[1]
|
Thiyam, U., Kuhlmann, A., Stöckmann, H. and Schwarz, K. (2004) Prospects of Rapeseed Oil By-Products with Respect to Antioxidative Potential. Comptes Rendus Chimie, 7, 611-616. http://dx.doi.org/10.1016/j.crci.2004.02.011
|
[2]
|
Colella, L.S., Armenante, P.M., Kafkewitz, D., Allen, S.J. and Balasundaram, V. (1998) Adsorption Isotherms for Chlorinated Phenols on Activated Carbons. Journal of Chemical & Engineering Data, 43, 573-579.
http://dx.doi.org/10.1021/je970217h
|
[3]
|
Kumar, A., Shashi, A. and Surendra, A. (2003) Adsorption of Resorcinol and Catechol on Granular Activated Carbon: Equilibrium and Kinetics. Carbon, 41, 3015-3025. http://dx.doi.org/10.1016/S0008-6223(03)00431-7
|
[4]
|
Schweigert, N., Zehnder, A.J.B. and Eggen, R.I.L. (2001) Chemical Properties of Catechols and Their Molecular Modes of Toxic Action in Cells, from Microorganisms to Mammals. Environmental Microbiology, 3, 81-91.
http://dx.doi.org/10.1046/j.1462-2920.2001.00176.x
|
[5]
|
Gulley-Stahl, H., Hogan, P.A., Schmidt, W.L., Wall, S.J., Buhrlage, A. and Bullen, H.A. (2010) Surface Complexation of Catechol to Metal Oxides: An ATR-FTIR, Adsorption, and Dissolution Study. Environmental Science & Technology, 44, 4116-4121. http://dx.doi.org/10.1021/es902040u
|
[6]
|
Suresh, S., Srivastava, V.C. and Mishra, I.M. (2011) Isotherm, Thermodynamics, Desorption, and Disposal Study for the Adsorption of Catechol and Resorcinol onto Granular Activated Carbon. Journal of Chemical & Engineering Data, 56, 811-818. http://dx.doi.org/10.1021/je100303x
|
[7]
|
Richard, D., Schweich, D., Al Sawah, M.A. and de Bellefon, C. (2010) Depollution: A Matter of Catalyst and Reactor Design. Comptes Rendus Chimie, 13, 488-493. http://dx.doi.org/10.1016/j.crci.2010.04.016
|
[8]
|
Taha, S., Baroudi, M. and Halwani, J. (2011) pH Effect on the Retention of Hydroquinone Revealing Photographic Substances by Nanofiltration. Journal of Water Science, 24, 1-7.
|
[9]
|
Fritz, H., Reineke, W. and Schmidt, E. (1992) Toxicity of Chlorobenzene on Pseudomonas sp. Strain RHO1, a Chlorobenzene-Degrading Strain. Biodegradation, 2, 165-170. http://dx.doi.org/10.1007/BF00124490
|
[10]
|
Capasso, R., Evidente, A., Schivo, L., Orru, G., Marcialis, M.A. and Cristinzio, G. (1995) Antibacterial Polyphenols from Olive Oil Mill Waste Waters. Journal of Applied Bacteriology, 79, 393-398.
http://dx.doi.org/10.1111/j.1365-2672.1995.tb03153.x
|
[11]
|
Rahouti, M., Steiman, R., Seigle-Murandi, F. and Chritov, L.P. (1999) Growth of 1044 Strains and Species of Fungi on 7 Phenolic Lignin Model Compounds. Chemosphere, 38, 2549-2559.
http://dx.doi.org/10.1016/S0045-6535(98)00462-7
|
[12]
|
Phutdhawong, W., Chowwanapoonpohn, S. and Buddhasukh, D. (2000) Electrocoagulation and Subsequent Recovery of Phenolic Compounds. Analytical Sciences, 16, 1083-1084. http://dx.doi.org/10.2116/analsci.16.1083
|
[13]
|
Van Duursen, M.B.M., Sanderson, J.T., de Jong, P.C., Kraaij, M. and van den Berg, M. (2004) Phytochemicals Inhibit Catechol-O-Methyltransferase Activity in Cytosolic Fractions from Healthy Human Mammary Tissues: Implications for Catechol Estrogen-Induced DNA Damage. Toxicological Sciences, 81, 316-324.
http://dx.doi.org/10.1093/toxsci/kfh216
|
[14]
|
Kumar, A., Kumar, S. and Kumar, S. (2005) Biodegradation Kinetics of Phenol and Catechol Using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22, 151-159. http://dx.doi.org/10.1016/j.bej.2004.09.006
|
[15]
|
Stoilova, I., Krastanov, A., Stanchev, V., Daniel, D., Gerginova, M. and Alexieva, Z. (2006) Biodegradation of High Amounts of Phenol, Catechol, 2,4-Dichlorophenol and 2,6-Dimethoxyphenol by Aspergillus awamori Cells. Enzyme and Microbial Technology, 39, 1036-1041. http://dx.doi.org/10.1016/j.enzmictec.2006.02.006
|
[16]
|
Latkar, M., Swaminathan, K. and Chakrabarti, T. (2003) Kinetics of Anaerobic Biodegradation of Resorcinol Catechol and Hydroquinone in Upflow Fixed Film-Fixed Bed Reactors. Bioresource Technology, 88, 69-74.
http://dx.doi.org/10.1016/S0960-8524(02)00261-4
|
[17]
|
Subramanyam, R. and Mishra, I.M. (2007) Biodegradation of Catechol (2-Hydroxy Phenol) Bearing Wastewater in an UASB Reactor. Chemosphere, 69, 816-824. http://dx.doi.org/10.1016/j.chemosphere.2007.04.064
|
[18]
|
Subramanyam, R. and Mishra, I.M. (2008) Co-Degradation of Resorcinol and Catechol in an UASB Reactor. Bioresource Technology, 99, 4147-4157. http://dx.doi.org/10.1016/j.biortech.2007.08.060
|
[19]
|
Nasr, B., Abdellatif, G., Canizares, P., Saez, C., Lobato, J. and Rodrigo, M.A. (2005) Electrochemical Oxidation of Hydroquinone, Resorcinol, and Catechol on Boron-Doped Diamond Anodes. Environmental Science & Technology, 39, 7234-7239. http://dx.doi.org/10.1021/es0500660
|
[20]
|
Chien, S.W.C., Chen, H.L., Wang, M.C. and Seshaiah, K. (2009) Oxidative Degradation and Associated Mineralization of Catechol, Hydroquinone and Resorcinol Catalyzed by Birnessite. Chemosphere, 74, 1125-1133.
http://dx.doi.org/10.1016/j.chemosphere.2008.10.007
|
[21]
|
Araña, J., Fernández Rodríguez, C., González Díaz, O., Herrera Melián, J.A. and Pérez Peña, J. (2005) Role of Cu in the Cu-TiO2 Photocatalytic Degradation of Dihydroxybenzenes. Catalysis Today, 101, 261-266.
http://dx.doi.org/10.1016/j.cattod.2005.03.006
|
[22]
|
Ahn, M.Y., Martinez, C.E., Archibald, D.D., Zimmerman, A.R., Bollag, J.M. and Dec, J. (2006) Transformation of Catechol in the Presence of a Laccase and Birnessite. Soil Biology and Biochemistry, 38, 1015-1020.
http://dx.doi.org/10.1016/j.soilbio.2005.08.016
|
[23]
|
Mohamed, F.S., Khater, W.A. and Mostafa, M.R. (2006) Characterization and Phenols Sorptive Properties of Carbons Activated by Sulphuric Acid. Chemical Engineering Journal, 116, 47-52.
|
[24]
|
Richard, D., Delgado Núñez, M.L. and Schweich, D. (2009) Adsorption of Complex Phenolic Compounds on Active Charcoal: Adsorption Capacity and Isotherms. Chemical Engineering Journal, 148, 1-7.
http://dx.doi.org/10.1016/j.cej.2008.07.023
|
[25]
|
Richard, D., Delgado Núñez, M.L. and Schweich, D. (2010) Adsorption of Complex Phenolic Compounds on Active Charcoal: Breakthrough Curves. Chemical Engineering Journal, 158, 213-219.
http://dx.doi.org/10.1016/j.cej.2009.12.044
|
[26]
|
Suresh, S., Srivastava, V.C. and Mishra, I.M. (2011) Adsorption of Hydroquinone in Aqueous Solution by Granulated Activated Carbon. Journal of Environmental Engineering, 137, 1145-1157.
http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000443
|
[27]
|
Suresh, S., Srivastava, V.C. and Mishra, I.M. (2012) Adsorptive Removal of Aniline by Granular Activated Carbon from Aqueous Solutions with Catechol and Resorcinol. Environmental Technology, 33, 773-781.
http://dx.doi.org/10.1080/09593330.2011.592228
|
[28]
|
Namasivayam, C. and Sumithra, S. (2004) Adsorptive Removal of Catechol on Waste Fe(III)/Cr(III) Hydroxide: Equilibrium and Kinetics Study. Industrial & Engineering Chemistry Research, 43, 7581-7587.
http://dx.doi.org/10.1021/ie0496636
|
[29]
|
Arana, J., Melian, E.P., Lopez, V.M.R., Alonso, A.P., Rodriguez, J.M.D., Diaz, O.G. and Pena, J.P. (2007) Photocatalytic Degradation of Phenol and Phenolic Compounds. Journal of Hazardous Materials, 146, 520-528.
http://dx.doi.org/10.1016/j.jhazmat.2007.04.066
|
[30]
|
Shakir, K., Ghoneimy, H.F., Elkafrawy, A.F., Beheir, S.G. and Refaat, M. (2008) Removal of Catechol from Aqueous Solutions by Adsorption onto Organophilic-Bentonite. Journal of Hazardous Materials, 150, 765-773.
http://dx.doi.org/10.1016/j.jhazmat.2007.05.037
|
[31]
|
Juang, R.S., Lin, S.H. and Tsao, K.H. (2004) Sorption of Phenols from Water in Column Systems Using Surfactant-Modified Montmorillonite. Journal of Colloid and Interface Science, 269, 46-52.
http://dx.doi.org/10.1016/j.jcis.2003.08.016
|
[32]
|
Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B. and Mishra, I.M. (2006) Adsorptive Removal of Phenol by Bagasse Fly Ash and Activated Carbon: Equilibrium, Kinetics and Thermodynamics. Colloids and Surfaces A, 272, 89- 104. http://dx.doi.org/10.1016/j.colsurfa.2005.07.016
|
[33]
|
Suresh, S., Vijayalakshmi, G., Rajmohan, B. and Subbaramaiah, V. (2012) Adsorption of Benzene Vapor onto Activated Biomass from Cashew Nut Shell: Batch and Column Study. Recent Patents on Chemical Engineeringe, 5, 116-133. http://dx.doi.org/10.2174/2211334711205020116
|
[34]
|
Yildiz, N., Gonulsen, R., Koyuncu, H. and Calimli, A. (2005) Adsorption of Benzoic Acid and Hydroquinone by Organically Modified Bentonites. Colloids and Surfaces A, 260, 87-94. http://dx.doi.org/10.1016/j.colsurfa.2005.03.006
|
[35]
|
Douch, J., Hamdani, M., Fessi, H. and Elaissari, A. (2009) Acid-Base Behavior of a Colloidal Clays Fraction Extracted from Natural Quartz Sand: Effect of Permanent Surface Charge. Colloids and Surfaces A, 338, 51-60.
http://dx.doi.org/10.1016/j.colsurfa.2008.12.034
|
[36]
|
Jada, A., Ait Akbour, R. and Douch, J. (2006) Surface Charge and Adsorption from Water onto Quartz Sand of Humic Acid. Chemosphere, 64, 1287-1295. http://dx.doi.org/10.1016/j.chemosphere.2005.12.063
|
[37]
|
Jada, A., Debih, H. and Khodja, M. (2006) Montmorillonite Surface Properties Modifications by Asphaltenes Adsorption. Journal of Petroleum Science and Engineering, 52, 305-316.
http://dx.doi.org/10.1016/j.petrol.2006.03.016
|
[38]
|
Geng, Q.J., Guo, Q.J., Cao, C.Q. and Wang, L.T. (2008) Investigation into NanoTiO2/ACSPCR for Decomposition of Aqueous Hydroquinone. Industrial & Engineering Chemistry Research, 47, 2561-2568.
http://dx.doi.org/10.1021/ie071507m
|
[39]
|
Ait Akbour, R., Douch, J., Hamdani, M. and Schmitz, P. (2002) Transport of Kaolinite Colloids through Quartz Sand: Influence of Humic Acid, Ca2+, and Trace Metals. Journal of Colloid and Interface Science, 253, 1-8.
http://dx.doi.org/10.1006/jcis.2002.8523
|
[40]
|
Bouna, L., Rhouta, B., Amjoud, M., Jada, A., Maury, F., Daoudi, L. and Senocq, F. (2010) Correlation between Eletrokinetic Mobility and Ionic Dyes Adsorption of Moroccan Stevensite. Applied Clay Science, 48, 527-530.
http://dx.doi.org/10.1016/j.clay.2010.02.004
|
[41]
|
Hameed, B.H., Mahmoud, D.K. and Ahmad, A.L. (2008) Sorption Equilibrium and Kinetics of Basic Dye from Aqueous Solution Using Banana Stalk Waste. Journal of Hazardous Materials, 158, 499-506.
http://dx.doi.org/10.1016/j.jhazmat.2008.01.098
|
[42]
|
Banat, F.A., Al-Bashir, B., Al-Asheh, S. and Hayajneh, O. (2000) Adsorption of Phenol by Bentonite. Environmental Pollution, 107, 391-398. http://dx.doi.org/10.1016/S0269-7491(99)00173-6
|
[43]
|
Yildiz, N., Gonulsen, R., Koyuncu, H. and Calimli, A. (2005) Adsorption of Benzoic Acid and Hydroquinone by Organically Modified Bentonites. Colloids and Surfaces A, 260, 87-94. http://dx.doi.org/10.1016/j.colsurfa.2005.03.006
|
[44]
|
Halhouli, K.A., Darwish, N.A. and Al-Jahmany, Y. (1997) Effects of Temperature and Inorganic Salts on the Adsorption of Phenol from Multicomponent Systems onto a Decolorizing Carbon. Separation Science and Technology, 32, 3027-3036. http://dx.doi.org/10.1080/01496399708000793
|
[45]
|
Namasivayam, C. and Kavitha, D. (2003) Adsorptive Removal of 2-Chlorophenol by Low-Cost Coir Pith Carbon. Journal of Hazardous Materials, 98, 257-274. http://dx.doi.org/10.1016/S0304-3894(03)00006-2
|
[46]
|
Hung, J., Huang, K. and Yan, C. (2009) Application of an Easily Water-Compatible Hypercrosslinked Polymeric Adsorbent for Efficient Removal of Catechol and Resorcinol in Aqueous Solution. Journal of Hazardous Materials, 167, 69-74. http://dx.doi.org/10.1016/j.jhazmat.2008.12.120
|
[47]
|
Ait Akbour, R., Amal, H., Ait Addi, A., Douch, J., Jada, A. and Hamdani, M. (2013) Transport and Retention of Humic Acid through Natural Quartz Sand: Influence of the Ionic Strength and the Nature of Divalent Cation. Colloids and Surfaces A, 436, 589-598. http://dx.doi.org/10.1016/j.colsurfa.2013.07.029
|
[48]
|
Jada, A. and Ait Akbour, R. (2012) Transport of Basic Colorant through Quartz Sand. Journal of Colloid Science and Biotechnology, 1, 26-32.
|
[49]
|
Weidenhaupt, A., Arnold, C., Muller, S., Haderlein, S.B. and Schwarzenbach, R.P. (1997) Sorption of Organotin Biocides to Mineral Surfaces. Environmental Science & Technology, 31, 2603-2609.
http://dx.doi.org/10.1021/es9700109
|
[50]
|
Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters. 3rd Edition, John Wiley & Sons, New York.
|
[51]
|
Benkli, Y.E., Can, M.F., Turan, M. and Celik, M.S. (2005) Modification of Organo-Zeolite Surface for the Removal of Reactive Azo Dyes in Fixed-Bed Reactors. Water Research, 39, 487-493.
http://dx.doi.org/10.1016/j.watres.2004.10.008
|
[52]
|
Ni, W., Liang, F.X., Liu, J.G., Qu, X.Z., Zhang, C.L., Li, J.L., Wang, Q. and Yang, Z.Z. (2011) Polymer Nanotubes toward Gelating Organic Chemicals. Chemical Communications, 47, 4727-4729. http://dx.doi.org/10.1039/c1cc10900f
|