Electric Modulus Analysis of Carbon Black/Copolymer Composite Materials

DOI: 10.4236/msa.2011.210192   PDF   HTML     4,903 Downloads   8,663 Views   Citations


We have investigated the electrical properties of carbon black (CB) loaded in ethylene butylacrylate copolymer composite (EBA) in the frequency range between 102 and 104 Hz and temperature range between 153 and 353 K. The frequency dependence of electrical data that have been analyzed in two frameworks: the electrical modulus formalism with the Kohlrausch-Williams-Watts stretched exponential function (KWW) and the electrical conductivity by using the Jonscher’s power law in the frequency domain. The stretching exponent βKWW and n are found to be temperature independent for all CB fractions and to be decreased when the CB volume concentrations loaded in copolymer matrix increases. It is found that the activation energy obtained by the modulus method is in good agreement with that obtained by the DC conductivity in the power law which is independent on the CB contents that exist in the copolymer matrix, suggesting that these particles do not interact significantly with the chain segments of the macromolecules in the EBA copolymer.

Share and Cite:

M. Hasnaoui, M. Graça, M. Achour and L. Costa, "Electric Modulus Analysis of Carbon Black/Copolymer Composite Materials," Materials Sciences and Applications, Vol. 2 No. 10, 2011, pp. 1421-1426. doi: 10.4236/msa.2011.210192.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Strumpler and J. Glatz-Reichenbach, “Conducting Polymer Composites,” Journal of Electroceramics, Vol. 3, No. 4, 1999, pp. 329-346. doi:10.1023/A:1009909812823
[2] A. Schonhals, “Dielectric Properties of Amorphous Poly- mers,” In: J. P. Runt and S. Fitzgerald, Ed., Dielectric Spectroscopy of Polymeric Materials, American Chemi- cal Society, Washington DC, 1997, pp. 81-106.
[3] L. C. Costa, F. Henry, M. Valente, S. K. Mendiratta and A. S. Sombra, “Electrical and Dielectrical Properties of the Percolating System Polystyrene/Polypyrrole Particles,” European Polymer Journal, Vol. 38, No. 8, 2002, pp. 1495-1599. doi:10.1016/S0014-3057(02)00044-7
[4] L. Nuigi and G. Cianfranco, “Metal-Polymer Nanocomposites,” John Wiley & Sons, Oxford, 2004.
[5] P. M. Ajayan, P. Braun and L. S. Schadler, “Nanocompo- site Science and Technology,” Wiley-VCH Verlag GmbH & Co., Weinham, 2003.
[6] M. E. Achour, “Electromagnetic Properties of Carbon Black Filled Epoxy Polymer Composites,” In: C. Bros- seau, Ed., Prospects in filled Polymers Engineering: Me- sostructure, Elasticity Network and Macroscopic Pro- perties, Transworld Research Network, Singapore, 2008, pp. 129-174.
[7] A. Mdarhri, C. Brosseau and F. Carmona, “Microwave Dielectric Properties of Carbon Black Filled Polymers under Uniaxial Tension,” Journal of Applied Physics, Vol. 101, No. 8, 2007, pp. 084111-084122. doi:10.1063/1.2718867
[8] M. E. Achour, C. Brosseau and F. Carmona, “Dielectric Relaxation In carbon black-epoxy composite materials,” Journal of Applied Physics, Vol. 103, No. 9, 2008, pp. 094103-094113. doi:10.1063/1.2912985
[9] M. E. Achour, A. Mdarhri, F. Carmona, F. Lahjomri and A. Oueriagli, “Dielectric Properties of Carbon Black-Epoxy Resin Composites Studied with Impedance Spectroscopy,” Spectroscopy Letters, Vol. 41, No. 2, 2008, pp. 81-86. doi:10.1080/00387010801943848
[10] L. C. Costa, M. E. Achour, M. P. F. Gra?a, M. El Hasnaoui, A. Outzourhit and A. Oueriagli, “Dielectric Properties of the Ethylene Butylacrylate/Carbon Black Nano-Compo- sites,” Journal of Non-Crystalline Solids, Vol. 356, No. 4-5, 2010, pp. 270-274.
[11] J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, H. Friend, P. Burns and A. Holmes, “Light-Emitting Diodes Based on Conjugated Polymers,” Nature, Vol. 347, 1990, pp. 539-541. doi:10.1038/347539a0
[12] Y. Rao, J. Qu, T. Marinis and C. P. Wong, “A Precise Numerical Prediction of the Effective Dielectric Constant for Polymer-Ceramic Composite Based on Effective-Me- dium Theory,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 4, 2000, pp. 680-683. doi:10.1109/6144.888853
[13] A. Priou, “Dielectric Properties of Heterogeneous Materials,” Progress in Electromagnetics Research, Vol. 6, Elsevier, New York, 1992.
[14] M. S. Tsai and T. Y. Tseng, “Effect of bottom Electrodes on Dielectric Relaxation and Defect Analysis of (Ba0.47 Sr0.53) TiO3 Thin Film Capacitors,” Materials Chemistry and Physics, Vol. 57, No. 1, 1998, pp. 47-56. doi:10.1016/S0254-0584(98)00199-0
[15] P. B. Macedo, C. T. Moynihan and R. Bose, “The Role of Ionic Diffusion in Polarization in Vitreous Ionic,” Physics and Chemistry of Glasses, Vol. 13, No. 6, 1972, pp. 171- 179.
[16] R. Zallen, “The Physics of Amorphous Solids,” Wiley, New York, 1985.
[17] A. K. Jonscher, “Dielectric Relaxation in Solids,” Chelsea Dielectric Press, London, 1983.
[18] http:/www.columbianchemicals.com/
[19] S. R. Elliott and A. P. Owens “The Diffusion-Ontrolled Relaxation Model for Ionic Transport in Glasses,” Philosophical Magazine B, Vol. 60, No. 6, 1989, pp. 777-792. doi:10.1080/13642818908209742
[20] A. K. Jonscher, “Dielectric Relaxation in Solids,” Chelsea Dielectric Press, London, 1983.
[21] K. L. Ngai, “Universality of Low-Frequency Fluctuation, Dissipation, and Relaxation Properties of Condensed Matter, I,” Comments on Solid State Physics, Vol. 9, No. 4, 1979, pp. 127-140.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.