[1]
|
Boissier, S., Magnetto, S., Frappart, L., Cuzin, B., Ebetino, F.H., Delmas, P.D. and Clezardin, P. (1997) Bisphosphonates Inhibit Prostate and Breast Carcinoma Cell Adhesion to Unmineralized and Mineralized Bone Extracellular Matrices. Cancer Research, 57, 3890-3894.
|
[2]
|
Coleman, R.E. (2008) Risks and Benefits of Bisphosphonates. British Journal of Cancer, 98, 1736-1740.
http://dx.doi.org/10.1038/sj.bjc.6604382
|
[3]
|
Stresing, V., Daubine, F., Benzaid, I., Monkkonen, H. and Clezardin, P. (2007) Bisphosphonates in Cancer Therapy. Cancer Letters, 257, 16-35. http://dx.doi.org/10.1016/j.canlet.2007.07.007
|
[4]
|
Fantner, G.E., Hassenkam, T., Kindt, J.H., Weaver, J.C., Birkedal, H., Pechenik, L., Cutroni, J.A., Cidade, G.A., Stucky, G.D., Morse, D.E. and Hansma, P.K. (2005) Sacrificial Bonds and Hidden Length Dissipate Energy as Mineralized Fibrils Separate during Bone Fracture. Nature Materials, 4, 612-616. http://dx.doi.org/10.1038/nmat1428
|
[5]
|
Gao, H., Ji, B., Jager, I.L., Arzt, E. and Fratzl, P. (2003) Materials Become Insensitive to Flaws at Nanoscale: Lessons from Nature. Proceedings of the National Academy of Sciences of the United States of America, 100, 5597-5600.
http://dx.doi.org/10.1073/pnas.0631609100
|
[6]
|
Gupta, H.S., Wagermaier, W., Zickler, G.A., Raz-Ben Aroush, D., Funari, S.S., Roschger, P., Wagner, H.D. and Fratzl, P. (2005) Nanoscale Deformation Mechanisms in Bone. Nano Letters, 5, 2108-2111.
http://dx.doi.org/10.1021/nl051584b
|
[7]
|
Tai, K., Ulm, F.J. and Ortiz, C. (2006) Nanogranular Origins of the Strength of Bone. Nano Letters, 6, 2520-2525.
http://dx.doi.org/10.1021/nl061877k
|
[8]
|
Morgan, E.F., Bayraktar, H.H. and Keaveny, T.M. (2003) Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site. Journal of Biomechanics, 36, 897-904. http://dx.doi.org/10.1016/S0021-9290(03)00071-X
|
[9]
|
Pope, M.H. and Outwater, J.O. (1974) Mechanical Properties of Bone as a Function of Position and Orientation. Journal of Biomechanics, 7, 61-66. http://dx.doi.org/10.1016/0021-9290(74)90070-0
|
[10]
|
Gupta, H.S., Stachewicz, U., Wagermaier, W., Roschger, P., Wagner, H.D. and Fratzl, P. (2006) Mechanical Modulation at the Lamellar Level in Osteonal Bone. Journal of Materials Research, 21, 1913-1921.
http://dx.doi.org/10.1557/jmr.2006.0234
|
[11]
|
Rho, J.Y., Roy, M.E., 2nd, Tsui, T.Y. and Pharr, G.M. (1999) Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation. Journal of Biomedical Materials Research, 45, 48-54.
http://dx.doi.org/10.1002/(SICI)1097-4636(199904)45:1<48::AID-JBM7>3.0.CO;2-5
|
[12]
|
Martin, R.B. and Burr, D.B. (1989) Structure, Function and Adaptation of Compact Bone. Raven Press, New York.
|
[13]
|
Balooch, G., Balooch, M., Nalla, R.K., Schilling, S., Filvaroff, E.H., Marshall, G.W., Marshall, S.J., Ritchie, R.O., Derynck, R. and Alliston, T. (2005) TGF-Beta Regulates the Mechanical Properties and Composition of Bone Matrix. Proceedings of the National Academy of Sciences of the United States of America, 102, 18813-18818.
http://dx.doi.org/10.1073/pnas.0507417102
|
[14]
|
Jaasma, M.J., Bayraktar, H.H., Niebur, G.L. and Keaveny, T.M. (2002) Biomechanical Effects of Intraspecimen Variations in Tissue Modulus for Trabecular Bone. Journal of Biomechanics, 35, 237-246.
http://dx.doi.org/10.1016/S0021-9290(01)00193-2
|
[15]
|
Peterlik, H., Roschger, P., Klaushofer, K. and Fratzl, P. (2006) From Brittle to Ductile Fracture of Bone. Nature Materials, 5, 52-55. http://dx.doi.org/10.1016/S0021-9290(01)00193-2
|
[16]
|
Phelps, J.B., Hubbard, G.B., Wang, X. and Agrawal, C.M. (2000) Microstructural Heterogeneity and the Fracture Toughness of Bone. Journal of Biomedical Materials Research, 51, 735-741.
http://dx.doi.org/10.1002/1097-4636(20000915)51:4<735::AID-JBM23>3.0.CO;2-G
|
[17]
|
Currey, J. (2005) Structural Heterogeneity in Bone: Good or Bad? Journal of Musculoskeletal & Neuronal Interactions, 5, 317.
|
[18]
|
Tai, K., Dao, M., Suresh, S., Palazoglu, A. and Ortiz, C. (2007) Nanoscale Heterogeneity Promotes Energy Dissipation in Bone. Nature Materials, 6, 454-462. http://dx.doi.org/10.1038/nmat1911
|
[19]
|
Engler, A.J., Richert, L., Wong, J.Y., Picart, C. and Discher, D.E. (2004) Surface Probe Measurements of the Elasticity of Sectioned Tissue, Thin Gels and Polyelectrolyte Multilayer Films: Correlations between Substrate Stiffness and Cell Adhesion. Surface Science, 570, 142-154. http://dx.doi.org/10.1016/j.susc.2004.06.179
|
[20]
|
Ehrlich, P.J. and Lanyon, L.E. (2002) Mechanical Strain and Bone Cell Function: A Review. Osteoporosis International, 13, 688-700. http://dx.doi.org/10.1007/s001980200095
|
[21]
|
You, L., Cowin, S.C., Schaffler, M.B. and Weinbaum, S. (2001) A Model for Strain Amplification in the Actin Cytoskeleton of Osteocytes Due to Fluid Drag on Pericellular Matrix. Journal of Biomechanics, 34, 1375-1386.
http://dx.doi.org/10.1016/S0021-9290(01)00107-5
|
[22]
|
Peyruchaud, O., Serre, C.M., NicAmhlaoibh, R., Fournier, P. and Clezardin, P. (2003) Angiostatin Inhibits Bone Metastasis Formation in Nude Mice through a Direct Anti-Osteoclastic Activity. Journal of Biomechanics, 278, 45826-45832
|
[23]
|
Cowin, S.C. (1999) Bone Poroelasticity. Journal of Biomechanics, 32, 217-238.
http://dx.doi.org/10.1016/S0021-9290(98)00161-4
|