Influence of Organoclay Structure on Nanostructured Materials Based on Eva

DOI: 10.4236/msa.2015.610088   PDF   HTML   XML   4,057 Downloads   4,565 Views   Citations


This article reports the preparation of a series of EVA nanocomposites employing solution casting methods using different types of organo-modified montmorillonite clay. The effect of the organoclay type on the structural organization and thermal behavior of EVA nanostructured materials were systematically investigated. Regarding thermal behavior, the thermogravimetric analysis showed that the nanocomposites presented a slight decrease in thermal degradation temperature compared to EVA, while differential scanning calorimetry, in general, did not show a significant change in the thermal transition temperatures such as glass transition, melting temperature and crystallization temperature of the nanocomposites, regardless of the type and proportion of organoclay in the systems. With respect to structural aspect, the X-ray diffractograms showed that all systems presented a heterogeneous distribution of the nanoparticles, containing part intercalated. Nuclear magnetic resonance relaxometry data provided complementary information for the X-ray results, showing that the EVA systems containing 5 wt% of both studied organoclays presented a mixture of intercalated and exfoliated structures, evidencing that there was a surface interaction between polymer chains and clay lamellae.

Share and Cite:

Iulianelli, G. , Sebastião, P. , Tavares, M. and Santos, F. (2015) Influence of Organoclay Structure on Nanostructured Materials Based on Eva. Materials Sciences and Applications, 6, 860-868. doi: 10.4236/msa.2015.610088.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Almeida, A.S., Tavares, M.I B., Silva, E.O., Neto, R.P.C. and Moreira, L.A. (2012) Development of Hybrid Nanocomposites Based on PLLA and Low-Field NMR Characterization. Polymer Testing, 31, 267-275.
[2] Tavares, M.I.B., Nogueira, R.F., Gil, R.A.S.S., Preto, M., Silva E.O., Silva, M.B.R. and Miguez, E. (2007) Polypropylene-Clay Nanocomposite Structure Probed by H NMR Relaxometry. Polymer Testing, 26, 1100-1102.
[3] Esteves, A.C.C., Timmons, A.B. and Trindade, T. (2004) Nanocompósitos de matriz polimérica: Estratégias de síntese de materiais híbridos. Química Nova, 27, 798-806.
[4] Oliveira, M.F.L., Oliveira, M.G. and Leite M.C.A.M. (2011) Nanocompósitos de poliamida 6 e argila organofílica: Estudo da cristalinidade e propriedades mecânicas. Polímeros, 21, 78-82.
[5] Palacios, J., Perera, R., Rosales, C., Albano, C. and Pastor, J.M. (2012) Thermal Degradation Kinetics of PP/OMMT Nanocomposites with mPE and EVA. Polymer Degradation and Stability, 97, 729-737.
[6] Rodrigues, T.C., Tavares, M.I.B., Soares, I.L. and Moreira, A.M. (2009) The Characterization of High-Density Polyethylene/Organoclay Nanocomposites. JOM, 61, 38-41.
[7] Zanetti, M., Caminoa, G., Thomannb, R. and Mülhaupt, R. (2001) Synthesis and Thermal Behaviour of Layered Silicate-EVA Nanocomposites. Polymer, 42, 4501-4507.
[8] Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R.E. (2006) Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. Journal of Composite Materials, 40, 1511-1575.
[9] Silva, P.S.R.C. and Tavares, M.I.B. (2015) Solvent Effect on the Morphology of Lamellar Nanocomposites Based on HIPS. Materials Research, 18, 191-195.
[10] Valera-Zaragoza, M., Ramírez-Vargas, E., Medellín-Rodríguez, F.J. and Huerta-Martínez, B.M. (2006) Thermal Stability and Flammability Properties of Heterophasic PP-EP/EVA/Organoclay Nanocomposites. Polymer Degradation and Stability, 91, 1319-1325.
[11] Beltrán, M.I., Benavente, V., Marchante, V. and Marcilla, A. (2013) The Influence of Surfactant Loading Level in a Montmorillonite on the Thermal, Mechanical and Rheological Properties of EVA Nanocomposites. Applied Clay Science, 83-84, 153-161.
[12] Fereidoon, A., Memarian, S., Albooyeh, A. and Tarahomi, S. (2014) Influence of Mesoporous Silica and Hydroxyapatite Nanoparticles on the Mechanical and Morphological Properties of Polypropylene. Materials & Design, 57, 201-210.
[13] Domenech, T., Peuvrel-Disdier, E. and Vergnes, B. (2013) The Importance of Specific Mechanical Energy during Twin Screw Extrusion of Organoclay Based Polypropylene Nanocomposites. Composites Science and Technology, 75, 7-14.
[14] Yang, M., Gao, Y., He, J.P. and Li, H.M. (2007) Preparation of Polyamide 6/Silica Nanocomposites from Silica Surface Initiated Ring-Opening Anionic Polymerization. eXPRESS Polymer Letters, 1, 433-442.
[15] Youssef, A.M. and Abdel-Aziz, M.S. (2013) Preparation of Polystyrene Nanocomposites Based on Silver Nanoparticles Using Marine Bacterium for Packaging. Polymer-Plastics Technology and Engineering, 52, 607-613.
[16] Zhang, W., Chen, D., Zhao, Q. and Fang, Y. (2003) Effects of Different Kinds of Clay and Different Vinyl Acetate Content on the Morphology and Properties of EVA/Clay Nanocomposites. Polymer, 44, 7953-7961.
[17] Papon, A., Saalwächter, K., Schäler, K., Guy, L., Lequeux, F. and Montes H. (2011) Low-Field NMR Investigations of Nanocomposites: Polymer Dynamics and Network Effects. Macromolecules, 44, 913-922.
[18] Passos, A.A., Tavares, M.I.B., Neto, R.C.P., Moreira, L.A. and Ferreira, A.G. (2011) Obtenção de nanocompósito de EVA/sílica e caracterização por ressonância magnética nuclear no estado sólido. Polímeros, 21, 98-102.
[19] Silva, E.O., Tavares, M.I.B. and Nogueira, J. (2008) Solid State NMR Evaluation of Natural Resin/Clay Nanocom-posites. Journal of Nano Research, 4, 117-126.
[20] Merat, P.P., Tavares, M.I.B. and Silva, E.O. (2011) Preparation of Polycarbonate/Clay Nanocomposite and Characterization by X-Ray, Thermal Analyzes and Low-Field Nuclear Magnetic Resonance. Journal of Materials Science and Engineering, 1, 671-677.
[21] Valentim, A.C.S., Tavares, M.I.B. and Silva, E.O. (2014) Effect of Adding TiO2 to Ethylene Vinyl Acetate Copolymer on the Latter’s Thermal Properties and Crystallinity. Química Nova, 37, 255-259.
[22] Rodrigues, T.C., Tavares, M.I.B., Preto, M., Soares, I.L. and Moreira, A.C.F. (2008) Evaluation of Polyethylene/Or-ganoclay Nanocomposites by Low-Field Nuclear Relaxation. International Journal of Polymeric Materials, 57, 1119-1123.
[23] VanderHart, D.L., Asano, A. and Gilman, J.W. (2001) Solid-State NMR Investigation of Paramagnetic Nylon-6 Clay Nanocomposites. 1. Crystallinity, Morphology, and the Direct Influence of Fe3+ on Nuclear Spins. Chemistry of Materials, 13, 3781-3795.
[24] VanderHart, D.L., Asano, A. and Gilman, J.W. (2001) Solid-State NMR Investigation of Paramagnetic Nylon-6 Clay Nanocomposites. 2. Measurement of Clay Dispersion, Crystal Stratification, and Stability of Organic Modifiers. Chemistry of Materials, 13, 3796-3809.
[25] Preston, C.M., Amarasinghe, G., Hopewell, J.L., Shanks, R.A. and Mathys, Z. (2004) Evaluation of Polar Ethylene Copolymers as Fire Retardant Nanocomposite Matrices. Polymer Degradation and Stability, 84, 533-544.
[26] Camino, G., Sgobbi, R., Zaopo, A., Colombier, S. and Scelza, C. (2000) Investigation of Flame Retardancy in EVA. Fire and Materials, 24, 85-90.<85::AID-FAM724>3.0.CO;2-T
[27] Shen, Z., Simon, G.P. and Cheng, Y.-B. (2002) Comparison of Solution Intercalation and Melt Intercalation of Polymer-Clay Nanocomposites. Polymer, 43, 4251-4260.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.