Share This Article:

Special Matrices in Constructing Mutually Unbiased Maximally Entangled Bases in C2C4

DOI: 10.4236/oalib.1101620    502 Downloads   770 Views  

ABSTRACT

Some special matrices can really help us to construct more than two mutually unbiased maximally entangled bases in .Through detailed analysis of the necessary and sufficient conditions of two maximally entangled bases to be mutually unbiased, we find these special matrices. Taking one such kind of matrix, we present the steps of constructing five mutually unbiased maximally entangled bases in .

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Zhang, J. , Yang, Q. , Nan, H. and Tao, Y. (2015) Special Matrices in Constructing Mutually Unbiased Maximally Entangled Bases in C2C4. Open Access Library Journal, 2, 1-7. doi: 10.4236/oalib.1101620.

References

[1] Durt, T., Englert, B.-G., Bengtsson, I. and Zyczkowski, K. (2010) On Mutually Unbiased Bases. International Journal of Quantum Information, 8, 535.
http://dx.doi.org/10.1142/S0219749910006502
[2] Ivanovic, I.D. (1981) Geometrical Description of Quantal State Determination. Journal of Physics A: Mathematical and General, 14, 3241.
http://dx.doi.org/10.1088/0305-4470/14/12/019
[3] Wootters, W.K. and Fields, B.D. (1989) Optimal State-Determination by Mutually Unbiased Measurements. Annals of Physics, 191, 363-381.
http://dx.doi.org/10.1016/0003-4916(89)90322-9
[4] Englert, B.-G., Kaszlikowski, D., Kwek, L.C. and Chee, W.H. (2008) Wave-Particle Duality in Multi-Path Interferometers: General Concepts and Three-Path Interferometers. International Journal of Quantum Information, 6, 129-157.
[5] Cerf, N.J., Bourennane, M., Karlsson, A. and Gisin, N. (2002) Security of Quantum Key Distribution Using d-Level Systems. Physical Review Letters, 88, Article ID: 127902.
http://dx.doi.org/10.1103/PhysRevLett.88.127902
[6] Xiong, Z.-X., Shi, H.-D., Wang, Y.-N., Jing, L., Lei, J., Mu, L.-Z. and Fan, H. (2012) General Quantum Key Distribution in Higher Dimension. Physics Review A, 85, Article ID: 012334.
[7] Brierley, S. (2009) Quanturn Key Distribution Highly Sensitive to Eavesdropping. arXiv: 0910.2578.
[8] Aharonov, Y. and Englert, B.G. (2001) The Mean King’s Problem: Spin 1. Zeitschrift Fur Naturforsch, 56a, 16.
[9] Durt, T. (2004) e-pnnt arXiv: quant-ph/0401046.
[10] Klimov, A.B., Sych, D., Sanchez-Soto, L.L. and Leuchs, G. (2009) Mutually Unbiased Bases and Generalized Bell States. Physical Review A, 79, Article ID: 052101.
http://dx.doi.org/10.1103/PhysRevA.79.052101
[11] Revzen, M. (2010) Maximally Entangled States via Mutual Unbiased Collective Bases. Physical Review A, 81, Article ID: 012113.
http://dx.doi.org/10.1103/PhysRevA.81.012113
[12] Vedral, V. (2002) The Role of Relative Entropy in Quantum Information Theory. Reviews of Modern Physics, 74, 197-234.
http://dx.doi.org/10.1103/RevModPhys.74.197
[13] Plenio, M.B. and Virmani, S. (2007) An Introduction to Entanglement Measures. Quantum Information and Computation, 7, 1-51.
[14] Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K. (2009) Quantum Entanglement. Reviews of Modern Physics, 81, 865-942.
http://dx.doi.org/10.1103/RevModPhys.81.865
[15] Benhelm, J., Kirchmair, G., Roos, C.F. and Blatt, R. (2008) Towards Fault-Tolerant Quantum Computing with Trapped Ions. Nature Physics, 4, 463-468.
http://dx.doi.org/10.1038/nphys961
[16] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A. and Wootters, W.K. (1993) Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters, 70, 1895-1899.
http://dx.doi.org/10.1103/PhysRevLett.70.1895
[17] Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmied-Mayer, J. and Pan, J.W. (2006) Experimental Quantum Teleportation of a Two-Qubit Composite System. Nature Physics, 2, 678-682.
http://dx.doi.org/10.1038/nphys417
[18] Modlawska, J. and Grudka, A. (2008) Non-Maximally Entangled States Can Be Better for Multiple Linear Optical Teleportation. Physical Review Letters, 100, Article ID: 110503.
http://dx.doi.org/10.1103/PhysRevLett.100.110503
[19] Ishizaka, S. and Hiroshima, T. (2009) Quantum Teleportation Scheme by Selecting One of Multiple Output Ports. Physical Review A, 79, Article ID: 042306.
http://dx.doi.org/10.1103/PhysRevA.79.042306
[20] Noh, C., Chia, A., Nha, H., Collett, M.J. and Carmichael, H.J. (2009) Quantum Teleportation of the Temporal Fluctuations of Light. Physical Review Letters, 102, Article ID: 230501.
http://dx.doi.org/10.1103/PhysRevLett.102.230501
[21] Bennett, C.H. and Wiesner, S.J. (1992) Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States. Physical Review Letters, 69, 2881-2884.
http://dx.doi.org/10.1103/PhysRevLett.69.2881
[22] Barreiro, J.T., Wei, T.C. and Kwiat, P.G. (2008) Beating the Channel Capacity Limit for Linear Photonic Superdense Coding. Nature Physics, 4, 282-286.
http://dx.doi.org/10.1038/nphys919
[23] Bennett, C.H. and Di Vincenzo, D.P. (2000) Quantum Information and Computation. Nature, 404, 247-255.
http://dx.doi.org/10.1038/35005001
[24] Li, Z.G., Zhao, M.J., Fei, S.M., Fan, H. and Liu, W.M. (2012) Mixed Maximally Entangled States. Quantum Information & Computation, 12, 63-73.
[25] McNulty, D. and Weigert, S. (2012) The Limited Role of Mutually Unbiased Product Bases in Dimension 6. Journal of Physics A: Mathematical and Theoretical, 45, Article ID: 102001.
http://dx.doi.org/10.1088/1751-8113/45/10/102001
[26] Bennett, C.H., Divincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A. and Terhal, B.M. (1999) Unextendible Product Bases and Bound Entanglement. Physical Review Letters, 82, 5385-5388.
http://dx.doi.org/10.1103/PhysRevLett.82.5385
[27] Bravyi, S. and Smolin, J.A. (2011) Unextendible Maximally Entangled Bases. Physical Review A, 84, Article ID: 042306.
http://dx.doi.org/10.1103/PhysRevA.84.042306
[28] Chen, B. and Fei, S.M. (2013) Unextendible Maximally Entangled Bases and Mutually Unbiased Bases. Physical Review A, 88, Article ID: 034301.
http://dx.doi.org/10.1103/PhysRevA.88.034301
[29] Nan, H., Tao, Y.H., Li, L.S. and Zhang, J. (2014) Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in ℂd ⊗ ℂd′. International Journal of Theoretical Physics, 54, 927-932.
http://dx.doi.org/10.1007/s10773-014-2288-1
[30] Li, M.S., Wang, Y.L. and Zheng, Z.J. (2014) Unextendible Maximally Entangled Bases in ℂd ⊗ ℂd′. Physical Review A, 89, Article ID: 062313.
http://dx.doi.org/10.1103/PhysRevA.89.062313
[31] Wang, Y.L., Li, M.S. and Fei, S.M. (2014) Unextendible Maximally Entangled Bases in ℂd ⊗ ℂd′. Physical Review A, 90, Article ID: 034301.
http://dx.doi.org/10.1103/PhysRevA.90.034301
[32] Nizamidin, H., Ma, T. and Fei, S.M. (2014) A Note on Mutually Unbiased Unextendible Maximally Entangled Bases in C2 ⊗ C3. International Journal of Theoretical Physics, 54, 326-333.
http://dx.doi.org/10.1007/s10773-014-2227-1
[33] Tao, Y.H., Nan, H., Zhang, J. and Fei, S.M. (2015) Mutually Unbiased Maximally Entangled Bases in Cd ⊗ Ckd. Quantum Information Processing, 14, 2291-2300.
http://dx.doi.org/10.1007/s11128-015-0980-6
[34] Zhang, J., Tao, Y.H., Nan, H. and Fei, S.M. (2015) Construction of Mutually Unbiased Bases in Cd ⊗ C2ld′. Quantum Information Processing, 14, 2635-2644.
http://dx.doi.org/10.1007/s11128-015-0961-9
[35] Tao, Y.H., Yang, Q., Zhang, J., Nan, H. and Li, L.S. (2015) The Concrete Construction of Mutually Unbiased Maximally Entangled Bases in Cd ⊗ Ckd. Scientia Sinica Physica, Mechanica & Astronomica, 45, Article ID: 060302.
http://dx.doi.org/10.1360/SSPMA2015-00056

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.