[1]
|
Bingham, I. J., Baddeley, J. A., & Watson, C. A. (2001). Development and Evaluation of Technique for the Rapid Measurement of Cereal Root Systems. HGCA Project No. 257, London: Home Grown Cereals Authority.
|
[2]
|
Böhm, W. (1979). Methods of Studying Root Systems. Berlin: Springer. http://dx.doi.org/10.1007/978-3-642-67282-8
|
[3]
|
Coutts, M. P. (1983). Development of Structural Root Systems in Sitka Spruce. Journal of Forestry, 56, 1-16. http://dx.doi.org/10.1093/forestry/56.1.1
|
[4]
|
Coutts, M. P., Nielsen, C. C. N., & Nicoll, B. C. (1999). The Development of Symmetry, Rigidity and Anchorage in Structural Root System of Conifers. Plant and Soil, 217, 1-15. http://dx.doi.org/10.1023/A:1004578032481
|
[5]
|
Danjon, F., & Reubens, B. (2008). Assessing and Analyzing 3D Architecture of Woody Root Systems, a Review of Methods and Applications in Tree and Soil Stability, Resource Acquisition and Allocation. Plant and Soil, 303, 1-34. http://dx.doi.org/10.1007/s11104-007-9470-7
|
[6]
|
Danjon, F., Caplan, J., Fortin, M., & Meredieu, C. (2013). Descendant Root Volume Varies as a Function of Root Type: Estimation of Root Biomass Lost During Uprooting in Pinus pinaster. Frontiers in Plant Science, 4, 402. http://dx.doi.org/10.3389/fpls.2013.00402
|
[7]
|
Danjon, F., Fourcaud, T., & Bert, D. (2005). Root Architecture and Wind-Firmness of Mature Pinus pinaster. New Phytologist, 168, 387-400. http://dx.doi.org/10.1111/j.1469-8137.2005.01497.x
|
[8]
|
Drexhage, M., Chauviere, M., Colin, F., & Nielsen, C. C. N. (1999). Development of Structural Root Architecture and Allometry of Quercus petraea. Canadian Journal of Forest Research, 29, 600-608. http://dx.doi.org/10.1139/x99-027
|
[9]
|
Fitter, A. H., Stickland, T. R., Harvey, M. L., & Wilson, G. W. (1991). Architectural Analysis of Plant Root Systems: 2. Influence of Nutrient Supply on Architecture in Contrasting Plant Species. New Phytologist, 118, 375-382. http://dx.doi.org/10.1111/j.1469-8137.1991.tb00019.x
|
[10]
|
Kalliokoski, T., Nygren, P., & Sievanen, R. (2008). Coarse Root Architecture of Three Boreal Tree Species Growing in Mixed Stands. Silva Fennica, 42, 189-210. http://dx.doi.org/10.14214/sf.252
|
[11]
|
Kalliokoski, T., Sievanen, R., & Nygren, P. (2010). Tree Roots as Self-Similar Branching Structures: Axis Differentiation and Segment Tapering in Coarse Roots of Three Boreal Forest Tree Species. Trees-Structure and Function, 24, 219-236. http://dx.doi.org/10.1007/s00468-009-0393-1
|
[12]
|
Lavigne, M. B., & Krasowski, M. (2007). Estimating Coarse Root Biomass of Balsam Fir. Canadian Journal of Forest Research, 37, 991-998. http://dx.doi.org/10.1139/X06-311
|
[13]
|
Le Goff, N., & Ottorini, J.-M. (2001). Root Biomass and Biomass Increment in Beech (Fagus sylvatica L.) Stand in North-East France. Annals of Forest Science, 58, 1-13. http://dx.doi.org/10.1051/forest:2001104
|
[14]
|
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for Mixed Models (2nd ed.). Cary, NC: SAS Institute Inc.
|
[15]
|
Mao, Z., Saint-André, L., Bourrier, F., Stokes, A., & Cordonnier, T. (2015). Modelling and Predicting the Spatial Distribution of Tree Root Density in Heterogeneous Forest Ecosystems. Annals of Botany, 116, 261-277. http://dx.doi.org/10.1093/aob/mcv092
|
[16]
|
Nicoll, B. C., & Ray, D. (1996). Adaptive Growth of Sitka Spruce Root Systems in Response to Wind Action and Site Conditions. Tree Physiology, 16, 891-898. http://dx.doi.org/10.1093/treephys/16.11-12.891
|
[17]
|
Nielsen, C. C. N., & Hanson, J. K. (2006). Root CSA-Root Biomass Prediction Models in Six Tree Species and Improvement of Models by Inclusion of Root Architectural Parameters. Plant and Soil, 280, 339-356. http://dx.doi.org/10.1007/s11104-005-3503-x
|
[18]
|
Noordwijk, M., Spek, L. Y., & de Willigen, P. (1994). Proximal Root Diameter as a Predictor of Total Root Size for Fractal Branching Models. Plant and Soil, 164, 107-117. http://dx.doi.org/10.1007/BF00010116
|
[19]
|
Nygren, P., Lu, M., & Ozier-Lafontaine, H. (2009). Effects of Turnover and Internal Variability of Tree Root Systems on Modeling Coarse Root Architecture: Comparing Simulations for Young Populus deltoides with Field Data. Canadian Journal of Forest Research, 39, 97-108. http://dx.doi.org/10.1139/X08-158
|
[20]
|
Oppelt, A. L., Kurth, W., & Godbold, D. L. (2001). Topology, Scaling Relations and Leonardo’s Rule in Root System from African Tree Species. Tree Physiology, 21, 117-128. http://dx.doi.org/10.1093/treephys/21.2-3.117
|
[21]
|
R Development Core Team (2003). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
|
[22]
|
Richardson, A. D., & Dohna, H. Z. (2003). Predicting Root Biomass from Branching Patterns of Douglas-Fir Root Systems. Oikos, 100, 96-104. http://dx.doi.org/10.1034/j.1600-0706.2003.12081.x
|
[23]
|
Santantonio, D., Hermann, R. K., & Overton, W. S. (1977). Root Biomass Studies in Forest Ecosystems. Pedobiologia, 17, 1-31.
|
[24]
|
SAS Institute Inc. (2004). SAS/STAT 9.1 User’s Guide (Vol. 1-7). Cary, NC: SAS Institute Inc.
|
[25]
|
Soethe, N., Lehmann, J., & Engels, C. (2007). Root Tapering between Branching Points Should Be Included in Fractal Root System Analysis. Ecological Modelling, 207, 363-366. http://dx.doi.org/10.1016/j.ecolmodel.2007.05.007
|
[26]
|
Stokes, A., & Mattheck, C. (1996). Variation of Wood Strength in Tree Roots. Journal of Experimental Botany, 298, 693-699. http://dx.doi.org/10.1093/jxb/47.5.693
|
[27]
|
Tappeiner, J. C., McDonald, P. M., & Roy, D. F. (1990). Lithocarpus densiflorus (Hook. and Arn.) Rehd. In R. M. Burns, & B. H. Honkala (Tech. Coords.), Silvics of North America: Volume 2. Hardwoods (pp. 827-842). United States Department of Agricultural Handbook 654, Washington DC: SRS Publication.
|
[28]
|
Thome, D. M., Zabel, C. J., & Diller, L. V. (1999). Forest Stand Characteristics and Reproduction of Northern Spotted Owls in Managed North-Coastal California Forests. Journal of Wildlife Management, 63, 44-59. http://dx.doi.org/10.2307/3802486
|
[29]
|
Vercambre, G., Pages, L., & Habib, R. (2003). Architectural Analysis and Synthesis of Plum Tree Root Systems in an Orchard Using a Quantitative Modeling Approach. Plant and Soil, 25, 1-11. http://dx.doi.org/10.1023/A:1022961513239
|
[30]
|
Zanetti, C., Vennetier, M., Mériaux, P., & Provansal, M. (2015). Plasticity of Tree Root System Structure in Contrasting Soil Materials and Environmental Conditions. Plant and Soil, 387, 21-35. http://dx.doi.org/10.1007/s11104-014-2253-z
|