Enzymatic Formation of Gold Nanoparticles Using Phanerochaete Chrysosporium

DOI: 10.4236/aces.2011.13023   PDF   HTML     7,608 Downloads   14,848 Views   Citations


When fungus Phanerochaete chrysosporium was challenged with gold ions under ambient aqueous conditions gold nanoparticles were formed within 90 minutes. Controlling experimental conditions like the age of fungus, incubation temperature and different concentration of gold chloride solution had drastic effect on the morphology of the nanoparticles formed. The enzyme assays indicated the role of enzyme as a reducing and shape directing agent. Laccase was the dominating enzyme in the case of fungal media for the synthesis of extracellular gold nanoparticles. Ligninase was responsible for the intracellular formation of nanoparticles on the fungal mycelium. The stabilization of the nanoparticles (NPs) via protein layer was evident by Atomic Force Microscopy (AFM) which revealed the nanoparticles to be spherical in the range of 10-100 nm. This study represents an important advancement in the use of fungal enzymes for the biosynthesis of highly stable gold nanoparticles by a green and mild technique in one pot in aqueous media.

Share and Cite:

R. Sanghi, P. Verma and S. Puri, "Enzymatic Formation of Gold Nanoparticles Using Phanerochaete Chrysosporium," Advances in Chemical Engineering and Science, Vol. 1 No. 3, 2011, pp. 154-162. doi: 10.4236/aces.2011.13023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. K. Kim, R. R. Kalluru, J. P. Singh, A. Fortner, J. Grif-fin, G. K. Darbha and P. C. Ray, “Gold-Nanoparticle-Based Miniaturized Laser-Induced Fluorescence Probe for Specific DNA Hybridization Detection: Studies on Size-Dependent Optical Properties,” Nanotechnology, Vol. 17, 2006, pp. 3085-3093.
[2] A. Gole, C. V. Dash, V. Ramachandran, A. B. Mandale, S. R. Sainkar, M. Rao and M. Sastry, “Pepsin-Gold Col-loid Conjugates: Preparation, Characterization and En-zymatic Activity,” Langmuir, Vol. 17, No. 5, 2001, pp.1674-167. doi:10.1021/la001164w
[3] A. Kumar, S. Mandal, P. R. Selvakannan, R. Parischa, A. B. Mandale and M. Sastry, “Investigation into the Inter-action between Surface-Bound Alkylamines and Gold Nanoparticles,” Langmuir, Vol. 19, No. 15, 2003, pp. 6277-6282. doi:10.1021/la034209c
[4] Y. Wang, “Non-linear Optical Properties of Nanometer- Sized Semiconductor Clusters,” Accounts of Chemical Research, Vol. 24, No. 5, 1991, pp. 133-139. doi:10.1021/ar00005a002
[5] D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos and P. L. McEven, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal,” Nature, Vol. 389, 1997, pp. 699-701.
[6] B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou and A. Libchaber, “In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles,” Science, Vol. 298, No. 5599, 2002, pp. 1759-1762. doi:10.1126/science.1077194
[7] S. S. Shankar, A. Ahmad, R. Pasrichaa and M. Sastry, “Bioreduction of Chloroaurate Ions by Geranium Leaves and Its Endophytic Fungus Yields Gold Nanoparticles of Different Shapes,” Journal of Material Chemistry, Vol. 13, No. 7, 2003a, pp. 1822-1826. doi:10.1039/b303808b
[8] T. Klaus, R. Joerger, E. Olssona and C. G. Granqvist, “Silver-Based Crystalline Nanoparticles, Microbially Fabricated,” Proceedings of the National Academy of Science USA, Vol. 96, No. 24, 1999, pp. 13611-13614. doi:10.1073/pnas.96.24.13611
[9] M.I. Husseiny, M. A. El-Aziz, Y. Badr and M. A. Mah-moud, “Biosynthesis of Gold Nanoparticles Using Pseu-domonas Aeruginosa,” Spectrochimica Acta A: Molecu-lar amd Biomolecular Spectroscopy, Vol. 67, No. 3-4, 2007, pp. 1003-1006.
[10] B. Nair and T. Pradeep, “Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains,” Crystal Growth Design, Vol. 2, No. 4, 2002, pp.293-298. doi:10.1021/cg0255164
[11] M. Gericke and A. Pinches, “Biological Synthesis of Metal Nanoparticles,” Hydrometallurgy, Vol. 83, No. 1-4, 2006a, pp. 132-140. doi:10.1016/j.hydromet.2006.03.019
[12] M. Gericke and A. Pinches, “Microbial Production of Gold Nanoparticles,” Gold Bulletin, Vol. 39, No. 1, 2006b, pp. 22-28. doi:10.1007/BF03215529
[13] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Ramani, R. Parischa, P. V. Ajayakumar, M. Alam, R. Kumar and M. Sastry, “Fungus Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Bio-logical Approach to Nanoparticle Synthesis,” Nano Let-ters, Vol. 1, No. 10, 2001, pp. 515-519. doi:10.1021/nl0155274
[14] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Ramani, R. Parischa, P. V. Ajayakumar, M. Alam, M. Sastry and R. Kumar, “Biore-duction of AuCl4–Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed,” Angewandte Chemie International Edition, Vol. 40, 2001, pp. 3585-3588.
[15] .P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M. I. Khan, R. Kumar and M. Sastry, “Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium Ox-ysporum,” ChemBioChem, Vol. 3, No. 5, 2002, pp. 461-463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
[16] N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar and R. H. Balasubramanya, “Biological Synthesis of Silver Nanoparticles Using the Fungus Aspergillus Flavus,” Materials Letters, Vol. 61, No. 6, 2007, pp. 1413-1418. doi:10.1016/j.matlet.2006.07.042
[17] K. C. Bhainsa and S. F. D’Souza, “Extracellular Biosyn-thesis of Silver Nanoparticles Using the Fungus Asper-gillus Fumigatus,” Colloids Surfaces B: Biointerfaces, Vol. 47, No. 2, 2006, pp. 160-164. doi:10.1016/j.colsurfb.2005.11.026
[18] S. Basavaraja, S. D. Balaji, A. Lagashetty, A. H. Rajasab and A. Venkataraman, “Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium Sem-itectum,” Material Research and Bulletin, Vol. 43, No. 5, 2008, pp. 1164-1170. doi:10.1016/j.materresbull.2007.06.020
[19] N. Vigneshwaran, A. A. Kathe, P. V. Varadarajan, R. P. Nachane and R. H. Balasubramanya, “Biomimetics of Silver Nanoparticles by White Rot Fungus, Phaenero-chaete Chrysosporium,” Colloids Surfaces B: Biointer-faces, Vol. 53, No. 1, 2006, pp. 55-59. doi:10.1016/j.colsurfb.2006.07.014
[20] M. Tien and T. K. Kirk, “Lignin Peroxidase of Phanero-chaete Chrysosporium,” Methods in Enzymology, Vol. 161, 1988, pp. 238-249.
[21] A. Leonowicz and K. Grzywnowicz, “Quantitative Esti- mation of Laccase Forms in Some White Rot Fungi Us-ing Syringaldazine as a Substrate,” Enzyme and Micro-bial Technology, Vol. 3, No. 1, 1981 pp. 55-58. doi:10.1016/0141-0229(81)90036-3
[22] M. Kuwahara, J. K. Glenn, M. A. Morgan and M. H. Gold, “Separation and Characterization of Two Extra- cellular H202-Dependent Oxidases from Ligninolytic Cultures of Phanerochaete Chrysosponum,” FEBS Letters, Vol. 169, 1984, pp. 247-250.
[23] S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Lang-muir, Vol. 10, No. 10, 1994, pp. 3427-3430. doi:10.1021/la00022a011
[24] S.A. Kumar, Y. A. Peter and J. L. Nadeau, “Facile Bio-synthesis, Separation and Conjugation of Gold Nanopar-ticles to Doxorubicin,” Nanotechnology, Vol. 19, No. 49, 2008, pp. 495101. doi:10.1088/0957-4484/19/49/495101
[25] C. M. Stoscheck, “Quantitation of Protein,” Methods in Enzymology, Vol. 182, 1990, pp. 50-68.
[26] T. Yonezawa, T. Nomura, T. Kinoshita and K. Koumoto, “Preparation and Characterization of Poly-peptidestabilized Gold Nanoparticles,” Journal of Nanoscience and Nanotechnology, Vol. 6, No. 6, 2006, pp. 1649-1654. doi:10.1166
[27] P. Tong, Y. Hong, Y. Xiao, M. Zhang, X. Tu and T. Cui, “High Production of Laccase by a New Basidiomycete, Trametessp,” Biotechnology Letters, Vol. 29, No. 2, 2007, pp. 295-301.
[28] T.K. Kirk, S. Croan, M. Tien, K. E. Murtagh and R. L. Farrell, “Production of Multiple Ligninases by Pha- nerochaete Chrysosporium: Effect of Selected Growth Conditions and Use of a Mutant Strain,” Enzyme and Mi-crobial Technology, Vol. 8, No. 1, 1986, pp. 27-32. doi:10.1016/0141-0229(86)90006-2
[29] S. Chen, Y. Liu and G. Wu, “Stabilized and Size-Tunable Gold Nanoparticles Formed in a Quaternary Ammonium- Based Room-Temperature Ionic Liquid under ? Irradia-tion,” Nanotechnology, Vol. 16, No. 10, 2005, pp. 2360- 2364. doi:10.1088/0957-4484/16/10/061
[30] S. Mandal, S. Phadtare and M. Sastry, “Interfacing Biol-ogy with Nanoparticles,” Current Applied Physics, Vol. 5, No. 2, 2005, pp.118-127. doi:10.1016/j.cap.2004.06.006
[31] P. R. Selvakannan, S. Mandal, S. Phadtare, A. Gole, R. Pasricha, S. D. Adyanthaya and M. Sastry, “Water-Dis- persible Tryptophan-Protected Gold Nanoparticles Pre-pared by the Spontaneous Reduction of Aqueous Chloro-aurate Ions by the Amino Acid,” Journal of Colloid and Interface Science, Vol. 269, No. 1, 2004, pp. 97-102. doi:10.1016/S0021-9797(03)00616-7
[32] Y. Tan, Y. Wang, L. Jiang and D. Zhu, “Thiosalicylic Acid-Functionalized Silver Nanoparticles Synthesized in One-Phase System,” Journal of Colloid and Interface Science, Vol. 249, No. 2, 2002, pp. 336-345. doi:10.1006/jcis.2001.8166
[33] J. L. Gardea-Torresdey, K. J. Tiemann, J. G. Parsons, G. Gamez and M. J. Yacaman, “Characterization of Trace Level Au (III) Binding to Alfalfa Biomass (Medicago Sa-tiva) by GFAAS,” Advances in Environmental Research, Vol. 6, No. 3, 2002, pp. 313-323. doi:10.1016/S1093-0191(01)00064-8

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.