[1]
|
Seeman, P. and Tallerico, T. (2003) Link between Dopamine D1 and D2 Receptors in Rat and Human Striatal Tissues. Synapse, 47, 250-254. http://dx.doi.org/10.1002/syn.10171
|
[2]
|
Karl, T., Duffy, L., O'brien, E., Matsumoto, I. and Dedova, I. (2006) Behavioural Effects of Chronic Haloperidol and Risperidone Treatment in Rats. Behavioural Brain Research, 171, 286-294. http://dx.doi.org/10.1016/j.bbr.2006.04.004
|
[3]
|
Graff-Guerrero, A., Mamo, D., Shammi, C.M., Mizrahi, R., Marcon, H., Barsoum, P., Rusjan, P., Houle, S., Wilson, A.A. and Kapur, S. (2009) The Effect of Antipsychotics on the High-Affinity State of D2 and D3 Receptors: A Positron Emission Tomography Study with [11C]-(+)-PHNO. Archives of General Psychiatry, 66, 606-615. http://dx.doi.org/10.1001/archgenpsychiatry.2009.43
|
[4]
|
Iderberg, H., Maslava, N., Thompson, A.D., Bubser, M., Niswender, C.M., Hopkins, C.R., Lindsley, C.W., Conn, P.J., Jones, C.K. and Cenci, M.A. (2015) Pharmacological Stimulation of Metabotropic Glutamate Receptor Type 4 in a Rat Model of Parkinson’s Disease and L-DOPA-Induced Dyskinesia: Comparison between a Positive Allosteric Modulator and an Orthosteric Agonist. Neuro-pharmacology, 95, 121-129. http://dx.doi.org/10.1016/j.neuropharm.2015.02.023
|
[5]
|
Shirayama, Y., Mitsushio, H., Takahashi, K. and Nishikawa, T. (2000) Differential Effects of Haloperidol on Phencyclidine-Induced Reduction in Substance P Contents in Rat Brain Regions. Synapse, 35, 292-299. http://dx.doi.org/10.1002/(SICI)1098-2396(20000315)35:4<292::AID-SYN7>3.0.CO;2-3
|
[6]
|
Samad, N. and Haleem, D.J. (2014) Haloperidol-Induced Extra Pyramidal Symptoms Attenuated by Imipramine in Rats. Pakistan Journal of Pharmaceutical Sciences, 27, 1497-1501.
|
[7]
|
Kiyatkin, E.A. and Rebec, G.V. (1999) Striatal Neuronal Activity and Responsiveness to Dopamine and Glutamate after Selective Blockade of D1 and D2 Dopamine Receptors in Freely Moving Rats. The Journal of Neuroscience, 19, 3594-3609.
|
[8]
|
Martel, P., Leo, D., Fulton, S., Bérard, M. and Trudeau, L.E. (2011) Role of Kv1 Potassium Channels in Regulating Dopamine Release and Presynaptic D2 Receptor Function. PLoS One, 6, e20402. http://dx.doi.org/10.1371/journal.pone.0020402
|
[9]
|
Hudson, C.J., Seeman, P. and Seeman, M.V. (2014) Parkinson’s Disease: Low-Dose Haloperidol Increases Dopamine Receptor Sensitivity and Clinical Response. Parkinson’s Disease, 2014, Article ID: 684973. http://dx.doi.org/10.1155/2014/684973
|
[10]
|
Pifarré, P., Cuberas, G., Hernández, J., Lorenzo, C., Miquel, F. and Castell-Conesa, J. (2010) Cortical and Subcortical Patterns of I-123 Iodobenzamide SPECT in Striatal D(2) Receptor Parkinsonisms. Clinical Nuclear Medicine, 35, 228-233. http://dx.doi.org/10.1097/rlu.0b013e3181d18cb3
|
[11]
|
Napier, T.C. and Maslowski-Cobuzzi, R.J. (1994) Electrophysi-ological Verification of the Presence of D1 and D2 Dopamine Receptors within the Ventral Pallidum. Synapse, 17, 160-166. http://dx.doi.org/10.1002/syn.890170304
|
[12]
|
Shi, W.X., Smith, P.L., Pun, C.L., Millet, B. and Bunney, B.S. (1997) D1-D2 Interaction in Feedback Control of Midbrain Dopamine Neurons. The Journal of Neuroscience, 17, 7988-7994.
|
[13]
|
Perreault, M.L., Hasbi, A., O’Dowd, B.F. and George, S.R. (2014) Heteromeric Dopamine Receptor Signaling Complexes: Emerging Neurobiology and Disease Relevance. Neuropsychopharmacology, 39, 156-168. http://dx.doi.org/10.1038/npp.2013.148
|
[14]
|
Zhang, S., Xie, C., Wang, Q. and Liu, Z. (2014) Interactions of CaMKII with Dopamine D2 Receptors: Roles in Levodopa-Induced Dyskinesia in 6-Hydroxydopamine Lesioned Parkinson’s Rats. Scientific Reports, 4, 6811. http://dx.doi.org/10.1038/srep06811
|
[15]
|
Mahmoudi, A.R., Zarnani, A.H., Jeddi-Tehrani, M., Katouzian, L., Tavakoli, M., Soltanghoraei, H. and Mirzadegan, E. (2013) Distribution of Vitamin D Re-ceptor and 1α-Hydroxylase in Male Mouse Reproductive Tract. Reproductive Sciences, 20, 426-436. http://dx.doi.org/10.1177/1933719112459235
|
[16]
|
Durk, M.R., Han, K., Chow, E.C., Ahrens, R., Henderson, J.T., Fraser, P.E. and Pang, K.S. (2014) 1α,25-Dihydroxy- vitamin D3 Reduces Cerebral Amyloid-β Accumulation and Improves Cognition in Mouse Models of Alzheimer’s Disease. Journal of Neuroscience, 34, 7091-7101. http://dx.doi.org/10.1523/JNEUROSCI.2711-13.2014
|
[17]
|
Shinpo, K., Kikuchi, S., Sasaki, H., Moriwaka, F. and Tashiro, K. (2000) Effect of 1,25-Dihydroxyvitamin D3 on Cultured Mesencephalic Dopaminergic Neurons to the Combined Toxicity Caused by L-Buthionine Sulfoximine and 1-Methyl-4-phenylpyridine. Journal of Neuroscience Research, 62, 374-382. http://dx.doi.org/10.1002/1097-4547(20001101)62:3<374::AID-JNR7>3.0.CO;2-7
|
[18]
|
Landfield, P.W. and Cadwallader-Neal, L. (1998) Long-Term Treatment with Calcitriol (1,25(OH)2 vit D3) Retards a Biomarker of Hippocampal Aging in Rats. Neurobiology of Aging, 19, 469-477. http://dx.doi.org/10.1016/S0197-4580(98)00079-7
|
[19]
|
Baas, D., Prüfer, K., Ittel, M.E., Kuchler-Bopp, S., Labourdette, G., Sarliève, L.L. and Brachet, P. (2000) Rat Oligodendrocytes Express the Vitamin D3 Receptor and Respond to 1,25-Dihydroxyvitamin D3. Glia, 31, 59-68. http://dx.doi.org/10.1002/(SICI)1098-1136(200007)31:1<59::AID-GLIA60>3.0.CO;2-Y
|
[20]
|
Ogundele, O.M., Nanakumo, E.T., Ishola, A.O., Obende, O.M., Enye, L.A., Balogun, W.G., Cobham, A.E. and Abdulbasit, A. (2014) -NMDA R/+VDR Pharmacological Phenotype as a Novel Therapeutic Target in Relieving Motor-Cognitive Impairments in Parkinsonism. Drug and Chemical Toxicology, 4, 1-13. http://dx.doi.org/10.3109/01480545.2014.975355
|
[21]
|
Cheng, J.T., Schallert, T., De Ryck, M. and Teitelbaum, P. (1981) Galloping Induced by Pontine Tegmentum Damage in Rats: A Form of “Parkinsonian Festination” Not Blocked by Haloperidol. Proceedings of the National Academy of Sciences of the United States of America, 78, 3279-3283. http://dx.doi.org/10.1073/pnas.78.5.3279
|
[22]
|
Dragicevic, E., Schiemann, J. and Liss, B. (2015) Dopamine Midbrain Neurons in Health and Parkinson’s Disease: Emerging Roles of Voltage-Gated Calcium Channels and ATP-Sensitive Potassium Channels. Neuroscience, 284, 798- 814. http://dx.doi.org/10.1016/j.neuroscience.2014.10.037
|
[23]
|
Ishida, Y., Kozaki, T., Isomura, Y., Ito, S. and Isobe, K. (2009) Age-Dependent Changes in Dopaminergic Neuron Firing Patterns in Substantia Nigra Pars Compacta. Journal of Neural Transmission, 73, 129-133. http://dx.doi.org/10.1007/978-3-211-92660-4_10
|
[24]
|
Lee, C.R. and Tepper, J.M. (2009) Basal Ganglia Control of Substantia Nigra Dopaminergic Neurons. Journal of Neural Transmission, 73, 71-90.
|
[25]
|
Buhusi, C.V. and Schmajuk, N.A. (1996) Attention, Configuration, and Hippocampal Function. Hippocampus, 6, 621-642. http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:6<621::AID-HIPO6>3.0.CO;2-J
|
[26]
|
Del Arco, A. and Mora, F. (2008) Prefrontal Cortex-Nucleus Accumbens Interaction: In Vivo Modulation by Dopamine and Glutamate in the Prefrontal Cortex. Pharmacology Biochemistry and Behavior, 90, 226-235. http://dx.doi.org/10.1016/j.pbb.2008.04.011
|
[27]
|
Burne, T.H., McGrath, J.J., Eyles, D.W. and Mackay-Sim, A. (2005) Behavioural Characterization of Vitamin D Receptor Knockout Mice. Behavioural Brain Research, 157, 299-308. http://dx.doi.org/10.1016/j.bbr.2004.07.008
|
[28]
|
Scatton, B., Worms, P., Lloyd, K.G. and Bartholini, G. (1982) Cortical Modulation of Striatal Function. Brain Research, 232, 331-343. http://dx.doi.org/10.1016/0006-8993(82)90277-3
|