[1]
|
Durt, T., Englert, B.-G., Bengtsson, I. and Zyczkowski, K. (2010) On Mutually Unbiased Bases. International Journal of Quantum Information, 8, 535. http://dx.doi.org/10.1142/S0219749910006502
|
[2]
|
Ivanovic, I.D. (1981) Geometrical Description of Quantal State Determination. Journal of Physics A: Mathematical and General, 14, 3241. http://dx.doi.org/10.1088/0305-4470/14/12/019
|
[3]
|
Wootters, W.K. and Fields, B.D. (1989) Optimal State-Determination by Mutually Unbiased Measurements. Annals of Physics, 191, 363-381. http://dx.doi.org/10.1016/0003-4916(89)90322-9
|
[4]
|
Englert, B.-G., Kaszlikowski, D., Kwek, L.C. and Chee, W.H. (2008) Wave-Particle Duality in Multi-Path Interferometers: General Concepts and Three-Path Interferometers. International Journal of Quantum Information, 6, 129-157.
|
[5]
|
Cerf, N.J., Bourennane, M., Karlsson, A. and Gisin, N. (2002) Security of Quantum Key Distribution Using d-Level Systems. Physical Review Letters, 88, Article ID: 127902. http://dx.doi.org/10.1103/PhysRevLett.88.127902
|
[6]
|
Xiong, Z.-X., Shi, H.-D., Wang, Y.-N., Jing, L., Lei, J., Mu, L.-Z. and Fan, H. (2012) General Quantum Key Distribution in Higher Dimension. Physics Review A, 85, Article ID: 012334.
|
[7]
|
Brierley, S. (2009) Quanturn Key Distribution Highly Sensitive to Eavesdropping. arXiv: 0910.2578.
|
[8]
|
Aharonov, Y. and Englert, B.G. (2001) The Mean King’s Problem: Spin 1. Zeitschrift Fur Naturforsch, 56a, 16.
|
[9]
|
Durt, T. (2004) e-pnnt arXiv: quant-ph/0401046.
|
[10]
|
Klimov, A.B., Sych, D., Sanchez-Soto, L.L. and Leuchs, G. (2009) Mutually Unbiased Bases and Generalized Bell States. Physical Review A, 79, Article ID: 052101. http://dx.doi.org/10.1103/PhysRevA.79.052101
|
[11]
|
Revzen, M. (2010) Maximally Entangled States via Mutual Unbiased Collective Bases. Physical Review A, 81, Article ID: 012113. http://dx.doi.org/10.1103/PhysRevA.81.012113
|
[12]
|
Vedral, V. (2002) The Role of Relative Entropy in Quantum Information Theory. Reviews of Modern Physics, 74, 197-234. http://dx.doi.org/10.1103/RevModPhys.74.197
|
[13]
|
Plenio, M.B. and Virmani, S. (2007) An Introduction to Entanglement Measures. Quantum Information and Computation, 7, 1-51.
|
[14]
|
Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K. (2009) Quantum Entanglement. Reviews of Modern Physics, 81, 865-942. http://dx.doi.org/10.1103/RevModPhys.81.865
|
[15]
|
Benhelm, J., Kirchmair, G., Roos, C.F. and Blatt, R. (2008) Towards Fault-Tolerant Quantum Computing with Trapped Ions. Nature Physics, 4, 463-468. http://dx.doi.org/10.1038/nphys961
|
[16]
|
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A. and Wootters, W.K. (1993) Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters, 70, 1895-1899. http://dx.doi.org/10.1103/PhysRevLett.70.1895
|
[17]
|
Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmied-Mayer, J. and Pan, J.W. (2006) Experimental Quantum Teleportation of a Two-Qubit Composite System. Nature Physics, 2, 678-682. http://dx.doi.org/10.1038/nphys417
|
[18]
|
Modlawska, J. and Grudka, A. (2008) Non-Maximally Entangled States Can Be Better for Multiple Linear Optical Teleportation. Physical Review Letters, 100, Article ID: 110503. http://dx.doi.org/10.1103/PhysRevLett.100.110503
|
[19]
|
Ishizaka, S. and Hiroshima, T. (2009) Quantum Teleportation Scheme by Selecting One of Multiple Output Ports. Physical Review A, 79, Article ID: 042306. http://dx.doi.org/10.1103/PhysRevA.79.042306
|
[20]
|
Noh, C., Chia, A., Nha, H., Collett, M.J. and Carmichael, H.J. (2009) Quantum Teleportation of the Temporal Fluctuations of Light. Physical Review Letters, 102, Article ID: 230501. http://dx.doi.org/10.1103/PhysRevLett.102.230501
|
[21]
|
Bennett, C.H. and Wiesner, S.J. (1992) Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States. Physical Review Letters, 69, 2881-2884. http://dx.doi.org/10.1103/PhysRevLett.69.2881
|
[22]
|
Barreiro, J.T., Wei, T.C. and Kwiat, P.G. (2008) Beating the Channel Capacity Limit for Linear Photonic Superdense Coding. Nature Physics, 4, 282-286. http://dx.doi.org/10.1038/nphys919
|
[23]
|
Bennett, C.H. and Di Vincenzo, D.P. (2000) Quantum Information and Computation. Nature, 404, 247-255. http://dx.doi.org/10.1038/35005001
|
[24]
|
Li, Z.G., Zhao, M.J., Fei, S.M., Fan, H. and Liu, W.M. (2012) Mixed Maximally Entangled States. Quantum Information & Computation, 12, 63-73.
|
[25]
|
McNulty, D. and Weigert, S. (2012) The Limited Role of Mutually Unbiased Product Bases in Dimension 6. Journal of Physics A: Mathematical and Theoretical, 45, Article ID: 102001. http://dx.doi.org/10.1088/1751-8113/45/10/102001
|
[26]
|
Bennett, C.H., Divincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A. and Terhal, B.M. (1999) Unextendible Product Bases and Bound Entanglement. Physical Review Letters, 82, 5385-5388. http://dx.doi.org/10.1103/PhysRevLett.82.5385
|
[27]
|
Bravyi, S. and Smolin, J.A. (2011) Unextendible Maximally Entangled Bases. Physical Review A, 84, Article ID: 042306. http://dx.doi.org/10.1103/PhysRevA.84.042306
|
[28]
|
Chen, B. and Fei, S.M. (2013) Unextendible Maximally Entangled Bases and Mutually Unbiased Bases. Physical Review A, 88, Article ID: 034301. http://dx.doi.org/10.1103/PhysRevA.88.034301
|
[29]
|
Nan, H., Tao, Y.H., Li, L.S. and Zhang, J. (2014) Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in ℂd ⊗ ℂd′. International Journal of Theoretical Physics, 54, 927-932. http://dx.doi.org/10.1007/s10773-014-2288-1
|
[30]
|
Li, M.S., Wang, Y.L. and Zheng, Z.J. (2014) Unextendible Maximally Entangled Bases in ℂd ⊗ ℂd′. Physical Review A, 89, Article ID: 062313. http://dx.doi.org/10.1103/PhysRevA.89.062313
|
[31]
|
Wang, Y.L., Li, M.S. and Fei, S.M. (2014) Unextendible Maximally Entangled Bases in ℂd ⊗ ℂd′. Physical Review A, 90, Article ID: 034301. http://dx.doi.org/10.1103/PhysRevA.90.034301
|
[32]
|
Nizamidin, H., Ma, T. and Fei, S.M. (2014) A Note on Mutually Unbiased Unextendible Maximally Entangled Bases in C2 ⊗ C3. International Journal of Theoretical Physics, 54, 326-333. http://dx.doi.org/10.1007/s10773-014-2227-1
|
[33]
|
Tao, Y.H., Nan, H., Zhang, J. and Fei, S.M. (2015) Mutually Unbiased Maximally Entangled Bases in Cd ⊗ Ckd. Quantum Information Processing, 14, 2291-2300. http://dx.doi.org/10.1007/s11128-015-0980-6
|
[34]
|
Zhang, J., Tao, Y.H., Nan, H. and Fei, S.M. (2015) Construction of Mutually Unbiased Bases in Cd ⊗ C2ld′. Quantum Information Processing, 14, 2635-2644. http://dx.doi.org/10.1007/s11128-015-0961-9
|
[35]
|
Tao, Y.H., Yang, Q., Zhang, J., Nan, H. and Li, L.S. (2015) The Concrete Construction of Mutually Unbiased Maximally Entangled Bases in Cd ⊗ Ckd. Scientia Sinica Physica, Mechanica & Astronomica, 45, Article ID: 060302. http://dx.doi.org/10.1360/SSPMA2015-00056
|