Self-Structuring of Motile Astrocytic Processes within the Network of a Single Astrocyte


Dynamic structuring and functions of perisynaptic astrocytic processes and of the gap junction network within a single astrocyte are outlined. Motile perisynaptic astrocytic processes are generating microdomains. By contacting and retracting of their endfeet an appropriate receptor pattern is selected that modulates the astrocytic receptor sheath for its activation by neurotransmitter substances, ions, transporters, etc. This synaptic information processing occurs in three distinct time scales of milliseconds to seconds, seconds to minutes, hours or longer. Simultaneously, the interconnecting gap junctions are activated by building a network within the astrocyte. Frequently activated gap junction cycles become embodied in gap junction plaques. The gap junction network formation and gap junction plaques are governed and controlled in the same time scales as synaptic information processing. Biomimetic computer systems may represent an alternative to limitations of brainphysiological research. The model proposed allows the interpretation of affective psychoses and schizophrenia as time disorders basically determined by a shortened, prolonged or lacking time scale of synaptic information processing.

Share and Cite:

Mitterauer, B. (2015) Self-Structuring of Motile Astrocytic Processes within the Network of a Single Astrocyte. Advances in Bioscience and Biotechnology, 6, 723-733. doi: 10.4236/abb.2015.612074.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Araque, A., Parpura, V., Sanzgiri, R.P. and Haydon, P.G. (1999) Tripartite Synapses: Glia, the Unacknowledged Partner. Trends in Neuroscience, 22, 208-215.
[2] Araque, A., Carmignoto, G., Haydon, P.G., Oliet, S.H.R., Robitaille R. and Volterra, A. (2014) Gliotransmitters Travel in Time and Space. Neuron, 81, 728-739.
[3] Verkhratsky, A. and Nedergaard, M. (2014) Astroglial Cradle in the Life of The synapse. Philosophical Transactions of the Royal Society B, 369, Article ID: 20130595.
[4] Scemes, E. and Nicchia, G.P. (2012) Biomarkers of Astrocyte Microdomains: Focus on Gap Junctions, Perinergic Receptors, and Aquaporins. In: Scemes, E. and Spray, D.C., Eds., Astrocytes Wiring the Brain, Frontiers in Neuroscience, CRC Press, Boca Raton, 2, 25-62.
[5] Robertson, J.M. (2013) Astrocyte Domains and the Three-Dimensional and Seemless Expression of Consciousness and Explicit Memories. Medical Hypotheses, 81, 1017-1024.
[6] Reichenbach, A., Deroniche, A. and Kirchhoff, F. (2010) Morphology and Dynamics of Perisynaptic Glia. Brain Research Reviews, 63, 11-25.
[7] Spacek, J. and Harris, K.M. (1998) Three-Dimensional Organization of Cell Adhesion Junctions at Synapses and Dendrite Spines in Area CA1 of the Hippocampus. Journal of Comparative Neurology, 393, 58-69.<58::AID-CNE6>3.0.CO;2-P
[8] Haber, M., Zhou, L. and Murai, K.K. (2006) Cooperative Astrocyte and Dendritic Spine Dynamics at Hippocampal Excitatory Synapses. Journal of Neuroscience, 26, 8881-8891.
[9] Oliet, S.H. and Bonfardin, V.D. (2010) Morphological Plasticity of the Rat Supraoptic Nucleus-Cellular Consequences. European Journal of Neuroscience, 32, 1989-1994.
[10] Wolff, J.R., Stuka, K., Missler, M., Tytko, H., Schwarz, P., Rohlmann, A. and Chao, T.I. (1998) Autocellular Coupling by Gap Junctions in Cultured Astrocytes: A New View on Cellular Autoregulation during Process Formation. Glia, 24, 121-140.<121::AID-GLIA12>3.0.CO;2-T
[11] Giaume, C. (2012) Neuroglial Networks: Glial Wiring Also Matters. In: Scemes, E. and Spray, D.C., Eds., Astrocytes Wiring the Brain, Vol. 5, Frontiers in Neuroscience, Boca Raton, 139-156.
[12] Oberheim, N.A., Takano, T., Han, X., He, W., Lin, J.H., Wang, F., et al. (2009) Uniquely Hominid Features of Adult Human Astrocytes. Journal of Neuroscience, 29, 3276-3287.
[13] Bushong, E.A., Martone, M.E., Jones, Y.Z. and Ellisman, M.H. (2002) Protoplasmic Astrocytes in CA1 Stratum Radiatum Occupy Separate Anatomial Domains. Journal of Neuroscience, 22, 183-192.
[14] Bernardinelli, Y., Muller, D. and Nikonenko, I. (2014) Astrocyte-Synapse Structural Plasticity. Neural Plasticity, 39, 1130-1137.
[15] Panatier, A., Vallee, J., Haber, M., Murai, K.K., Lacaille, J.C. and Robitaille, R. (2011) Astrocytes Are Endogenous Regulators of Basal Transmission at Central Synapses. Cell, 146, 785-798.
[16] Belair, E.L., Vallee, J. and Robitaille, R. (2010) In Vivo Long-Term Synaptic Plasticity of Glial Cells. The Journal of Physiology, 588, 1039-1056.
[17] Grosche, J., Matyash, V., Möller, T., Verkhratsky, A., Reichenbach, A. and Kettenmann, H. (1999) Microdomains from Neuron-Glia Interaction: Parallel Fiber Signaling to Bergmann Glia Cells. Nature Neuroscience, 2, 139-143.
[18] Kimelberg, H.K. (2012) Mature Protoplasmic Mammalian Astrocytes. Morphology, Interrelationships and Implications for Function. In: Scemes, E. and Spray, C., Eds., Astrocytes Wiring the Brain, Vol. 1, Frontiers in Neuroscience, Boca Raton, 3-24.
[19] DiCastro, M.A., Chuquet, J., Liaudet, N., Bhaukaurally, K., Santello, M., Bovier, D., Tiret, P. and Volterra, A. (2011) Local Ca2+ Detection and Modulation of Synaptic Release by Astrocytes. Nature Neuroscience, 14, 1276-1284.
[20] Pasti, L., Volterra, A., Pozzan, T. and Carmignoto, G. (1997) Intracellular Calcium Oscillations in Astrocytes: A Highly Plastic, Bidirectional Form of Communication between Neurons and Astrocytes in Situ. Journal of Neuroscience, 17, 7817-7830.
[21] Wang, X., Lou, N., Xu, Q., Tian, G.F., Peng, W.G., Han, X., Kang, J., Takano, T. and Nedergaard, M. (2006) Astrocytic Ca2+ Signaling Evoked by Sensory Stimulation in Vivo. Nature Neuroscience, 9, 816-823.
[22] Perea, G., Navarrete, M. and Araque, A. (2009) Tripartite Synapses: Astrocytes Process and Control Synaptic Information. Trends in Neuroscience, 32, 421-431.
[23] Burkeen, J.F., Woinac, A.D., Earnest, D.J. and Zoran, M. (2011) Mitochondrial Calcium Signaling Mediates Rhythmic Extracellular ATP Accumulation in Suprachiasmatic Nucleus Astrocytes. Journal of Neuroscience, 31, 8432-8440.
[24] Tang, W., Szokol, K., Jensen, V., Enger, R., Trivedi, C.A., Hvalby, Q., Helm, P.J., Looger, L.L., Sprengel, R. and Nagelhus, E.A. (2015) Stimulation-Evoked Ca2+ Signals in Astrocytic Processes at Hippocampal CA3-CA1 Synapses of Adult Mice Are Modulated by Glutamate and ATP. Journal of Neuroscience, 35, 3016-3021.
[25] Mitterauer, B.J. (2015) Tripartite Synapses and the Glial Network. Quantum Biosystems, 6, 1-9.
[26] Martin, R., Bajo-Graneras, R., Moratella, R., Perea, G. and Araque, A. (2015) Circuit-Specific Signaling in Astrocyte-Neuron Networks in Basal Ganglia Pathways. Science, 349, 730-734.
[27] Mitterauer, B. and Kopp, K. (2003) The Self-Composing Brain: Towards a Glial-Neuronal Brain Theory. Brain and Cognition, 51, 357-367.
[28] Todd, K.J., Darabid, H. and Robitaille, R. (2010) Perisynaptic Glia Discriminate Patterns of Motor Nerve Activity and Influence Plasticity at the Neuromuscular Junction. Journal of Neuroscience, 30, 11870-11882.
[29] Lavialle, M., Aumann, G., Anlauf, E., Pröls, F., Arpin, M. and Deroniche, A. (2011) Structural Plasticity at Perisynaptic Astrocyte Processes Involves Ezrin and Metabotropic Glutamate Receptors. Proceedings of the National Academy of Sciences of the United States of America, 108, 12915-12919.
[30] Molotkov, D., Zobova, S., Arcas, J.M. and Khiroug, L. (2013) Calcium-Induced Outgrowth of Astrocytic Peripheral Processes Requires Actin Binding by Profinin-1. Cell Calcium, 53, 2338-2348.
[31] Cornell-Bell, A.H., Thomas, P.G. and Smith, S.J. (1990) The Excitatory Neurotransmitter Glutamate Causes Filopodia Formation in Cultural Hippocampal Astrocytes. Glia, 3, 322-334.
[32] Kerbich, D., Prenosil, G.A., Chang, P.K.Y., Murai, K.K. and McKinney, R.A. (2012) Glial Glutamate Transport Modulates Dendritic Spine Head Protrusions in the Hippocampus. Glia, 60, 1067-1077.
[33] Arizono, M., Bannai, H., Nakamura, K., Niwa, F., Enzomoto, N., Matsu-Ura, T., Miyamoto, A., Sherwood, M.W., Nakamura, T. and Mikoshiba, K. (2012) Receptor-Selective Diffusion Barrier Enhances Sensitivity of Astrocytic Processes to Metabotropic Glutamate Receptor Stimulation. Science of Signaling, 5, ra27.
[34] Ransom, B.R. and Giaume, C. (2013) Gap Junctions and Hemichannels. In: Kettenmann, H. and Ransom, B.R., Eds., Neuroglia, Vol. 24, Oxford University Press, Oxford, 292-305.
[35] Bruzzone, R., White, T.W. and Paul, D.L. (1996) Connections with Connexins: The Molecular Basis of Direct Intercellular Signaling. European Journal of Biochemistry, 238, 1-27.
[36] Houades, V., Rash, N., Ezan, P., Kirchhoff, F., Koulakoff, A. and Giaume, C. (2006) Shapes of Astrocyte Networks in the Juvenile Brain. Neuron Glia Biology, 2, 3-14.
[37] Giaume, C., Koulakoff, A., Roux, L., Holcman, D. and Rouach, N. (2010) Astroglial Networks: A Step Further in Neuroglial and Gliovascular Interactions. Nature Review Neuroscience, 11, 87-99.
[38] Musil, L.S. (2009) Biogenesis and Degradation of Gap Junction. In: Harris, A. and Locke, D., Eds., Connexins, Vol. 9, Humana Press, New York, 225-240.
[39] Sosinsky, G.E., Gaietta, G.M. and Giepmans, N.G. (2009) Gap Junction Morphology and Dynamics in Situ. In: Harris. A. and Locke, D., Eds., Connexins, Vol. 9, Humana Press, New York, 241-261.
[40] Bargiello, T. and Brink, P. (2009) Voltage-Gating Mechanism of Connexin Channels. In: Harris, A. and Locke, D., Eds., Connexins, Vol. 9, Humana Press, New York, 103-128.
[41] Robertson, J.M. (2002) The Astrocentric Hypothesis: Proposed Role of Astrocytes in Consciousness and Memory Formation. Journal of Physiology-Paris, 96, 251-255.
[42] Mitterauer, B., Leitgeb, H. and Reitboeck, H.J. (1996) The Neuro-Glial Synchronization Hypothesis. Recent Research Developments in Biological Cybernetics, 1, 137-155.
[43] Mitterauer, B.J. (2012) Qualitative Information Processing in Tripartite Synapses: A Hypothetical Model. Cognitive Computation, 4, 181-194.
[44] Baer, W. (2015) Unity through an Event Oriented World View. Quantum Biosystems, 6, 22-32.
[45] Pereira Jr., A., Benavides Foz, F. and Freitas da Rocha, A. (2015) Cortical Potentials and Quantum-Like Waves in the Generation of Conscious Episodes. Quantum Biosystems, 6, 9-20.
[46] Verkhratsky, A., Rodriguez, J.J. and Steardo, L. (2014) Astrogliopathology: A Central Element of Neuropsychiatric Diseases? The Neuroscientist, 20, 576-588.
[47] Mitterauer, B. (2010) Synaptic Imbalances in Endogenous Psychoses. BioSystems, 100, 113-121.
[48] Mitterauer, B.J. (2015) Balancing and Imbalancing Effects of Astrocytic Receptors in Tripartite Synapses. Common Pathophysiological Model of Mental Disorders and Epilepsy. Medical Hypotheses, 84, 315-320.
[49] Mitterauer, B. (2000) Clock Genes, Feedback Loops and Their Possible Role in the Etiology of Bipolar Disorders: An Integrative Model. Medical Hypotheses, 55, 155-159.
[50] Mitterauer, B.J. (2009) Narziss und Echo. Ein psycho-biologisches Modell der Depression, Springer-Verlag/Wien.
[51] Mitterauer, B. (2003) The Eternal Now: Towards an Interdisciplinary Theory of Schizophrenia. The Bimonthly Journal of the BWW Society.
[52] Mitterauer, B. (2005) Verlust der Selbstgrenzen, Entwurf einer interdisziplinären Theorie der Schizophrenie, Springer, Wien.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.