Share This Article:

Molecular Dynamics Simulation of Glass Forming Ability of Al30Co10 Amorphous Alloy

Abstract Full-Text HTML XML Download Download as PDF (Size:1154KB) PP. 552-558
DOI: 10.4236/ojapps.2015.59053    2,157 Downloads   2,661 Views  

ABSTRACT

By using LAMMPS of the open source software, the micro-structures of Al30Co10 alloys were studied. Based on the average atomic volume, pair distribution function and bond-angle distribution functions, Honeycutt-Andersen (HA) bond-type index analysis shows that Al30Co10 alloy system begins to transform into a glass state with the temperature rapidly decreasing to 900 K. The process temperature is decreased from 900 K to 300 K, the radial distribution function g(r) the first peak height with increased, width as decreasing temperature, and the system is an amorphous alloy when second peak appears obvious splitting. The bond angle distribution function showed second peaks when the temperature dropped to 300 K, so that the alloy atoms become orderly. Meanwhile the 1551 bond pairs increase to 35% with decreasing temperature; it implies that the Al30Co10 alloy system can be well transformed into the glass state.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Fu, C. , Sun, L. and Cheng, Z. (2015) Molecular Dynamics Simulation of Glass Forming Ability of Al30Co10 Amorphous Alloy. Open Journal of Applied Sciences, 5, 552-558. doi: 10.4236/ojapps.2015.59053.

References

[1] Johnson, W.L. and Bull, M.R. (1999) Bulk Glass-Forming Metallic Alloys. Science and Technology, 24, 42-56.
[2] Inoue, A. and Takaomi, I. (1998) Soft Magnetic of Co-Based Amorphous Alloys with Wide Super-Cooled Liquid Region. Materials Transactions Jim, 39, 762-770.
[3] Inoue, A. (1995) High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates. Materials Transactions Jim, 36, 866-875. http://dx.doi.org/10.2320/matertrans1989.36.866
[4] Sun, Y.L., Qu, D.D. and Sun, Y.J. (2010) Inhomogeneous Structure and Glass-Forming Ability in Zr-Based Bulk Metallic Glasses. Journal of Non-Crystalline Solids, 356, 39-45.
http://dx.doi.org/10.1016/j.jnoncrysol.2009.09.021
[5] Inoue, A. (2000) Stabilization of Metallic Super Cooled Liquid and Bulk Amorphous Alloys. Acta Materialia, 48, 279- 306. http://dx.doi.org/10.1016/S1359-6454(99)00300-6
[6] Xia, J.H., Cheng, Z.F. and Cao, Y.J. (2012) Molecular Dynamics Simulation of Microstructure Evolution in Ti75Al25 Alloys. J. At. Mol. Phys., 29, 739-745.
[7] Cheng, Y.Q., Ma, E. and Sheng, H.W. (2009) Atomic Level Structure in Multi-Component Bulk Metallic Glass. Physical Review Letters, 102, Article ID: 245501.
http://dx.doi.org/10.1103/PhysRevLett.102.245501
[8] Li, G.X., Liang, Y.F., Zhu, Z.G. and Liu, C.S. (2003) Microstructural Analysis of the Radial Distribution Function for Liquid and Amorphous Al. Journal of Physics: Condensed Matter, 15, 2259-2267.
http://dx.doi.org/10.1088/0953-8984/15/14/302
[9] Daw, M.S. and Baskes, M.I. (1983) Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical Review Letters, 50, 1285.
http://dx.doi.org/10.1103/PhysRevLett.50.1285
[10] Liu, C.S., Xia, J., Zhu, Z.G. and Sun, D.Y. (2001) The Cooling Rate Dependence of Crystallization for Liquid Copper: A Molecular Dynamic Simulation. The Journal of Chemical Physics, 114, 7506-7513.
http://dx.doi.org/10.1063/1.1362292
[11] Cheng, Y.Q., Ma, E. and Sheng, H.W. (2009) Atomic Level Structure in Multicomponent Bulk Metallic Glass. Physical Review Letters, 102, Article ID: 245501. http://dx.doi.org/10.1103/PhysRevLett.102.245501
[12] Zope, R.R. and Mishin, Y. (2003) Inter-Atomic Potentials for Atomistic Simulations of the Ti-Al System. Physical Review B, 68, Article ID: 024102. http://dx.doi.org/10.1103/PhysRevB.68.024102
[13] Dang, S.E., Zhang, X.H., Yan, Z.J., Hu, Y. and Hao, W.X. (2007) Correlation between Crystallization Kinetics of Amorphous Alloys and Primary Phases during Crystallization. The Chinese Journal of Nonferrous Metals, 17, 296- 302.
[14] Fan, G.J., Loser, W., Routh, S. and Eckert, J. (2000) Glass-Forming Ability of RE-Al-TM Alloys (RE=Sm, Y; TM=Fe, Co, Cu). Acta Materialia, 48, 3823-3831. http://dx.doi.org/10.1016/S1359-6454(00)00195-6
[15] Pei, X.Q., Lu, C. and Lee, H.P. (2005) Crystallization of Amorphous Alloy Isothermal Annealing: A Molecular Dynamics Study. Journal of Physics: Condensed Matter, 17, 1493-1504.
http://dx.doi.org/10.1088/0953-8984/17/10/006
[16] Launey, M.E., Busch, R. and Kruzic, J.J. (2008) Effects of Free Volume Changes and Residual Stresses on the Fatigue and Fracture Behavior of a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass. Acta Materialia, 56, 500-510.
http://dx.doi.org/10.1016/j.actamat.2007.10.007
[17] Klement, W., Willens, R.H. and Duwez, P. (1960) Non-Crystalline Structure in Solidified Gold-Silicon Alloys. Nature, 187, 869-870. http://dx.doi.org/10.1038/187869b0
[18] Sheng, H.W., Liu, H.Z., Cheng, Y.Q., Wen, J., Lee, P.L., Luo, W.K., Shastri, S.D. and Ma, E. (2007) Polyamorphism in a Metallic Glass. Nature Materials, 6, 192-197. http://dx.doi.org/10.1038/nmat1839
[19] Allen, M.P. and Tildesley, D.J. (1987) Computer Simulation of Liquids. Oxford University Press, Oxford.
[20] Waseda, Y. (1980) The Structure of Non-Crystalline Materials. McGraw-Hill, New York.
[21] Finney, J.L. (1977) Modeling Structures of Amorphous Metals and Alloys. Nature, 266, 309-314.
http://dx.doi.org/10.1038/266309a0
[22] Finney, J.L. (1970) Random Packings and the Structure of Simple Liquids. II. The Molecular Geometry of Simple Liquids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 319, 495-507. http://dx.doi.org/10.1098/rspa.1970.0190
[23] Mei, J. and Davenport, J.W. (1992) Free-Energy Calculations and the Melting Point of Al. Physical Review B, 46, Article ID: 21. http://dx.doi.org/10.1103/PhysRevB.46.21
[24] Daw, M.S. and Baskes, M.I. (1983) Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical Review Letters, 85, Article ID: 1285.
http://dx.doi.org/10.1103/PhysRevLett.50.1285
[25] Rifkin, J. (2002) XMD-Molecular Dynamics Program. Version 2.5.32, University of Connecticut, Storrs.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.