[1]
|
Haddad, N.M., et al. (2015) Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems. Science Advances, 1, e1500052. https://doi.org/10.1126/sciadv.1500052
|
[2]
|
Newbold, T., et al. (2015) Global Effects of Land Use on Local Terrestrial Biodiversity. Nature, 520, 45-50. https://doi.org/10.1038/nature14324
|
[3]
|
Roser, M., Ritchie, H. and Ortiz-Ospina, E. (2013) World Population Growth—Our World in Data. https://ourworldindata.org/world-population-growth
|
[4]
|
Hoffmann, A.A. and Sgró, C.M. (2011) Climate Change and Evolutionary Adaptation. Nature, 470, 479-485. https://doi.org/10.1038/nature09670
|
[5]
|
Barnosky, A.D., et al. (2011) Has the Earth’s Sixth Mass Extinction Already Arrived? Nature, 471, 51-57. https://doi.org/10.1038/nature09678
|
[6]
|
Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M. and Palmer, T.M. (2015) Accelerated Modern Human-Induced Species Losses: Entering the Sixth Mass Extinction. Science Advances, 1, e1400253. https://doi.org/10.1126/sciadv.1400253
|
[7]
|
Ceballos, G., Ehrlich, P.R. and Dirzo, R. (2017) Biological Annihilation via the Ongoing Sixth Mass Extinction Signaled by Vertebrate Population Losses and Declines. Proceedings of the National Academy of Sciences of the United States of America, 114, E6089-E6096. https://doi.org/10.1073/pnas.1704949114
|
[8]
|
Lynch, M., et al. (2016) Genetic Drift, Selection and the Evolution of the Mutation Rate. Nature Reviews Genetics, 17, 704-714. https://doi.org/10.1038/nrg.2016.104
|
[9]
|
Barker, J.S.F., Tan, S.G., Moore, S.S., Mukherjee, T.K., Matheson, J.L. and Selvaraj, O.S. (2001) Genetic Variation within and Relationships among Populations of Asian Goats (Capra hircus). Journal of Animal Breeding and Genetics, 118, 213-233. https://doi.org/10.1046/j.1439-0388.2001.00296.x
|
[10]
|
Mishra, A.K., Arora, A.L., Kumar, S. and Prince, L.L.L. (2008) Studies on Effect of Booroola (FecB) Genotype on Lifetime Ewes’ Productivity Efficiency, Litter Size and Number of Weaned Lambs in Garole × Malpura Sheep. Animal Reproduction Science, 113, 293-298. https://doi.org/10.1016/j.anireprosci.2008.06.002
|
[11]
|
Patterson, D.L. and Silversides, F.G. (2003) Farm Animal Genetic Resource Conservation: Why and How? Canadian Farm Animal Genetic Resources Foundation. http://www.fao.org/3/a1250e/annexes/CountryReports/Canada.pdf
|
[12]
|
Notter, D.R. (1999) The Importance of Genetic Diversity in Livestock Populations of the Future. Journal of Animal Science, 77, 61-69. https://doi.org/10.2527/1999.77161x
|
[13]
|
Boettcher, P.J., et al. (2010) Objectives, Criteria and Methods for Using Molecular Genetic Data in Priority Setting for Conservation of Animal Genetic Resources. Animal Genetics, 41, 64-77. https://doi.org/10.1111/j.1365-2052.2010.02050.x
|
[14]
|
Markert, J.A., et al. (2010) Population Genetic Diversity and Fitness in Multiple Environments. BMC Ecology and Evolution, 10, 205. https://doi.org/10.1186/1471-2148-10-205
|
[15]
|
Acosta, A.C., et al. (2013) Genetic Diversity and Differentiation of Five Cuban Cattle Breeds Using 30 Microsatellite Loci. Journal of Animal Breeding and Genetics, 130, 79-86. https://doi.org/10.1111/j.1439-0388.2012.00988.x
|
[16]
|
Toro, M.A. and Caballero, A. (2005) Characterization and Conservation of Genetic Diversity in Subdivided Populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1367-1378. https://doi.org/10.1098/rstb.2005.1680
|
[17]
|
Öner, Y., Yilmaz, O., Eriş, C., Ata, N., Ünal, C. and Koncagül, S. (2019) Genetic Diversity and Population Structure of Turkish Native Cattle Breeds. South African Journal of Animal Science, 49, 628-635. https://doi.org/10.4314/sajas.v49i4.4
|
[18]
|
Boettcher, P., Oldenbroek, J., Sponenberg, D., Gandini, G., Martin, J. and Joshi, B. (2013) In Vivo Conservation of Animal Genetic Resources. FAO, Rome.
|
[19]
|
Upadhyay, M., et al. (2019) Deciphering the Patterns of Genetic Admixture and Diversity in Southern European Cattle Using Genome-Wide SNPs. Evolutionary Applications, 12, 951-963. https://doi.org/10.1111/eva.12770
|
[20]
|
Gautier, M., Laloë, D. and Moazami-Goudarzi, K. (2010) Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds. PLoS ONE, 5, e13038. https://doi.org/10.1371/journal.pone.0013038
|
[21]
|
Jimenez, D.E., de Lima Lins, T.C., Taveira, P.O. and Pereira, R.W. (2014) A Prospective Screening of Gene Copy Number Variation in Brazilian Admixed Population Sample. Hereditary Genetics, 3, Article ID: 1000125. https://doi.org/10.4172/2161-1041.1000125
|
[22]
|
Kim, K., et al. (2018) Artificial Selection Increased Body Weight but Induced Increase of Runs of Homozygosity in Hanwoo Cattle. PLoS ONE, 13, e0193701. https://doi.org/10.1371/journal.pone.0193701
|
[23]
|
Zhao, F., McParland, S., Kearney, F., Du, L. and Berry, D.P. (2015) Detection of Selection Signatures in Dairy and Beef Cattle Using High-Density Genomic Information. Genetics Selection Evolution, 47, Article No. 49.
|
[24]
|
Windig, J.J. and Engelsma, K.A. (2010) Perspectives of Genomics for Genetic Conservation of Livestock. Conservation Genetics, 11, 635-641. https://doi.org/10.1007/s10592-009-0007-x
|
[25]
|
Allendorf, F.W., Hohenlohe, P.A. and Luikart, G. (2010) Genomics and the Future of Conservation Genetics. Nature Reviews Genetics, 11, 697-709. https://doi.org/10.1038/nrg2844
|
[26]
|
HÖglund, J. (2009) Evolutionary Conservation Genetics. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780199214211.001.0001
|
[27]
|
Moravčíková, N., Trakovická, A., Kadlečík, O. and Kasarda, R. (2019) Genomic Signatures of Selection in Cattle through Variation of Allele Frequencies and Linkage Disequilibrium. Journal of Central European Agriculture, 20, 576-580. https://doi.org/10.5513/JCEA01/20.2.2552
|
[28]
|
Oldenbroek, J.K. (1999) Genebanks and the Management of Farm Animal Genetic Resource. Institute of Animal Science and Health, Lelystad, 119 p.
|
[29]
|
Oldenbroek, J.K. (2007) Utilisation and Conservation of Farm Animal Genetic Resources. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-592-5
|
[30]
|
Makanjuola, B.O., Miglior, F., Abdalla, E.A., Maltecca, C., Schenkel, F.S. and Baes, C.F. (2020) Effect of Genomic Selection on Rate of Inbreeding and Coancestry and Effective Population Size of Holstein and Jersey Cattle Populations. Journal of Dairy Science, 103, 5183-5199. https://doi.org/10.3168/jds.2019-18013
|
[31]
|
Jost, L., Archer, F., Flanagan, S., Gaggiotti, O., Hoban, S. and Latch, E. (2018) Differentiation Measures for Conservation Genetics. Evolutionary Applications, 11, 1139-1148. https://doi.org/10.1111/eva.12590
|
[32]
|
Weitzman, M. (1993) What to Preserve? An Application of Diversity Theory to Crane Conservation? The Quarterly Journal of Economics, 108, 157-183. https://doi.org/10.2307/2118499
|
[33]
|
d’Arnoldi, C., Foulley, J.-L. and Ollivier, L. (1998) An Overview of the Weitzman Approach to Diversity. Genetics Selection Evolution, 30, Article No. 149. https://doi.org/10.1186/1297-9686-30-2-149
|
[34]
|
Groeneveld, L.F., et al. (2010) Genetic Diversity in Farm Animals—A Review. Animal Genetics, 41, 6-31. https://doi.org/10.1111/j.1365-2052.2010.02038.x
|
[35]
|
FAO (2007) The State of the Art in the Management of Animal Genetic Resources.
|
[36]
|
Ndumu, D.B., et al. (2008) Genetic and Morphological Characterisation of the Ankole Longhorn Cattle in the African Great Lakes Region. Genetics Selection Evolution, 40, 467-490. https://doi.org/10.1051/gse:2008014
|
[37]
|
Kugonza, D.R., et al. (2011) Genetic Diversity and Differentiation of Ankole Cattle Populations in Uganda Inferred from Microsatellite Data. Livestock Science, 135, 140-147. https://doi.org/10.1016/j.livsci.2010.06.158
|
[38]
|
Pienaar, L., et al. (2014) Genetic Diversity of the Afrikaner Cattle Breed. 10th World Congress on Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17-22 August 2014.
|
[39]
|
Bessa, I., Pinheiro, I., Matola, M., Dzama, K., Rocha, A. and Alexandrino, P. (2009) Genetic Diversity and Relationships among Indigenous Mozambican Cattle Breeds. South African Journal of Animal Science, 39, 61-72. https://doi.org/10.4314/sajas.v39i1.43548
|
[40]
|
Ngono Ema, P.J., et al. (2014) Genetic Diversity of Four Cameroonian Indigenous Cattle Using Microsatellite Markers. Journal of Livestock Science, 5, 9-17.
|
[41]
|
Sharma, R., et al. (2015) Genetic Diversity and Relationship of Indian Cattle Inferred from Microsatellite and Mitochondrial DNA Markers. BMC Genetics, 16, Article No. 73. https://doi.org/10.1186/s12863-015-0221-0
|
[42]
|
Frankham, R., Ballou, J.D. and Briscoe, D.A. (2010) Introduction to Conservation Genetics. 2nd Edition, Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511809002
|
[43]
|
Ewens, W.J. (1990) The Minimum Viable Population Size as a Genetic and a Demographic Concept. Oxford University Press, New York/Oxford.
|
[44]
|
Charlesworth, B. (2009) Fundamental Concepts in Genetics: Effective Population Size and Patterns of Molecular Evolution and Variation. Nature Reviews Genetics, 10, 195-205. https://doi.org/10.1038/nrg2526
|
[45]
|
Wright, S. (1931) Evolution in Mendelian Populations. Bulletin of Mathematical Biology, 52, 241-295; Discussion 201-207. https://doi.org/10.1016/S0092-8240(05)80011-4
|
[46]
|
Jiménez-Mena, B., Hospital, F. and Bataillon, T. (2016) Heterogeneity in Effective Population Size and Its Implications in Conservation Genetics and Animal Breeding. Conservation Genetics Resources, 8, 35-41. https://doi.org/10.1007/s12686-015-0508-5
|
[47]
|
Flint, J. and Mott, R. (2001) Finding the Molecular Basis of Quantitative Traits: Successes and Pitfalls. Nature Reviews Genetics, 2, 437-445. https://doi.org/10.1038/35076585
|
[48]
|
Barbato, M., Orozco-terWengel, P., Tapio, M. and Bruford, M.W. (2015) SNeP: A Tool to Estimate Trends in Recent Effective Population Size Trajectories Using Genome-Wide SNP Data. Frontiers in Genetics, 6, 223-243. https://doi.org/10.3389/fgene.2015.00109
|
[49]
|
Flury, C., et al. (2010) Effective Population Size of an Indigenous Swiss Cattle Breed Estimated from Linkage Disequilibrium. Journal of Animal Breeding and Genetics, 127, 339-347. https://doi.org/10.1111/j.1439-0388.2010.00862.x
|
[50]
|
Crow, J.F. and Kimura, M. (1970) An Introduction to Population Genetics Theory. Harper and Row, New York.
|
[51]
|
Hill, W.G. (1981) Estimation of Effective Population Size from Data on Linkage Disequilibrium. Genetics Research, 38, 209-216. https://doi.org/10.1017/S0016672300020553
|
[52]
|
Toro Ospina, A.M., et al. (2019) Linkage Disequilibrium and Effective Population Size in Gir Cattle Selected for Yearling Weight. Reproduction in Domestic Animals, 54, 1524-1531. https://doi.org/10.1111/rda.13559
|
[53]
|
Goddard, M.E. and Hayes, B.J. (2012) Genome-Wide Association Studies and Linkage Disequilibrium in Cattle. In J. E. Womack, Ed., Bovine Genomics, John Wiley & Sons, Oxford, 192-210. https://doi.org/10.1002/9781118301739.ch13
|
[54]
|
Hedrick, P.W. (2005) A Standardized Genetic Differentiation Measure. Evolution, 59, 1633-1638. https://doi.org/10.1111/j.0014-3820.2005.tb01814.x
|
[55]
|
Soulé, M.E. (1980) Thresholds for Survival: Maintaining Fitness and Evolutionary Potential. In: Soulé, M.E. and Wilcox, B.A., Eds., Conservation Biology: An Evolutionary-Ecological Perspective, Sinauer, Sunderland, MA, 151-169.
|
[56]
|
Franklin, I.R. (1980) Evolutionary Change in Small Populations. Sinauer Associates. Inc., Sunderland, MA, 135-150.
|
[57]
|
Prasad, A., et al. (2008) Linkage Disequilibrium and Signatures of Selection on Chromosomes 19 and 29 in Beef and Dairy Cattle. Animal Genetics, 39, 597-605. https://doi.org/10.1111/j.1365-2052.2008.01772.x
|
[58]
|
Qanbari, S. (2020) On the Extent of Linkage Disequilibrium in the Genome of Farm Animals. Frontiers in Genetics, 10, 1304. https://doi.org/10.3389/fgene.2019.01304
|
[59]
|
Maloy, S. and Hughes, K., Eds. (2013) Brenner’s Encyclopedia of Genetics. 2nd Edition. Academic Press, Cambridge, MA.
|
[60]
|
Makina, S.O., et al. (2015) Extent of Linkage Disequilibrium and Effective Population Size in Four South African Sanga Cattle Breeds. Frontiers in Genetics, 6, 337.
https://doi.org/10.3389/fgene.2015.00337
|
[61]
|
McKay, S.D., et al. (2007) Whole Genome Linkage Disequilibrium Maps in Cattle. BMC Genetics, 8, 74. https://doi.org/10.1186/1471-2156-8-74
|
[62]
|
Séré, M., Thévenon, S., Belem, A.M.G. and De Meeûs, T. (2017) Comparison of Different Genetic Distances to Test Isolation by Distance between Populations. Heredity (Edinb), 119, 55-63. https://doi.org/10.1038/hdy.2017.26
|
[63]
|
Edea, Z., et al. (2014) Linkage Disequilibrium and Genomic Scan to Detect Selective Loci in Cattle Populations Adapted to Different Ecological Conditions in Ethiopia. Journal of Animal Breeding and Genetics, 131, 358-366. https://doi.org/10.1111/jbg.12083
|
[64]
|
Fabbri, M.C., Dadousis, C. and Bozzi, R. (2020) Estimation of Linkage Disequilibrium and Effective Population Size in Three Italian Autochthonous Beef Breeds. Animals, 10, 1034. https://doi.org/10.3390/ani10061034
|
[65]
|
Hardy, G.H. (1908) Mendelian Proportions in a Mixed Population. Science, 28, 49-50. https://doi.org/10.1126/science.28.706.49
|
[66]
|
Weinberg, W. (1908) Über den Nachweis der Vererbung beim Menschen. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg, 64, 368-382.
|
[67]
|
Crow, J.F. (1988) Eighty Years Ago: The Beginnings of Population Genetics. Genetics, 119, 473-476. https://doi.org/10.1093/genetics/119.3.473
|
[68]
|
Sham, P. (2001) Statistics in Human Genetics. Arnold Publishers, London.
|
[69]
|
Morton, N.E. (1994) Fundamentals of Genetic Epidemiology, M. J. Khoury, T. H. Beaty, and B. H. Cohen, New York: Oxford University Press, 1993, 383 pages, $55.00. Genetic Epidemiology, 11, 389-390. https://doi.org/10.1002/gepi.1370110409
|
[70]
|
Guo, S.-W. and Thompson, E. (1992) Performing the Exact Test of Hardy-Weinberg Proportion for Multiple Alleles. Biometrics, 48, 361-372. https://doi.org/10.2307/2532296
|
[71]
|
Robertson, A. and Hill, W.G. (1984) Deviations from Hardy-Weinberg Proportions: Sampling Variances and Use in Estimation of Inbreeding Coefficients. Genetics, 107, 703-718. https://doi.org/10.1093/genetics/107.4.703
|
[72]
|
Salanti, G., Amountza, G., Ntzani, E. and Ioannidis, J. (2005) Hardy-Weinberg Equilibrium in Genetic Association Studies: An Empirical Evaluation of Reporting, Deviations, and Power. European Journal of Human Genetics, 13, 840-848. https://doi.org/10.1038/sj.ejhg.5201410
|
[73]
|
Ginja, C., et al. (2019) The Genetic Ancestry of American Creole Cattle Inferred from Uniparental and Autosomal Genetic Markers. Scientific Reports, 9, Article No. 11486. https://doi.org/10.1038/s41598-019-47636-0
|
[74]
|
Kleinman-Ruiz, D., Villanueva, B., Fernández, J., Toro, M.A., García-Cortés, L.A. and Rodríguez-Ramilo, S.T. (2016) Intra-Chromosomal Estimates of Inbreeding and Coancestry in the Spanish Holstein Cattle Population. Livestock Science, 185, 34-42. https://doi.org/10.1016/j.livsci.2016.01.002
|
[75]
|
Peripolli, E., et al. (2018) Assessment of Runs of Homozygosity Islands and Estimates of Genomic Inbreeding in Gyr (Bos indicus) Dairy Cattle. BMC Genomics, 19, Article No. 34. https://doi.org/10.1186/s12864-017-4365-3
|
[76]
|
Mastrangelo, S., et al. (2017) Genome-Wide Scan for Runs of Homozygosity Identifies Potential Candidate Genes Associated with Local Adaptation in Valle del Belice Sheep. Genetics Selection Evolution, 49, Article No. 84. https://doi.org/10.1186/s12711-017-0360-z
|
[77]
|
Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York. https://doi.org/10.7312/nei-92038
|
[78]
|
Dayhoff, M. and Eck, R.V., Eds. (1972) Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Washington, D.C.
|
[79]
|
Nei, M. (1972) Genetic Distance between Populations. The American Naturalist, 106, 283-292. https://doi.org/10.1086/282771
|
[80]
|
Cavalli-Sforza, L.L. and Edwards, A.W. (1967) Phylogenetic Analysis. Models and Estimation Procedures. The American Journal of Human Genetics, 19, 233-257.
|
[81]
|
Shriver, M.D., Jin, L., Boerwinkle, E., Deka, R., Ferrell, R.E. and Chakraborty, R. (1995) A Novel Measure of Genetic Distance for Highly Polymorphic Tandem Repeat Loci. Molecular Biology and Evolution, 12, 914-920.
|
[82]
|
Paetkau, D., Waits, L.P., Clarkson, P.L., Craighead, L. and Strobeck, C. (1997) An Empirical Evaluation of Genetic Distance Statistics Using Microsatellite Data from Bear (Ursidae) Populations. Genetics, 147, 1943-1957. https://pubmed.ncbi.nlm.nih.gov/9409849 https://doi.org/10.1093/genetics/147.4.1943
|
[83]
|
Wang, R., Zheng, L., Touré, Y.T., Dandekar, T. and Kafatos, F.C. (2001) When Genetic Distance Matters: Measuring Genetic Differentiation at Microsatellite Loci in Whole-Genome Scans of Recent and Incipient Mosquito Species. Proceedings of the National Academy of Sciences of the United States of America, 98, 10769-10774. https://doi.org/10.1073/pnas.191003598
|
[84]
|
Bao, W.B., Shu, J.-T., Wu, X.S., Musa, H., Ji, C.L. and Chen, G.H. (2009) Genetic Diversity and Relationship between Genetic Distance and Geographical Distance in 14 Chinese Indigenous Chicken Breeds and Red Jungle Fowl. Czech Journal of Animal Science, 54, 74-83. https://doi.org/10.17221/1666-CJAS
|
[85]
|
Eding, H. and Laval, G. (1999) Measuring the Genetic Uniqueness in Livestock. In: Oldenbroek, J.K., Ed., Genebanks and the Management of Farm Animal Genetic Resources, DLO Institute for Animal Science and Health, The Netherlands, 33-59.
|
[86]
|
Ruane, J. (2001) A Critical Review of the Value of Genetic Distance Studies in Breed Conservation. Journal of Animal Breeding and Genetics, 116, 317-323. https://doi.org/10.1046/j.1439-0388.1999.00205.x
|
[87]
|
Barker, J.S.F. (1994) A Global Protocol for Determining Genetic Distances among Domestic Livestock Breeds. 5th World Congress on Genetics Applied to Livestock Production, 21, 501-508.
|
[88]
|
Piyasatian, N. and Kinghorn, B. (1999) Use of Genetic Markers to Aid Conservation Decisions for Groups of Rare Domestic Breeds. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 13, 365-368.
|
[89]
|
Marshall, D. and Brown, A. (1975) Optimum Sampling Strategies in Genetic Conservation. In: Frankel, O.H. and Hawkes, J.G., Eds., Crop Genetic Resources for Today and Tomorrow, Cambridge University Press, Cambridge, 53-80.
|
[90]
|
Prentice, J.R. and Anzar, M. (2011) Cryopreservation of Mammalian Oocyte for Conservation of Animal Genetics. Veterinary Medicine International, 2011, Article ID: 146405. https://doi.org/10.4061/2011/146405
|
[91]
|
FAO (2012) Cryoconservation of Animal Genetic Resources.
|
[92]
|
Hall, S.J.G. and Bradley, D.G. (1995) Conserving Livestock Breed Biodiversity. Trends in Ecology & Evolution, 10, 267-270. https://doi.org/10.1016/0169-5347(95)90005-5
|
[93]
|
Jahnukainen, K., Ehmcke, J., Hergenrother, S.D. and Schlatt, S. (2007) Effect of Cold Storage and Cryopreservation of Immature Non-Human Primate Testicular Tissue on Spermatogonial Stem Cell Potential in Xenografts. Human Reproduction, 22, 1060-1067. https://doi.org/10.1093/humrep/del471
|
[94]
|
Mara, L., Casu, S., Carta, A. and Dattena, M. (2013) Cryobanking of Farm Animal Gametes and Embryos as a Means of Conserving Livestock Genetics. Animal Reproduction Science, 138, 25-38. https://doi.org/10.1016/j.anireprosci.2013.02.006
|
[95]
|
Blackburn, H. (2004) Development of National Animal Genetic Resource Programs. Reproduction, Fertility and Development, 16, 27-32. https://doi.org/10.1071/RD03075
|
[96]
|
Holt, W. (1999) Role of Reproductive Technologies and Genetic Resource Banks in Animal Conservation. Reviews of Reproduction, 4, 143-150. https://doi.org/10.1530/ror.0.0040143
|
[97]
|
Andrabi, S.M.H. and Maxwell, W.M.C. (2007) A Review on Reproductive Biotechnologies for Conservation of Endangered Mammalian Species. Animal Reproduction Science, 99, 223-243. https://doi.org/10.1016/j.anireprosci.2006.07.002
|
[98]
|
Demirci, B., Lornage, J., Salle, B., Poirel, M.T., Guerin, J.F. and Franck, M. (2003) The Cryopreservation of Ovarian Tissue: Uses and Indications in Veterinary Medicine. Theriogenology, 60, 999-1010. https://doi.org/10.1016/S0093-691X(03)00121-3
|
[99]
|
Honaramooz, A., Snedaker, A., Boiani, M., SchÖler, H., Dobrinski, I. and Schlatt, S. (2002) Sperm from Neonatal Mammalia Testes Grafted in Mice. Nature, 418, 778-781. https://doi.org/10.1038/nature00918
|
[100]
|
Yang, Y., Steeg, J. and Honaramooz, A. (2010) The Effects of Tissue Sample Size and Media on Short-Term Hypothermic Preservation of Porcine Testis Tissue. Cell and Tissue Research, 340, 397-406. https://doi.org/10.1007/s00441-010-0946-z
|
[101]
|
Zeng, W., et al. (2009) Preservation and Transplantation of Porcine Testis Tissue. Reproduction, Fertility and Development, 21, 489-497. https://doi.org/10.1071/RD08235
|
[102]
|
Wu, J.Y., Sun, Y.X., Wang, A.B., Che, G.Y., Hu, T.J. and Zhang, X.M. (2014) Effect of Newborn Bovine Serum on Cryopreservation of Adult Bovine Testicular Tissue. Andrologia, 46, 308-312. https://doi.org/10.1111/and.12084
|
[103]
|
Pukazhenthi, B.S., et al. (2015) Slow Freezing, but Not Vitrification Supports Complete Spermatogenesis in Cryopreserved, Neonatal Sheep Testicular Xenografts. PLoS ONE, 10, e0123957. https://doi.org/10.1371/journal.pone.0123957
|
[104]
|
Devi, L. and Goel, S. (2016) Fertility Preservation through Gonadal Cryopreservation. Reproductive Medicine and Biology, 15, 235-251. https://doi.org/10.1007/s12522-016-0240-1
|
[105]
|
Picton, H.M., Kim, S.S. and Gosden, R.G. (2000) Cryopreservation of Gonadal Tissue and Cells. British Medical Bulletin, 56, 603-615. https://doi.org/10.1258/0007142001903418
|
[106]
|
Courbiere, B., Caquant, L., Mazoyer, C., Franck, M., Lornage, J. and Salle, B. (2009) Difficulties Improving Ovarian Functional Recovery by Microvascular Transplantation and Whole Ovary Vitrification. Fertility and Sterility, 91, 2697-2706. https://doi.org/10.1016/j.fertnstert.2008.03.012
|
[107]
|
Isachenko, V., Isachenko, E., Sanchez, R., Dattena, M., Mallmann, P. and Rahimi, G. (2015) Cryopreservation of Whole Ovine Ovaries with Pedicles as a Model for Human: Parameters of Perfusion with Simultaneous Saturations by Cryoprotectants. Clinical Laboratory, 61, 415-420. https://doi.org/10.7754/Clin.Lab.2014.140919
|
[108]
|
Chen, C.H., Chen, S.G., Wu, G.J., Wang, J., Yu, C.P. and Liu, J.Y. (2006) Autologous Heterotopic Transplantation of Intact Rabbit Ovary after Frozen Banking at -196°C. Fertility and Sterility, 86, 1059-1066. https://doi.org/10.1016/j.fertnstert.2006.04.019
|
[109]
|
Gerritse, R., et al. (2008) Optimal Perfusion of an Intact Ovary as a Prerequisite for Successful Ovarian Cryopreservation. Human Reproduction, 23, 329-335. https://doi.org/10.1093/humrep/dem384
|
[110]
|
Imhof, M., et al. (2004) Cryopreservation of a Whole Ovary as a Strategy for Restoring Ovarian Function. Journal of Assisted Reproduction and Genetics, 21, 459-465. https://doi.org/10.1007/s10815-004-8763-5
|
[111]
|
Johnston, L.A. and Lacy, R.C. (1995) Genome Resource Banking for Species Conservation: Selection of Sperm Donors. Cryobiology, 32, 68-77. https://doi.org/10.1006/cryo.1995.1006
|
[112]
|
Rischkowsky, B. and Pilling, D. (2007) The State of the World’s Animal Genetic Resources for Food and Agriculture. FAO, Rome.
|
[113]
|
Bailey, J., Bilodeau, J.-F. and Cormier, N. (2000) Semen Cryopreservation in Domestic Animals: A Damaging and Capacitating Phenomenon. Journal of Andrology, 21, 1-7.
|
[114]
|
Baust, J.G., Gao, D. and Baust, J.M. (2009) Cryopreservation: An Emerging Paradigm Change. Organogenesis, 5, 90-96. https://doi.org/10.4161/org.5.3.10021
|
[115]
|
Ugur, M.R., et al. (2019) Advances in Cryopreservation of Bull Sperm. Frontiers in Veterinary Science, 6, 268. https://doi.org/10.3389/fvets.2019.00268
|
[116]
|
Hiemstra, S.J., van der Lende, T. and Woelders, H. (2007) The Potential of Cryopreservation and Reproductive Technologies for Animal Genetic Resources Conservation Strategies. The Role of Biotechnology, Villa Gualino, Turin, 5-7 March 2005, 25-36.
|
[117]
|
Domingues, S.F.S., Caldas-Bussiere, M.C., Martins, N.D. and Carvalho, R.A. (2007) Ultrasonographic Imaging of the Reproductive Tract and Surgical Recovery of Oocytes in Cebus apella (Capuchin Monkeys). Theriogenology, 68, 1251-1259. https://doi.org/10.1016/j.theriogenology.2007.08.023
|
[118]
|
Massip, A. and Donnay, I. (2003) Cryopreservation of Bovine Oocytes: Current Status and Recent Developments. Reproduction Nutrition Development, 43, 325-330. https://doi.org/10.1051/rnd:2003024
|
[119]
|
Lermen, D., et al. (2009) Cryobanking of Viable Biomaterials: Implementation of New Strategies for Conservation Purposes. Molecular Ecology, 18, 1030-1033. https://doi.org/10.1111/j.1365-294X.2008.04062.x
|
[120]
|
Ledda, S., Leoni, G., Bogliolo, L. and Naitana, S. (2001) Oocyte Cryopreservation and Ovarian Tissue Banking. Theriogenology, 55, 1359-1371. https://doi.org/10.1016/S0093-691X(01)00487-3
|
[121]
|
Checura, C.M. and Seidel, G.E. (2007) Effect of Macromolecules in Solutions for Vitrification of Mature Bovine Oocytes. Theriogenology, 67, 919-930. https://doi.org/10.1016/j.theriogenology.2006.09.044
|
[122]
|
Pereira, R.M. and Marques, C.C. (2008) Animal Oocyte and Embryo Cryopreservation. Cell and Tissue Banking, 9, 267-277. https://doi.org/10.1007/s10561-008-9075-2
|
[123]
|
Woods, E.J., Benson, J.D., Agca, Y. and Critser, J.K. (2004) Fundamental Cryobiology of Reproductive Cells and Tissue. Cryobiology, 48, 146-156. https://doi.org/10.1016/j.cryobiol.2004.03.002
|
[124]
|
Tucker, M.J., Morton, R.C., Wright, G., Sweitzer, C.L. and Massey, J.B. (1998) Clinical Application of Human Egg Cryopreservation. Human Reproduction, 13, 3156-3159. https://doi.org/10.1093/humrep/13.11.3156
|
[125]
|
Chen, S.U., Lien, Y.R., Chao, K.H., Ho, H.N., Yang, Y.S. and Lee, T.Y. (2003) Effects of Cryopreservation on Meiotic Spindles of Oocytes and Its Dynamics after Thawing: Clinical Implications in Oocyte Freezing—A Review Article. Molecular and Cellular Endocrinology, 202, 101-107. https://doi.org/10.1016/S0303-7207(03)00070-4
|
[126]
|
Santos, R.R., et al. (2010) Cryopreservation of Ovarian Tissue: An Emerging Technology for Female Germline Preservation of Endangered Species and Breeds. Animal Reproduction Science, 122, 151-163. https://doi.org/10.1016/j.anireprosci.2010.08.010
|
[127]
|
Hovatta, O. (2005) Methods for Cryopreservation of Human Ovarian Tissue. Reproductive BioMedicine Online, 10, 729-734. https://doi.org/10.1016/S1472-6483(10)61116-9
|
[128]
|
Naik, B.R., Rao, B.S., Vagdevi, R., Gnanprakash, M., Amarnath, D. and Rao, V.H. (2005) Conventional Slow Freezing, Vitrification and Open Pulled Straw (OPS) Vitrification of Rabbit Embryos. Animal Reproduction Science, 86, 329-338. https://doi.org/10.1016/j.anireprosci.2004.07.008
|
[129]
|
Amorim, C.A., Rondina, D., Lucci, C.M., Gonçalves, P.B.D., de Figueiredo, J.R. and Giorgetti, A. (2006) Permeability of Ovine Primordial Follicles to Different Cryoprotectants. Fertility and Sterility, 85, 1077-1081. https://doi.org/10.1016/j.fertnstert.2005.09.041
|
[130]
|
Saragusty, J. and Arav, A. (2011) Current Progress in Oocyte and Embryo Cryopreservation by Slow Freezing and Vitrification. Reproduction, 141, 1-19. https://doi.org/10.1530/REP-10-0236
|
[131]
|
Amorim, C., Curaba, M., Van Langendonckt, A., Dolmans, M.-M. and Donnez, J. (2011) Vitrification as an Alternative Means of Cryopreserving Ovarian Tissue. Reproductive BioMedicine Online, 23, 160-186. https://doi.org/10.1016/j.rbmo.2011.04.005
|
[132]
|
Rodriguez-Wallberg, K.A. and Oktay, K. (2012) Recent Advances in Oocyte and Ovarian Tissue Cryopreservation and Transplantation. Best Practice & Research: Clinical Obstetrics & Gynaecology, 26, 391-405. https://doi.org/10.1016/j.bpobgyn.2012.01.001
|
[133]
|
Mukaida, T. and Oka, C. (2012) Vitrification of Oocytes, Embryos and Blastocysts. Best Practice & Research: Clinical Obstetrics & Gynaecology, 26, 789-803. https://doi.org/10.1016/j.bpobgyn.2012.07.001
|
[134]
|
Otoi, T., Yamamoto, K., Koyama, N., Tachikawa, S. and Suzuki, T. (1996) A Frozen-Thawed in Vitro-Matured Bovine Oocyte Derived Calf with Normal Growth and Fertility. The Journal of Veterinary Medical Science, 58, 811-813. https://doi.org/10.1292/jvms.58.811
|
[135]
|
Maclellan, L.J., Carnevale, E.M., Coutinho da Silva, M.A., Scoggin, C.F., Bruemmer, J.E. and Squires, E.L. (2002) Pregnancies from Vitrified Equine Oocytes Collected from Super-Stimulated and Non-Stimulated Mares. Theriogenology, 58, 911-919. https://doi.org/10.1016/S0093-691X(02)00920-2
|
[136]
|
Hölker, M., et al. (2005) Duration of in Vitro Maturation of Recipient Oocytes Affects Blastocyst Development of Cloned Porcine Embryos. Cloning and Stem Cells, 7, 35-44. https://doi.org/10.1089/clo.2005.7.35
|
[137]
|
Niemann, H. and Rath, D. (2001) Progress in Reproductive Biotechnology in Swine. Theriogenology, 56, 1291-1304. https://doi.org/10.1016/S0093-691X(01)00630-6
|
[138]
|
Perry, G. (2018) 2013 Statistics of Embryo Collection and Transfer in Domestic Farm Animals.
|
[139]
|
Chebel, R.C., Demétrio, D.G.B. and Metzger, J. (2008) Factors Affecting Success of Embryo Collection and Transfer in Large Dairy Herds. Theriogenology, 69, 98-106. https://doi.org/10.1016/j.theriogenology.2007.09.008
|
[140]
|
Stewart, B.M., et al. (2011) Efficacy of Embryo Transfer in Lactating Dairy Cows during Summer Using Fresh or Vitrified Embryos Produced in Vitro with Sex-Sorted Semen. Journal of Dairy Science, 94, 3437-3445. https://doi.org/10.3168/jds.2010-4008
|
[141]
|
Ferreira, G. (2013) Reproductive Performance of Dairy Farms in Western Buenos Aires Province, Argentina. Journal of Dairy Science, 96, 8075-8080. https://doi.org/10.3168/jds.2013-6910
|
[142]
|
Sanches, B.V., Zangirolamo, A.F., da Silva, N.C., Morotti, F. and Seneda, M.M. (2017) Cryopreservation of in Vitro-Produced Embryos: Challenges for Commercial Implementation. Animal Reproduction, 14, 521-527. https://doi.org/10.21451/1984-3143-AR995
|
[143]
|
Pontes, J.H.F., et al. (2010) Large-Scale in Vitro Embryo Production and Pregnancy Rates from Bos taurus, Bos indicus, and indicus-taurus Dairy Cows Using Sexed Sperm. Theriogenology, 74, 1349-1355. https://doi.org/10.1016/j.theriogenology.2010.06.004
|
[144]
|
Morotti, F., et al. (2013) Pregnancy Rate and Birth Rate of Calves from a Large-Scale IVF Program Using Reverse-Sorted Semen in Bos indicus, Bos indicus-taurus, and Bos taurus Cattle. Theriogenology, 81, 696-701. https://doi.org/10.1016/j.theriogenology.2013.12.002
|
[145]
|
Sudano, M.J., et al. (2011) Lipid Content and Apoptosis of in Vitro-Produced Bovine Embryos as Determinants of Susceptibility to Vitrification. Theriogenology, 75, 1211-1220. https://doi.org/10.1016/j.theriogenology.2010.11.033
|
[146]
|
Abe, H., Yamashita, S., Satoh, T. and Hoshi, H. (2002) Accumulation of Cytoplasmic Lipid Droplets in Bovine Embryos and Cryotolerance of Embryos Developed in Different Culture Systems Using Serum-Free or Serum-Containing Media. Molecular Reproduction and Development, 61, 57-66. https://doi.org/10.1002/mrd.1131
|
[147]
|
McKeegan, P.J. and Sturmey, R.G. (2009) The Role of Fatty Acids in Oocyte and Early Embryo Development. Reproduction, Fertility and Development, 44, 50-58. https://doi.org/10.1111/j.1439-0531.2009.01402.x
|
[148]
|
Sanches, B.V., et al. (2013) Cryosurvival and Pregnancy Rates after Exposure of IVF-Derived Bos indicus Embryos to Forskolin before Vitrification. Theriogenology, 80, 372-377. https://doi.org/10.1016/j.theriogenology.2013.04.026
|
[149]
|
Sudano, M., et al. (2013) Improving Postcryopreservation Survival Capacity: An Embryo-Focused Approach. Animal Reproduction, 10, 160-167.
|
[150]
|
Nguyen, T.T., et al. (2007) Genomic Conservation of Cattle Microsatellite Loci in Wild Gaur (Bos gaurus) and Current Genetic Status of This Species in Vietnam. BMC Genetics, 8, 77. https://doi.org/10.1186/1471-2156-8-77
|
[151]
|
Choi, J.W., et al. (2013) Massively Parallel Sequencing of Chikso (Korean Brindle Cattle) to Discover Genome-Wide SNPs and InDels. Molecules and Cells, 36, 203-211. https://doi.org/10.1007/s10059-013-2347-0
|
[152]
|
Mondal, M., Dhali, A., Rajkhowa, C. and Prakash, B.S. (2004) Secretion Patterns of Growth Hormone in Growing Captive Mithuns (Bos frontalis). Zoological Science, 21, 1125-1129. https://doi.org/10.2108/zsj.21.1125
|
[153]
|
Giasuddin, M., Huque, K.S. and Alam, J. (2003) Reproductive Potentials of Gayal (Bos frontalis) under Semi-Intensive Management. Asian-Australasian Journal of Animal Sciences, 16, 331-334. https://doi.org/10.5713/ajas.2003.331
|
[154]
|
Karimi, K., Esmailizadeh Koshkoiyeh, A., Asadi Fozi, M., Porto-Neto, L.R. and Gondro, C. (2015) Prioritization for Conservation of Iranian Native Cattle Breeds Based on Genome-Wide SNP Data. Conservation Genetics, 17, 77-89. https://doi.org/10.1007/s10592-015-0762-9
|
[155]
|
Taberlet, P., et al. (2008) Are Cattle, Sheep, and Goats Endangered Species? Molecular Ecology, 17, 275-284. https://doi.org/10.1111/j.1365-294X.2007.03475.x
|
[156]
|
Morais, J., Oom, M.M., Malta-Vacas, J. and Luís, C. (2005) Genetic Structure of an Endangered Portuguese Semiferal Pony Breed, the Garrano. Biochemical Genetics, 43, 347-364. https://doi.org/10.1007/s10528-005-6775-1
|
[157]
|
Amador, C., Hayes, B.J. and Daetwyler, H.D. (2014) Genomic Selection for Recovery of Original Genetic Background from Hybrids of Endangered and Common Breeds. Evolutionary Applications, 7, 227-237. https://doi.org/10.1111/eva.12113
|
[158]
|
Bolormaa, S., Hayes, B.J., Hawken, R.J., Zhang, Y., Reverter, A. and Goddard, M.E. (2011) Detection of Chromosome Segments of Zebu and Taurine Origin and Their Effect on Beef Production and Growth. Journal of Animal Science, 89, 2050-2060. https://doi.org/10.2527/jas.2010-3363
|
[159]
|
Martín-Burriel, I., et al. (2007) Genetic Diversity and Relationships of Endangered Spanish Cattle Breeds. Journal of Heredity, 98, 687-691. https://doi.org/10.1093/jhered/esm096
|
[160]
|
Rodero-Serrano, E., Demyda-Peyrás, S., González-Martinez, A., Rodero-Franganillo, A. and Moreno-Millán, M. (2013) The Rob(1;29) Chromosome Translocation in Endangered Andalusian Cattle Breeds. Livestock Science, 158, 32-39. https://doi.org/10.1016/j.livsci.2013.10.001
|
[161]
|
Rendo, F., et al. (2004) Analysis of the Genetic Structure of Endangered Bovine Breeds from the Western Pyrenees Using DNA Microsatellite Markers. Biochemical Genetics, 42, 99-108. https://doi.org/10.1023/B:BIGI.0000020465.62447.00
|
[162]
|
Edwards, C.J., Loftus, R.T., Bradley, D.G., Dolf, G. and Looft, C. (2000) Relationships between the Endangered Pustertaler-Sprinzen and Three Related European Cattle Breeds as Analysed with 20 Microsatellite Loci. Animal Genetics, 31, 329-332. https://doi.org/10.1046/j.1365-2052.2000.00651.x
|
[163]
|
Ginja, C., Telo Da Gama, L. and Penedo, M.C.T. (2010) Analysis of STR Markers Reveals High Genetic Structure in Portuguese Native Cattle. Journal of Heredity, 101, 201-210. https://doi.org/10.1093/jhered/esp104
|
[164]
|
Mateus, J.C., Penedo, M.C.T., Alves, V.C., Ramos, M. and Rangel-Figueiredo, T. (2004) Genetic Diversity and Differentiation in Portuguese Cattle Breeds Using Microsatellites. Animal Genetics, 35, 106-113. https://doi.org/10.1111/j.1365-2052.2004.01089.x
|
[165]
|
Cesarani, A., et al. (2018) Genome-Wide Variability and Selection Signatures in Italian Island Cattle Breeds. Animal Genetics, 49, 371-383. https://doi.org/10.1111/age.12697
|
[166]
|
Klocker, V., Tambasco-Talhari, D., Pozzi, P., Coutinho, L. and Regitano, L. (2003) Genetic Characterization of Aberdeen Angus Cattle Using Molecular Markers. Genetics and Molecular Biology, 26, 133-137. https://doi.org/10.1590/S1415-47572003000200005
|
[167]
|
Wiener, P., Burton, D. and Williams, J.L. (2005) Breed Relationships and Definition in British Cattle: A Genetic Analysis. Heredity (Edinb), 93, 597-602. https://doi.org/10.1038/sj.hdy.6800566
|
[168]
|
Williams, J.L., et al. (2015) Inbreeding and Purging at the Genomic Level: The Chillingham Cattle Reveal Extensive, Non-Random SNP Heterozygosity. Animal Genetics, 47, 19-27. https://doi.org/10.1111/age.12376
|
[169]
|
Browett, S., et al. (2018) Genomic Characterisation of the Indigenous Irish Kerry Cattle Breed. Frontiers in Genetics, 9, 51. https://doi.org/10.3389/fgene.2018.00051
|
[170]
|
Tijjani, A., Utsunomiya, Y.T., Ezekwe, A.G., Nashiru, O. and Hanotte, O. (2019) Genome Sequence Analysis Reveals Selection Signatures in Endangered Trypanotolerant West African Muturu Cattle. Frontiers in Genetics, 10, 442. https://doi.org/10.3389/fgene.2019.00442
|
[171]
|
Msalya, G., et al. (2017) Determination of Genetic Structure and Signatures of Selection in Three Strains of Tanzania Shorthorn Zebu, Boran and Friesian Cattle by Genome-Wide SNP Analyses. PLoS ONE, 12, e0171088. https://doi.org/10.1371/journal.pone.0171088
|
[172]
|
Kim, J., et al. (2017) The Genome Landscape of Indigenous African Cattle. Genome Biology, 18, Article No. 34. https://doi.org/10.1186/s13059-017-1153-y
|
[173]
|
Ndiaye, N.P., Sow, A., Dayo, G.K., Ndiaye, S., Sawadogo, G.J. and Sembène, M. (2015) Genetic Diversity and Phylogenetic Relationships in Local Cattle Breeds of Senegal Based on Autosomal Microsatellite Markers. Veterinary World, 8, 994-1005. https://doi.org/10.14202/vetworld.2015.994-1005
|
[174]
|
Gwakisa, P.S., Kemp, S.J. and Teale, A.J. (1994) Characterization of Zebu Cattle Breeds in Tanzania Using Random Amplified Polymorphic DNA Markers. Animal Genetics, 25, 89-94. https://doi.org/10.1111/j.1365-2052.1994.tb00433.x
|
[175]
|
Sanarana, Y., Visser, C., Bosman, L., Nephawe, K., Maiwashe, A. and van Marle-KÖster, E. (2016) Genetic Diversity in South African Nguni Cattle Ecotypes Based on Microsatellite Markers. Tropical Animal Health and Production, 48, 379-385. https://doi.org/10.1007/s11250-015-0962-9
|
[176]
|
Edea, Z., Bhuiyan, M.S.A., Dessie, T., Rothschild, M.F., Dadi, H. and Kim, K.S. (2014) Genome-Wide Genetic Diversity, Population Structure and Admixture Analysis in African and Asian Cattle Breeds. Animal, 9, 218-226. https://doi.org/10.1017/S1751731114002560
|
[177]
|
Khatun, M.M., Hossain, K.M. and Mahbubur Rahman, S.M. (2012) Molecular Characterization of Selected Local and Exotic Cattle Using RAPD Marker. Asian-Australasian Journal of Animal Sciences, 25, 751-757. https://doi.org/10.5713/ajas.2011.11331
|