[1]
|
Mengiste, T. (2012) Plant Immunity to Necrotrophs. Annual Review of Phytopathology, 50, 267-294. https://doi.org/10.1146/annurev-phyto-081211-172955
|
[2]
|
Spanu, P.D. and Panstruga, R. (2017) Editorial: Biotrophic Plant-Microbe Interactions. Frontiers in Plant Science, 8, 192. https://doi.org/10.3389/fpls.2017.00192
https://www.frontiersin.org/article/10.3389/fpls.2017.00192
|
[3]
|
van Kan, J.A.L. (2006) Licensed to Kill: The Lifestyle of a Necrotrophic Plant Pathogen. Trends in Plant Science, 11, 247-253.
https://doi.org/10.1016/j.tplants.2006.03.005
|
[4]
|
Wei, M., Wang, A., Liu, Y., Ma, L., Niu, X. and Zheng, A. (2020) Identification of the Novel Effector RsIA_NP8 in Rhizoctonia solani AG1 IA That Induces Cell Death and Triggers Defense Responses in Non-Host Plants. Frontiers in Microbiology, 11, 1115. https://doi.org/10.3389/fmicb.2020.01115
|
[5]
|
Pandey, D., Rajendran, S., Gaur, M., Sajeesh, P.K. and Kumar, A. (2016) Plant Defense Signaling and Responses against Necrotrophic Fungal Pathogens. Journal of Plant Growth Regulation, 35, 1159-1174.
https://doi.org/10.1007/s00344-016-9600-7
|
[6]
|
Laluk, K. and Mengiste, T. (2010) Necrotroph Attacks on Plants: Wanton Destruction or Covert Extortion? The Arabidopsis Book, 8, e0136.
https://doi.org/10.1199/tab.0136
|
[7]
|
Muthamilarasan, M. and Prasad, M. (2013) Plant Innate Immunity: An Updated Insight into Defense Mechanism. Journal of Biosciences, 38, 433-449.
https://doi.org/10.1007/s12038-013-9302-2
|
[8]
|
Pandey, S.P. and Somssich, I.E. (2009) The Role of WRKY Transcription Factors in Plant Immunity. Plant Physiology, 150, 1648-1655.
https://doi.org/10.1104/pp.109.138990
|
[9]
|
Lazniewska, J., Macioszek, V.K., Lawrence, C.B. and Kononowicz, A.K. (2010) Fight to the Death: Arabidopsis thaliana Defense Response to Fungal Necrotrophic Pathogens. Acta Physiologiae Plantarum, 32, 1-10.
https://doi.org/10.1007/s11738-009-0372-6
|
[10]
|
Thomma, B.P.H.J., Nürnberger, T. and Joosten, M.H.A.J. (2011) Of PAMPs and Effectors: The Blurred PTIETI Dichotomy. The Plant Cell, 23, 4-15.
https://doi.org/10.1105/tpc.110.082602
|
[11]
|
Gong, B.-Q., Wang, F.-Z. and Li, J.-F. (2020) Hide-and-Seek: Chitin-Triggered Plant Immunity and Fungal Counterstrategies. Trends in Plant Science, 25, 8.
https://doi.org/10.1016/j.tplants.2020.03.006
|
[12]
|
Wen, L. (2012) Cell Death in Plant Immune Response to Necrotrophs. Journal of Plant Biochemistry & Physiology, 1, 1-3.
https://doi.org/10.4172/2329-9029.1000e103
|
[13]
|
Jones, D.G.J. and Dangl, J.L. (2006) The Plant Immune System. Nature, 444, 323-329.
https://doi.org/10.1038/nature05286
|
[14]
|
Wang, X., Jiang, N., Liu, J., Liu, W. and Wang, G.L. (2014) The Role of Effectors and Host Immunity in Plant-Necrotrophic Fungal Interactions. Virulence, 5, 722-732. https://doi.org/10.4161/viru.29798
|
[15]
|
Glazebrook, J. (2005) Contrasting Mechanisms of Defense against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43, 205-227.
https://doi.org/10.1146/annurev.phyto.43.040204.135923
|
[16]
|
Coll, N.S., Epple, P. and Dangl, J.L. (2011) Programmed Cell Death in the Plant Immune System. Cell Death & Differentiation, 18, 1247-1256.
https://doi.org/10.1038/cdd.2011.37
|
[17]
|
Yang, G., Tang, L., Gong, Y., Xie, J., Fu, Y., Jiang, D., et al. (2018) A Cerato-Platanin Protein SsCP1 Targets Plant PR1 and Contributes to Virulence of Sclerotinia sclerotiorum. New Phytologist, 217, 739-755. https://doi.org/10.1111/nph.14842
|
[18]
|
Li, S., Peng, X., Wang, Y., Hua, K. Y., Xing, F., Zheng, Y.Y., et al. (2019) The Effector AGLIP1 in Rhizoctonia solani AG1 IA Triggers Cell Death in Plants and Promotes Disease Development through Inhibiting PAMP-Triggered Immunity in Arabidopsis thaliana. Frontiers in Microbiology, 10, 2228.
https://doi.org/10.3389/fmicb.2019.02228
|
[19]
|
Dolfors, F., Holmquist, L., Dixelius, C. and Tzelepis, G. (2019) A LysM Effector Protein from the Basidiomycete Rhizoctonia solani Contributes to Virulence through Suppression of Chitin Triggered Immunity. Molecular Genetics and Genomics, 294, 1211-1218. https://doi.org/10.1007/s00438-019-01573-9
|
[20]
|
Anderson, J.P., Sperschneider, J., Win, J., Kidd, B., Yoshida, K., Hane, J., et al. (2017) Comparative Secretome Analysis of Rhizoctonia solani Isolates with Different Host Ranges Reveals Unique Secretomes and Cell Death Inducing Effectors. Scientific Reports, 7, Article No. 10410. https://doi.org/10.1038/s41598-017-10405-y
|
[21]
|
Checker, V.G., Kushwaha, H.R., Kumari, P. and Yadav, S. (2018) Role of Phytohormones in Plant Defense: Signaling and Cross Talk. In: Singh, A. and Singh, I., Eds., Molecular Aspects of Plant-Pathogen Interaction, Springer, Singapore, 159-184.
https://doi.org/10.1007/978-981-10-7371-7_7
|
[22]
|
Caarls, L., Pieterse, C.M.J. and Van Wees, S.C.M. (2015) How Salicylic Acid Takes Transcriptional Control over Jasmonic Acid Signaling. Frontiers in Plant Science, 6, 170. https://www.frontiersin.org/article/10.3389/fpls.2015.00170
https://doi.org/10.3389/fpls.2015.00170
|
[23]
|
Wu, Y., Zhang, D., Chu, J.Y., Boyle, P., Wang, Y., Brindle, I.D., De Luca, V. and Després, C. (2012) The Arabidopsis NPR1 Protein Is a Receptor to the Plant Defense Hormone Salicylic Acid. Cell Reports, 1, 639-647.
https://doi.org/10.1016/j.celrep.2012.05.008
|
[24]
|
Jelenska, J., Yao, N., Vinatzer, B.A., Wright, C.M., Brodsky, J.L. and Greenberg, J.T. (2007) AJ Domain Virulence Effector of Pseudomonas syringae Remodels Host Chloroplasts and Suppresses Defenses. Current Biology, 17, 499-508.
https://doi.org/10.1016/j.cub.2007.02.028
|
[25]
|
Zheng, X., Spivey, N.W., Zeng, W., Po-Pu, L., Fu, Z.Q., Klessig, D.F., He, S.Y. and Dong, X. (2012) Coronatine Promotes Pseudomonas syringae Virulence in Plants by Activating a Signaling Cascade That Inhibits Salicylic Acid Accumulation. Cell Host & Microbe, 11, 587-596. https://doi.org/10.1016/j.chom.2012.04.014
|
[26]
|
Bakker, P., Doornbos, R.F., Zamioudis, C., Berendsen, R.L. and Pieterse, C.M.J. (2013) Induced Systemic Resistance and the Rhizosphere Microbiome. The Plant Pathology Journal, 29, 136-143. https://doi.org/10.5423/PPJ.SI.07.2012.0111
|
[27]
|
Kravchuk, Z., Vicedo, B., Flors, V., Camańes, G., González-Bosch, C. and Garcia-Agustin, P. (2011) Priming for JA-Dependent Defenses Using Hexanoic Acid Is an Effective Mechanism to Protect Arabidopsis against B. cinerea. Journal of Plant Physiology, 186, 359-366. https://doi.org/10.1016/j.jplph.2010.07.028
|
[28]
|
Martinez-Medina, A., Fernández, I., Sánchez-Guzmán, M.J., Jung, S.C., Pascual, J.A. and Pozo, M.J. (2013) Deciphering the Hormonal Signalling Network behind the Systemic Resistance Induced by Trichoderma harzianum in Tomato. Frontiers in Plant Science, 4, 206. https://doi.org/10.3389/fpls.2013.00206
|
[29]
|
Niu, Y., Figueroa, P. and Browse, J. (2011) Characterization of JAZ-Interacting bHLH Transcription Factors That Regulate Jasmonate Responses in Arabidopsis. Journal of Experimental Botany, 62, 2143-2154. https://doi.org/10.1093/jxb/erq408
|
[30]
|
Weller, D.M., Mavrodi, D.V., Van Pelt, J.A., Pieterse, C.M.J., Van Loon, L.C. and Bakker, P.A.H.M. (2012) Induced Systemic Resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluoresces. Phytopathology, 102, 403-412.
https://doi.org/10.1094/PHYTO-08-11-0222
|
[31]
|
Zamioudis, C. and Pieterse, C.M.J. (2012) Modulation of Host Immunity by Beneficial Microbes. Molecular Plant-Microbe Interactions, 25, 139-150.
https://doi.org/10.1094/MPMI-06-11-0179
|
[32]
|
Moffat, C.S., Ingle, R.A., Wathugala, D.L., Saunders, N.J., Knight, H. and Knight, M.R. (2012) ERF5 and ERF6 Play Redundant Roles as Positive Regulators of JA/Et-Mediated Defense against Botrytis cinerea in Arabidopsis. PLoS ONE, 7, e35995. https://doi.org/10.1371/journal.pone.0035995
|
[33]
|
Zander, M., La Camera, S., Lamotte, O., Metraux, J.P. and Gatz, C. (2010) Arabidopsis thaliana Class-II TGA Transcription Factors Are Essential Activators of Jasmonic Acid/Ethylene-Induced Defense Responses. The Plant Journal: For Cell and Molecular Biology, 61, 200-210. https://doi.org/10.1111/j.1365-313X.2009.04044.x
|
[34]
|
An, C. and Mou, Z. (2013) The Function of the Mediator Complex in Plant Immunity. Plant Signaling & Behavior, 8, e23182. https://doi.org/10.4161/psb.23182
|
[35]
|
Kidd, B.N., Edgar, C.I., Kumar, K.K., Aitken, E.A., Schenk, P.M., Manners, J.M. and Kazan, K. (2009) The Mediator Complex Subunit PFT1 Is a Key Regulator of Jasmonate-Dependent Defense in Arabidopsis. Plant Cell, 21, 2237-2252.
https://doi.org/10.1105/tpc.109.066910
|
[36]
|
Berr, A., McCallum, E.J., Alioua, A., Heintz, D., Heitz, T. and Shen, W.H. (2010) Arabidopsis Histone Methyltransferase SET Domain Group 8 Mediates Induction of the Jasmonate/Ethylene Pathway Genes in Plant Defense Response to Necrotrophic Fungi. Plant Physiology, 154, 1403-1414.
https://doi.org/10.1104/pp.110.161497
|
[37]
|
Shakeel, S.N., Wang, X., Binder, B.M. and Schaller, G.E. (2013) Mechanisms of Signal Transduction by Ethylene: Overlapping and Non-Overlapping Signaling Roles in a Receptor Family. AoB Plants, 5, plt010. https://doi.org/10.1093/aobpla/plt010
|
[38]
|
Denoux, C., Galletti, R., Mammarella, N., Gopalan, S., Werck, D., De Lorenzo, G., Ferrari, S., Ausubel, F.M. and Dewdney, J. (2008) Activation of Defense Response Pathways by OGs and Flg22 Elicitors in Arabidopsis Seedlings. Molecular Plant, 1, 423-445. https://doi.org/10.1093/mp/ssn019
|
[39]
|
Nambeesan, S., AbuQamar, S., Laluk, K., Mattoo, A.K., Mickelbart, M.V., Ferruzzi, M.G., Mengiste, T. and Handa, A.K. (2012) Polyamines Attenuate Ethylene-Mediated Defense Responses to Abrogate Resistance to Botrytis cinerea in Tomato. Plant Physiology, 158, 1034-1045. https://doi.org/10.1104/pp.111.188698
|
[40]
|
Vidhyasekaran, P. (2014) PAMP Signals in Plant Innate Immunity: Signal Perception and Transduction. Springer, Dordrecht, 442.
https://doi.org/10.1007/978-94-007-7426-1
|
[41]
|
Zhu, L., Li, Y., Li, L., Yang, J. and Zhang, M. (2011) Ethylene Is Involved in Leafy Mustard Systemic Resistance to Turnip Mosaic Virus Infection through the Mitochondrial Alternative Oxidase Pathway. Physiological and Molecular Plant Pathology, 76, 166-172. https://doi.org/10.1016/j.pmpp.2011.09.005
|
[42]
|
Akagi, A., Dandekar, A.M. and Stotz, H.U. (2011) Resistance of Malus domestica Fruit to Botrytis cinerea Depends on Endogenous Ethylene Biosynthesis. Phytopathology, 101, 1311-1321. https://doi.org/10.1094/PHYTO-03-11-0087
|
[43]
|
Son, G.H., Wan, J., Kim, H.J., Nguyen, X.C., Chung, W.-S., Hong, J.C. and Stacey, G. (2012) Ethylene-Responsive Element-Binding Factor 5, ERF5, Is Involved in Chitin-Induced Innate Immunity Response. Molecular Plant-Microbe Interactions, 25, 48-60. https://doi.org/10.1094/MPMI-06-11-0165
|
[44]
|
Gaige, A.R., Ayella, A. and Shuai, B. (2010) Methyl Jasmonate and Ethylene Induce Partial Resistance in Medicago truncatula against the Charcoal Rot Pathogen Macrophomina phaseolina. Physiological and Molecular Plant Pathology, 74, 412-416.
https://doi.org/10.1016/j.pmpp.2010.07.001
|
[45]
|
Boutrot, F., Segonzac, C., Chang, K.N., Qiao, H., Ecker, J.R., Zipfel, C. and Rathjen, J.P. (2010) Direct Transcriptional Control of the Arabidopsis Immune Receptor FLS2 by the Ethylene-Dependent Transcription Factors EIN3 and EIL1. Proceedings of the National Academy of Sciences of the USA, 107, 14502-14507.
https://doi.org/10.1073/pnas.1003347107
|
[46]
|
Sharon, M., Freeman, S. and Sneh, B. (2011) Assessment of Resistance Pathways Induced in Arabidopsis thaliana by Hypovirulent Rhizoctonia spp. Isolates. Phytopathology, 101, 828-838. https://doi.org/10.1094/PHYTO-09-10-0247
|
[47]
|
Po-Wen, C., Singh, P. and Zimmerli, L. (2013) Priming of the Arabidopsis Pattern-Triggered Immunity Response upon Infection by Necrotrophic Pectobacterium carotovorum Bacteria. Molecular Plant Pathology, 14, 58-70.
https://doi.org/10.1111/j.1364-3703.2012.00827.x
|
[48]
|
Zhu, Z., An, F., Feng, Y., Li, P., Xue, L.A.M., Jiang, Z., Kim, J.M., To, T.K., Li, W., Zhang, X., Yu, Q., Dong, Z., Chen, W.Q., Seki, M., Zhou, J.M. and Guo, H. (2011) Derepression of Ethylene-Stabilized Transcription Factors (EIN3/EIL1) Mediates Jasmonate and Ethylene Signaling Synergy in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 108, 12539-12544.
https://doi.org/10.1073/pnas.1103959108
|
[49]
|
O’Donnell, P.J., Calvert, R., Atzorn, R., Wasternack, C., Leyser, H.M.O. and Bowles, D.J. (1996) Ethylene as a Signal Mediating the Wound Response of Tomato Plants. Science, 274, 1914-1917. https://doi.org/10.1126/science.274.5294.1914
|
[50]
|
Hudgins, J.W. and Franceschi, V.R. (2004) Methyl Jasmonate-Induced Ethylene Production Is Responsible for Conifer Phloem Defense Responses and Reprogramming of Stem Cambial Zone for Traumatic Resin Duct Formation. Plant Physiology, 135, 2134-2149. https://doi.org/10.1104/pp.103.037929
|
[51]
|
Ali, A., Pardo, J.M. and Yun, D.-J. (2020) Desensitization of ABA-Signaling: The Swing from Activation to Degradation. Frontiers in Plant Science, 11, 379.
https://doi.org/10.3389/fpls.2020.00379
|
[52]
|
Schmidt, K., Pflugmacher, M., Klages, S., Maser, A., Mock, A. and Stahl, D.J. (2008) Accumulation of the Hormone Abscisic Acid (ABA) at the Infection Site of the Fungus Cercospora beticola Supports the Role of ABA as a Repressor of Plant Defense in Sugar Beet. Molecular Plant Pathology, 9, 661-673.
https://doi.org/10.1111/j.1364-3703.2008.00491.x
|
[53]
|
Asselbergh, B., De vleesschauwer, D. and Hofte, M. (2008) Global Switches and Fine-Tuning ABA Modulates Plant Pathogen Defense. Molecular Plant-Microbe Interactions, 21, 709-719. https://doi.org/10.1094/MPMI-21-6-0709
|
[54]
|
Ton, J., Flors, V. and Mauch-Mani, B. (2009) The Multifaceted Role of ABA in Disease Resistance. Trends in Plant Sciences, 14, 310-317.
https://doi.org/10.1016/j.tplants.2009.03.006
|
[55]
|
Alazem, M., Lin, K.Y. and Lin, N.S. (2014) The Abscisic Acid Pathway Has Multifaceted Effects on the Accumulation of Bamboo Mosaic Virus. Molecular Plant-Microbe Interactions, 27, 177-189. https://doi.org/10.1094/MPMI-08-13-0216-R
|
[56]
|
El Rahman, T.A., El Oirdi, M., Gonzalez-Lamothe, R. and Bouarab, K. (2012) Necrotrophic Pathogens Use Salicylic Acid Signaling Pathway to Promote Disease Development in Tomato. Molecular Plant-Microbe Interactions, 25, 1584-1593.
https://doi.org/10.1094/MPMI-07-12-0187-R
|
[57]
|
Gimenez-Ibanez, S. and Solano, R. (2013) Nuclear Jasmonate and Salicylate Signaling and Crosstalk in Defense against Pathogens. Frontiers in Plant Science, 4, 72.
https://doi.org/10.3389/fpls.2013.00072
|
[58]
|
Van der Does, D., Leon-Reyes, A., Koornneef, A., Van Verk, M.C., Rodenburg, N., Pauwels, L., Goossens, A., Korbes, A.P., Memelink, J., Ritsema, T., Van Wees, S.C.M. and Pieterse, C.M.J. (2013) Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCF COI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59. The Plant Cell, 25, 744-751.
https://doi.org/10.1105/tpc.112.108548
|
[59]
|
Zander, M., Chen, S., Imkampe, J., Thurow, C. and Gatz, C. (2012) Repression of the Arabidopsis thaliana Jasmonic Acid/Ethylene-Induced Defense Pathway by TGA-Interacting Glutaredoxins Depends on Their C-Terminal ALWL Motif. Molecular Plant, 5, 831-840. https://doi.org/10.1093/mp/ssr113
|
[60]
|
Kachroo, A., Lapchyk, L., Fukushige, H., Hildebrand, D., Klessig, D. and Kachroo, P. (2003) Plastidial Fatty Acid Signaling Modulates Salicylic Acid- and Jasmonic Acid-Mediated Defense Pathways in the Arabidopsis ssi2 Mutant. The Plant Cell, 15, 2952-2965. https://doi.org/10.1105/tpc.017301
|
[61]
|
Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Korbes, A.P., Memelink, J., Pieterse, C.M.J. and Ritsema, T. (2010) Ethylene Signaling Renders the Jasmonate Response of Arabidopsis Insensitive to Future Suppression by Salicylic Acid. Molecular Plant-Microbe Interactions, 23, 187-197.
https://doi.org/10.1094/MPMI-23-2-0187
|
[62]
|
Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.-P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X. and Pieterse, C.M.J. (2003) NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol. The Plant Cell, 15, 760-770. https://doi.org/10.1105/tpc.009159
|
[63]
|
Spoel, S.H., Johnson, J.S. and Dong, X. (2007) Regulation of Tradeoffs between Plant Defenses against Pathogens with Different Lifestyles. Proceedings of the National Academy of Sciences of the USA, 104, 18842-18847.
https://doi.org/10.1073/pnas.0708139104
|
[64]
|
Oliver, R.P. and Solomon, P.S. (2010) New Developments in Pathogenicity and Virulence of Necrotrophs. Current Opinion in Plant Biology, 13, 415-419.
https://doi.org/10.1016/j.pbi.2010.05.003
|