Table 5). A previous study reported that the insertion sequences IS1, IS5, IS10, and IS903 insert into the promoter and coding regions of ompK35 and ompK36 (Supplementary Table 1). Imipenem-resistant isolates containing blaSHV-12 and blaDHA-1 are obtained from IS5 insertion in ompK36 from Korea and Taiwan [15] [49] . IS26, IS5, IS903, and IS1 insertion in ompK36 increases resistance to cefoxitin [50] . Following meropenem induction, all isolates with an insertion sequence in ompK36 exhibited reduced susceptibility to imipenem (2- to 7.9-fold increase) and meropenem (16- to 43.5-fold increase) and increased resistance to ertapenem (42.6- to 173.9-fold increase) (Table 5), suggesting that only OmpK36 is responsible for ertapenem resistance due to its small molecular weight. Despite the presence of IS1, IS5, and IS903 in all isolates, only KP08, KP15, and KP16 developed ertapenem resistance from a single insertion sequence in each ertapenem-resistant strain. These results imply a strain-dependent activation of the insertion sequence. Furthermore, the MIC levels of ertapenem and the inhibition zone of cephalosporins are associated with the insertion type and site.

5. Conclusion

In clinical isolates, ESBL or AmpC-producing isolates associated with carbapenem resistance were more common with deficiency in OmpK35, not OmpK36. The isolate dependent IS1, IS5, and IS903 were able to insert into ompK36 to cause resistance to ertapenem and reduced susceptibility to imipenem and carbapenem.

Acknowledgements

The authors would like to acknowledge funding of the Chiayi Branch, Taichung Veterans General Hospital (RVHCY101013 and RVHCY102003), Taiwan.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Fang, C.T., Lai, S.Y., Yi, W.C., Hsueh, P.R., Liu, K.L. and Chang, S.C. (2007) Klebsiella pneumoniae Genotype K1: An Emerging Pathogen That Causes Septic Ocular or Central Nervous System Complications from Pyogenic Liver Abscess. Clinical Infectious Diseases, 45, 284-293.
https://doi.org/10.1086/519262
[2] Chang, S.C., Fang, C.T., Hsueh, P.R., Chen, Y.C. and Luh, K.T. (2000) Klebsiella pneumoniae Isolates Causing Liver Abscess in Taiwan. Diagnostic Microbiology and Infectious Disease, 37, 279-284.
https://doi.org/10.1016/S0732-8893(00)00157-7
[3] Paterson, D.L., Ko, W.C., Von Gottberg, A., Mohapatra, S., Casellas, J.M., Goossens, H., Trenholme, G., Klugman, K.P., Bonomo, R.A., Rice, L.B., Wagener, M.M., McCormack, J.G. and Yu, V.L. (2004) Antibiotic Therapy for Klebsiella pneumoniae Bacteremia: Implications of Production of Extended-Spectrum Beta-Lactamases. Clinical Infectious Disease, 39, 31-37.
https://doi.org/10.1086/420816
[4] Perrott, J., Mabasa, V.H. and Ensom, M.H. (2010) Comparing Outcomes of Meropenem Administration Strategies Based on Pharmacokinetic and Pharmacodynamic Principles: A Qualitative Systematic Review. The Annals of Pharmacotherapy, 44, 557-564.
https://doi.org/10.1345/aph.1M339
[5] Patel, G., Huprikar, S., Factor, S.H., Jenkins, S.G. and Calfee, D.P. (2008) Outcomes of Carbapenem-Resistant Klebsiella pneumoniae Infection and the Impact of Antimicrobial and Adjunctive Therapies. Infection Control and Hospital Epidemiology, 29, 1099-1106.
https://doi.org/10.1086/592412
[6] Hirsch, E.B. and Tam, V.H. (2010) Detection and Treatment Options for Klebsiella pneumoniae carbapenemases (KPCs): An Emerging Cause of Multidrug-Resistant Infection. The Journal of Antimicrobial Chemotherapy, 65, 1119-1125.
https://doi.org/10.1093/jac/dkq108
[7] Ben-David, D., Kordevani, R., Keller, N., Tal, I., Marzel, A., Gal-Mor, O., Maor, Y. and Rahav, G. (2012) Outcome of Carbapenem Resistant Klebsiella pneumoniae Bloodstream Infections. Clinical Microbiology and Infection, 18, 54-60.
https://doi.org/10.1111/j.1469-0691.2011.03478.x
[8] Papp-Wallace, K.M., Endimiani, A., Taracila, M.A. and Bonomo, R.A. (2011) Carbapenems: Past, Present, and Future. Antimicrobial Agents and Chemotherapy, 55, 4943-4960.
https://doi.org/10.1128/AAC.00296-11
[9] Gupta, V., Bansal, N., Singla, N. and Chander, J. (2013) Occurrence and Phenotypic Detection of Class A Carbapenemases among Escherichia coli and Klebsiella pneumoniae Blood Isolates at a Tertiary Care Center. Journal of Microbiology, Immunology, and Infection, 46, 104-108.
https://doi.org/10.1016/j.jmii.2012.01.004
[10] Shoma, S., Kamruzzaman, M., Ginn, A.N., Iredell, J.R. and Partridge, S.R. (2014) Characterization of Multidrug-Resistant Klebsiella pneumoniae from Australia Carrying blaNDM-1. Diagnostic Microbiology and Infectious Disease, 78, 93-97.
https://doi.org/10.1016/j.diagmicrobio.2013.08.001
[11] Karampatakis, T., Antachopoulos, C., Iosifidis, E., Tsakris, A. and Roilides, E. (2016) Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae in Greece. Future Microbiology, 11, 809-823.
https://doi.org/10.2217/fmb-2016-0042
[12] Vubil, D., Figueiredo, R., Reis, T., Canha, C., Boaventura, L. and Silva, D.A. (2017) Outbreak of KPC-3-Producing ST15 and ST348 Klebsiella pneumoniae in a Portuguese Hospital. Epidemiology and Infection, 145, 595-599.
https://doi.org/10.1017/S0950268816002442
[13] Park, Y.J., Yu, J.K., Park, K.G., Park, Y.G., Lee, S., Kim, S.Y. and Jeong, S.H. (2011) Prevalence and Contributing Factors of Nonsusceptibility to Imipenem or Meropenem in Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae and Escherichia coli. Diagnostic Microbiology and Infectious Disease, 71, 87-89.
https://doi.org/10.1016/j.diagmicrobio.2010.12.012
[14] Wu, J.J., Wang, L.R., Liu, Y.F., Chen, H.M. and Yan, J.J. (2011) Prevalence and Characteristics of Ertapenem-Resistant Klebsiella pneumoniae Isolates in a Taiwanese University Hospital. Microbial Drug Resistance, 17, 259-266.
https://doi.org/10.1089/mdr.2010.0115
[15] Song, W., Suh, B., Choi, J.Y., Jeong, S.H., Jeon, E.H., Lee, Y.K., Hong, S.G. and Lee, K. (2009) In Vivo Selection of Carbapenem-Resistant Klebsiella pneumoniae by OmpK36 Loss during Meropenem Treatment. Diagnostic Microbiology and Infectious Disease, 65, 447-449.
https://doi.org/10.1016/j.diagmicrobio.2009.08.010
[16] Shin, S.Y., Bae, I.K., Kim, J., Jeong, S.H., Yong, D., Kim, J.M. and Lee, K. (2012) Resistance to Carbapenems in Sequence Type 11 Klebsiella pneumoniae Is Related to DHA-1 and Loss of OmpK35 and/or OmpK36. Journal of Medical Microbiology, 61, 239-245.
https://doi.org/10.1099/jmm.0.037036-0
[17] Clancy, C.J., Chen, L., Hong, J.H., Cheng, S., Hao, B., Shields, R.K., Farrell, A.N., Doi, Y., Zhao, Y., Perlin, D.S., Kreiswirth, B.N. and Nguyen, M.H. (2013) Mutations of the ompK36 Porin Gene and Promoter Impact Responses of Sequence Type 258, KPC-2-Producing Klebsiella pneumoniae Strains to Doripenem and Doripenem-Colistin. Antimicrobial Agents and Chemotherapy, 57, 5258-5265.
https://doi.org/10.1128/AAC.01069-13
[18] Lee, H.S., Loh, Y.X., Lee, J.J., Liu, C.S. and Chu, C. (2015) Antimicrobial Consumption and Resistance in Five Gram-Negative Bacterial Species in a Hospital from 2003 to 2011. Journal of Microbiology, Immunology, and Infection, 48, 647-654.
https://doi.org/10.1016/j.jmii.2014.04.009
[19] Kurupati, P., Chow, C., Kumarasinghe, G. and Poh, C.L. (2004) Rapid Detection of Klebsiella pneumoniae from Blood Culture Bottles by Real-Time PCR. Journal of Clinical Microbiology, 42, 1337-1340.
https://doi.org/10.1128/JCM.42.3.1337-1340.2004
[20] CLSI (2012) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. CLSI Document M100-S22, Clinical and Laboratory Standards Institute, Wayne.
[21] CDC (2009) Modified Hodge Test for Carbapenemase Detection in Enterobacteriaceae. CDC Protocol.
[22] Chia, J.H., Chu, C., Su, L.H., Chiu, C.H., Kuo, A.J., Sun, C.F. and Wu, T.L. (2005) Development of a Multiplex PCR and SHV Melting-Curve Mutation Detection System for Detection of Some SHV and CTX-M Beta-Lactamases of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae in Taiwan. Journal of Clinical Microbiology, 43, 4486-4491.
https://doi.org/10.1128/JCM.43.9.4486-4491.2005
[23] Chiou, C.S., Lin, J.M., Chiu, C.H., Chu, C.H., Chen, S.W., Chang, Y.F., Weng, B.C., Tsay, J.G., Chen, C.L., Liu, C.H. and Chu, C. (2009) Clonal Dissemination of the Multi-Drug Resistant Salmonella enterica Serovar Braenderup, But Not the Serovar Bareilly, of Prevalent Serogroup C1 Salmonella from Taiwan. BMC Microbiology, 9, 264.
https://doi.org/10.1186/1471-2180-9-264
[24] Yigit, H., Queenan, A.M., Anderson, G.J., Domenech-Sanchez, A., Biddle, J.W., Steward, C.D., Alberti, S., Bush, K. and Tenover, F.C. (2001) Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 45, 1151-1161.
https://doi.org/10.1128/AAC.45.4.1151-1161.2001
[25] Perez-Perez, F.J. and Hanson, N.D. (2002) Detection of Plasmid-Mediated AmpC Beta-Lactamase Genes in Clinical Isolates by Using Multiplex PCR. Journal of Clinical Microbiology, 2153-2162.
https://doi.org/10.1128/JCM.40.6.2153-2162.2002
[26] Wu, T.L., Siu, L.K., Su, L.H., Lauderdale, T.L., Lin, F.M., Leu, H.S., Lin, T.Y. and Ho, M. (2001) Outer Membrane Protein Change Combined with Co-Existing TEM-1 and SHV-1 Beta-Lactamases Lead to False Identification of ESBL-Producing Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 47, 755-761.
https://doi.org/10.1093/jac/47.6.755
[27] Yan, I.S., Hsueh, P.R., Teng, L.J., Ho, S.W. and Luh, K.T. (1998) Antimicrobial Susceptibility Testing for Klebsiella pneumoniae Isolates Resistant to Extended- Spectrum Beta-Lactam Antibiotics. Journal of the Formosan Medical Association, 97, 661-666.
[28] Hsueh, P.R., Liu, Y.C., Yang, D., Yan, J.J., Wu, T.L., Huang, W.K., Wu, J.J., Ko, W.C., Leu, H.S., Yu, C.R. and Luh, K.T. (2001) Multicenter Surveillance of Antimicrobial Resistance of Major Bacterial Pathogens in Intensive Care Units in 2000 in Taiwan. Microbial Drug Resistance, 7, 3733-3782.
[29] Jean, S.S., Hsueh, P.R., Lee, W.S., Chang, H.T., Chou, M.Y., Chen, I.S., Wang, J.H., Lin, C.F., Shyr, J.M., Ko, W.C., Wu, J.J., Liu, Y.C., Huang, W.K., Teng, L.J. and Liu, C.Y. (2009) Nationwide Surveillance of Antimicrobial Resistance among Enterobacteriaceae in Intensive Care Units in Taiwan. European Journal of Clinical Microbiology and Infectious Disease, 28, 215-220.
https://doi.org/10.1007/s10096-008-0610-7
[30] Kung, C.H., Ku, W.W., Lee, C.H., Fung, C.P., Kuo, S.C., Chen, T.L. and Lee, Y.T. (2013) Epidemiology and Risk Factors of Community-Onset Urinary Tract Infection Caused by Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in a Medical Center in Taiwan: A Prospective Cohort Study. Journal of Microbiology, Immunology, and Infection, 48, 168-174.
https://doi.org/10.1016/j.jmii.2013.08.006
[31] Lin, H.C., Lai, L.A., Wu, J.Y., Su, Y.M., Chang, S.P. and Hsueh, Y.M. (2013) Risk Factors for Acquiring Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Geriatric Patients with Multiple Comorbidities in Respiratory Care Wards. Geriatrics and Gerontology International, 13, 663-671.
https://doi.org/10.1111/j.1447-0594.2012.00961.x
[32] Jeong, S.H., Song, W., Park, M.J., Kim, J.S., Kim, H.S., Bae, I.K. and Lee, K. (2008) M. Boronic Acid Disk Tests for Identification of Extended-Spectrum Beta-Lactamase Production in Clinical Isolates of Enterobacteriaceae Producing Chromosomal AmpC Beta-Lactamases. International Journal of Antimicrobial Agents, 31, 467-471.
https://doi.org/10.1016/j.ijantimicag.2007.12.014
[33] Song, W., Jeong, S.H., Kim, J.S., Kim, H.S., Shin, D.H., Roh, K.H. and Lee, K.M. (2007) Use of Boronic Acid Disk Methods to Detect the Combined Expression of Plasmid-Mediated AmpC Beta-Lactamases and Extended-Spectrum Beta-Lactamases in Clinical Isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagnostic Microbiology and Infectious Disease, 57, 315-318.
https://doi.org/10.1016/j.diagmicrobio.2006.08.023
[34] Jacoby, G.A. (2009) AmpC β-Lactamases. Clinical Microbioloy Review, 22, 161-182.
https://doi.org/10.1128/CMR.00036-08
[35] Hsueh, P.R., Liu, C.Y. and Luh, K.T. (2002) Current Status of Antimicrobial Resistance in Taiwan. Emerging Infectious Disease, 8, 132-137.
https://doi.org/10.3201/eid0802.010244
[36] Yan, J.J., Wu, S.M., Tsai, S.H., Wu, J.J. and Su, I.J. (2000) Prevalence of SHV-12 among Clinical Isolates of Klebsiella pneumoniae Producing Extended-Spectrum Beta-Lactamases and Identification of a Novel AmpC Enzyme (CMY-8) in Southern Taiwan. Antimicrobial Agents and Chemotherapy, 44, 1438-1442.
https://doi.org/10.1128/AAC.44.6.1438-1442.2000
[37] Chiu, S.K., Wu, T.L., Chuang, Y.C., Lin, J.C., Fung, C.P., Lu, P.L., Wang, J.T., Wang, L.S., Siu, L.K. and Yeh, K.M. (2013) National Surveillance Study on Carbapenem Non-Susceptible Klebsiella pneumoniae in Taiwan: The Emergence and Rapid Dissemination of KPC-2 Carbapenemase. PLoS ONE, 8, e69428.
https://doi.org/10.1371/journal.pone.0069428
[38] Lee, C.M., Liao, C.H., Lee, W.S., Liu, Y.C., Mu, J.J. and Lee, M.C. (2012) Outbreak of Klebsiella pneumoniae Carbapenemase-2-Producing K. pneumoniae Sequence Type 11 in Taiwan in 2011. Antimicrobial Agents and Chemotherapy, 56, 5016-5022.
https://doi.org/10.1128/AAC.00878-12
[39] Andrade, L.N., Curiao, T., Ferreira, J.C., Longo, J.M., Climaco, E.C., Martinez, R., Bellissimo-Rodrigues, F., Basile-Filho, A., Evaristo, M.A., Del Peloso, P.F., Ribeiro, V.B., Barth, A.L., Paula, M.C., Baquero, F., Cantón, R., Darini, A.L. and Coque, T.M. (2011) Dissemination of blaKPC-2 by the Spread of Klebsiella pneumoniae Clonal Complex 258 Clones (ST258, ST11, ST437) and Plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae Species in Brazil. Antimicrobial Agents and Chemotherapy, 55, 3579-3583.
https://doi.org/10.1128/AAC.01783-10
[40] Damjanova, I., Toth, A., Pászti, J., Hajbel-Vékony, G., Jakab, M., Berta, J., Milch, H. and Füzi, M. (2008) Expansion and Countrywide Dissemination of ST11, ST15 and ST147 Ciprofloxacin-Resistant CTX-M-15-Type Beta-Lactamase-Producing Klebsiella pneumoniae Epidemic Clones in Hungary in 2005—The New “MRSAs”? Journal of Antimicrobial Chemotherapy, 62, 978-985.
https://doi.org/10.1093/jac/dkn287
[41] Ko, K.S., Lee, J.Y., Baek, J.Y., Suh, J.Y., Lee, M.Y., Choi, J.Y., Yeom, J.S., Kim, Y.S., Jung, S.I., Shin, S.Y., Heo, S.T., Kwon, K.T., Son, J.S., Kim, S.W., Chang, H.H., Ki, H.K., Chung, D.R., Peck, K.R. and Song, J.H. (2010) Predominance of an ST11 Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Clone Causing Bacteraemia and Urinary Tract Infections in Korea. Journal of Medical Microbiology, 59, 822-828.
https://doi.org/10.1099/jmm.0.018119-0
[42] Crowley, B., Benedi, V.J. and Domenech-Sanchez, A. (2002) Expression of SHV-2 Beta-Lactamase and of Reduced Amounts of OmpK36 Porin in Klebsiella pneumoniae Results in Increased Resistance to Cephalosporins and Carbapenems. Antimicrobial Agents and Chemotherapy, 46, 3679-3682.
https://doi.org/10.1128/AAC.46.11.3679-3682.2002
[43] Doumith, M., Ellington, M.J., Livermore, D.M. and Woodford, N. (2009) Molecular Mechanisms Disrupting Porin Expression in Ertapenem-Resistant Klebsiella and Enterobacter spp. Clinical Isolates from the UK. Journal of Antimicrobial Chemotherapy, 63, 659-667.
https://doi.org/10.1093/jac/dkp029
[44] Tsai, Y.K., Fung, C.P., Lin, J.C., Chen, J.H., Chang, F.Y., Chen, T.L. and Siu, L.K. (2011) Klebsiella pneumoniae Outer Membrane Porins OmpK35 and OmpK36 Play Roles in Both Antimicrobial Resistance and Virulence. Antimicrobial Agents and Chemotherapy, 55, 1485-1493.
https://doi.org/10.1128/AAC.01275-10
[45] Turner, K.L., Cahill, B.K., Dilello, S.K., Gutel, D., Brunson, D.N., Albertí, S. and Ellis, T.N. (2016) Porin Loss Impacts the Host Inflammatory Response to Outer Membrane Vesicles of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 60, 1360-1369.
https://doi.org/10.1128/AAC.01627-15
[46] Sugawara, E., Kojima, S. and Nikaido, H. (2016) Klebsiella pneumoniae Major Porins OmpK35 and OmpK36 Allow More Efficient Diffusion of β-Lactams than Their Escherichia coli Homologs OmpF and OmpC. Journal of Bacteriology, 198, 3200-3208.
https://doi.org/10.1128/JB.00590-16
[47] Tsai, Y.K., Liou, C.H., Fung, C.P., Lin, J.C. and Siu, L.K. (2013) Single or in Combination Antimicrobial Resistance Mechanisms of Klebsiella pneumoniae Contribute to Varied Susceptibility to Different Carbapenems. PLoS ONE, 8, e79640.
https://doi.org/10.1371/journal.pone.0079640
[48] Wassef, M., Abdelhaleim, M., AbdulRahman, E. and Ghaith, D. (2015) The Role of OmpK35, OmpK36 Porins, and Production of β-Lactamases on Imipenem Susceptibility in Klebsiella pneumoniae Clinical Isolates, Cairo, Egypt. Microbial Drug Resistance, 21, 577-580.
https://doi.org/10.1089/mdr.2014.0226
[49] Lee, C.H., Chu, C., Liu, J.W., Chen, Y.S., Chiu, C.J. and Su, L.H. (2007) Collateral Damage of Flomoxef Therapy: In Vivo Development of Porin Deficiency and Acquisition of blaDHA-1 Leading to Ertapenem Resistance in a Clinical Isolate of Klebsiella pneumoniae Producing CTX-M-3 and SHV-5 Beta-Lactamases. Journal of Antimicrobial Chemotherapy, 60, 410-413.
https://doi.org/10.1093/jac/dkm215
[50] Hernandez-Alles, S., Benedi, V.J., Martinez-Martinez, L., Pascual, A., Aguilar, A., Tomas, J.M., Benedí, V.J. and Jacoby, G.A. (1999) Development of Resistance during Antimicrobial Therapy Caused by Insertion Sequence Interruption of Porin Genes. Antimicrobial Agents and Chemotherapy, 3, 937-939.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.