
[20]
|
Schwaiger, J., Karbiener, M., Aberham, C., Farcet, M.R, Kreil, T.R., et al. (2020) No SARS-CoV-2 Neutralization by Intravenous Immunoglobulins Produced from Plasma Collected before the 2020 Pandemic. The Journal of Infectious Diseases, 222, 1960-1964. https://doi.org/10.1093/infdis/jiaa593
|
[21]
|
Cheng, M.H., Zhang, S., Porritt, R.A., Noval Rivas, M., Paschold, L., Willscher, E., et al. (2020) Superantigenic Character of an Insert Unique to SARS-CoV-2 Spike Supported by Skewed TCR Repertoire in Patients with Hyperinflammation. Proceedings of the National Academy of Sciences of the United States of America, 117, 25254-25262. https://doi.org/10.1073/pnas.2010722117
|
[22]
|
Díez, J.M., Romero, C. and Gajardo, R. (2020) Currently Available Intravenous Immunoglobulin Contains Antibodies Reacting against Severe Acute Respiratory Syndrome Coronavirus 2 Antigens. Immunotherapy, 12, 571-576. https://doi.org/10.2217/imt-2020-0095
|
[23]
|
Callard, F. and Perego, E. (2021) How and Why Patients Made Long Covid. Social Science & Medicine, 268, Article ID: 113426. https://doi.org/10.1016/j.socscimed.2020.113426
|
[24]
|
Davis, H.E., Assaf, G.S., McCorkell, L., Wei, H., Low, R.J., Re’em, Y., et al. (2020) Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. medRxiv. [Preprint] https://doi.org/10.1101/2020.12.24.20248802
|
[25]
|
Sudre, C.H., Murray, B., Varsavsky, T., Graham, M.S., Penfold, R.S., Bowyer, R.C., et al. (2020) Attributes and Predictors of Long-COVID: Analysis of COVID Cases and Their Symptoms Collected by the Covid Symptoms Study App. medRxiv. [Preprint] https://doi.org/10.1101/2020.10.19.20214494
|
[26]
|
Michelen, M., Manoharan, L., Elkheir, N., Cheng, V., Dagens, D., Hastie, C., et al. (2020) Characterizing Long-Term Covid-19: A Rapid Living Systematic Review. medRxiv. [Preprint] https://doi.org/10.1101/2020.12.08.20246025
|
[27]
|
Younger, D.S. (2020) Book Review: I-Cubed and the Autoimmune Brain: A Five-Step Plan. World Journal of Neuroscience, 10, 29-36. https://doi.org/10.4236/wjns.2020.101005
|
[28]
|
Henderson, L.A., Canna, S.W., Friedman, K.G., Gorelik, M., Lapidus, S.K., Bassiri, H., et al. (2021) American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 and Hyperinflammation in Pediatric COVID-19: Version 2. Arthritis & Rheumatology, 73, e13-e29. https://doi.org/10.1002/art.41616
|
[29]
|
Newburger, J.W., Takahashi, M., Gerber, M.A., Gewitz, M.H., Tani, L.Y., Burns, J.C., et al. (2004) Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Statement for Health Professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation, 110, 2747-2771. https://doi.org/10.1161/01.CIR.0000145143.19711.78
|
[30]
|
Younger, D.S., Mast, P.A. and Bouboulis, D.A. (2016) PANDAS: Baseline Immunoglobulin Levels Predict Achievement of Remission at One Year Following IVIg Therapy. Journal of Neurology and Neurosurgery, 3, Article No. 122.
|
[31]
|
Ballow, M. (2002) Primary Immunodeficiency Disorders: Antibody Deficiency. Journal of Allergy and Clinical Immunology, 109, 581-591. https://doi.org/10.1067/mai.2002.122466
|
[32]
|
Shields, A.M., Burns, S.O., Savic, S. and Richter, A.G. (2021) UK PIN COVID-19 Consortium. COVID-19 in Patients with Primary and Secondary Immunodeficiency: The United Kingdom Experience. Journal of Allergy and Clinical Immunology, 147, 870-875.e1. https://doi.org/10.1016/j.jaci.2020.12.620
|
[33]
|
Younger, D.S. (2020) Post-Infectious Sequela of SARS-COV-2 Infection in Adults and Children: An Overview of Available Agents and Clinical Responsiveness. Archives of Neurology & Neurological Disorders, 3, e102.
|
[34]
|
Younger, D.S. (2016) The Human Microbiome and I-Cubed: A Modern Medical Paradigm. World Journal of Neuroscience, 6, 260-286. https://doi.org/10.4236/wjns.2016.64031
|
[35]
|
Smatti, M.K., Cyprian, F.S., Nasrallah, G.K., Al Thani, A.A., Almishal, R.O. and Yassine, H.M. (2019) Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses, 11, Article No. 762. https://doi.org/10.3390/v11080762
|
[36]
|
Rodríguez, Y., Novelli, L., Rojas, M., De Santis, M., Acosta-Ampudia, Y., Monsalve, D.M., et al. (2020) Autoinflammatory and Autoimmune Conditions at the Crossroad of COVID-19. Journal of Autoimmunity, 114, Article ID: 102506. https://doi.org/10.1016/j.jaut.2020.102506
|
[37]
|
Alberti, P., Beretta, S., Piatti, M., Karantzoulis, A., Luisa Piatti, M., Santoro, P., et al. (2020) Guillain-Barré Syndrome Related to COVID-19 Infection. Neurology: Neuroimmunology & NeuroInflammation, 7, e741. https://doi.org/10.1212/NXI.0000000000000741
|
[38]
|
Nathan, N., Prevost, B. and Corvol, H. (2020) Atypical Presentation of COVID-19 in Young Infants. Lancet, 395, 1481. [Correction: Lancet, 2020, 396, 668] https://doi.org/10.1016/S0140-6736(20)30980-6
|
[39]
|
Merrill, J.T., Erkan, D., Winakur, J. and James, J.A. (2020) Emerging Evidence of a COVID-19 Thrombotic Syndrome Has Treatment Implications. Nature Reviews Rheumatology, 16, 581-589. https://doi.org/10.1038/s41584-020-0474-5
|
[40]
|
Younger, D.S. (2021) Post-Acute Sequelae of SARS-Cov-2 Infection (PASC): Peripheral, Autonomic and Central Nervous System Features In a Child. Neurological Sciences, In Press.
|