Share This Article:

Dependence of the Structure, Optical Phonon Modes and Dielectric Properties on Pressure in Wurtzite GaN and AlN

Abstract Full-Text HTML XML Download Download as PDF (Size:510KB) PP. 316-324
DOI: 10.4236/ampc.2015.58031    3,713 Downloads   4,295 Views   Citations


The density functional perturbation theory (DFPT) is employed to study the structure, optical phonon modes and dielectric properties for wurtzite GaN and AlN under hydrostatic pressure. In order to calculate accurately the Born effective charges and high frequency dielectric tensors, we utilize two sum rules to monitor this calculation. The calculated optical phonon frequencies and longitudinal-transverse splitting show an increasing with pressure, whereas the Born effective charges and high frequency dielectric tensors are found to decrease with pressure. In particular, we analysed the reason for discrepancy between this calculation and previous experimental determination of pressure dependence of the LO-TO splitting in AlN. The different pressure behavior of the structural and lattice-dynamical properties of GaN and AlN is discussed in terms of the strengths of the covalent bonds and crystal anisotropy. Our results regarding dielectric Grüneisen parameter are predictions and may serve as a reference.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Wang, H. , Chen, Y. , Li, Y. and He, X. (2015) Dependence of the Structure, Optical Phonon Modes and Dielectric Properties on Pressure in Wurtzite GaN and AlN. Advances in Materials Physics and Chemistry, 5, 316-324. doi: 10.4236/ampc.2015.58031.


[1] Schubert, E.F. and Kim, J.K. (2005) Solid-State Light Sources Getting Smart. Science, 308, 1274-1278.
[2] Kuykendall, T., Ulrich, P., Aloni, S. and Yang, P. (2007) Complete Composition Tunability of InGaN Nanowires Using a Combinatorial Approach. Nature Materials, 6, 951-956.
[3] Simon, J., Protasenko, V., Lian, C., Xing, H. and Jena, D. (2010) Polarization-Induced Hole Doping in Wide—Band-Gap Uniaxial Semiconductor Heterostructures. Science, 327, 60-64.
[4] Dong, L., Yadav, S.K., Ramprasad, R. and Alpay, S.P. (2010) Band Gap Tuning in GaN through Equibiaxial In-Plane Strains. Applied Physics Letters, 96, Article ID: 202106.
[5] Wang, H.Y., Xu, H., Huang, T.T. and Deng, C.S. (2008) Thermodynamics of Wurtzite GaN from First-Principle Calculation. The European Physical Journal B, 62, 39-43.
[6] Perlin, P., Polian, A. and Suski, T. (1993) Raman-Scattering Studies of Aluminum Nitride at High Pressure. Physical Review B, 47, 2874-2879.
[7] Kuball, M., Hayes, J.M. and Prins, A.D. (2001) Raman Scattering Studies on Single-Crystalline Bulk AlN under High Pressures. Applied Physics Letters, 78, 724-726.
[8] Goni, A.R., Siegle, H., Syassen, K., Thomsen, C. and Wagner, J.M. (2001) Effect of Pressure on Optical Phonon Modes and Transverse Effective Charges in GaN and AlN. Physical Review B, 64, Article ID: 035205.
[9] Yakovenko, E.V., Gauthier, M. and Polian, A. (2004) High-Pressure Behavior of the Bond-Bending Mode of AIN. JETP, 98, 981-985.
[10] Manjón, F.J., Errandonea, D., Romero, A.H., Garro, N., Serrano, J. and Kuball, M. (2008) Lattice Dynamics of Wurtzite and Rocksalt AlN under High Pressure: Effect of Compression on the Crystal Anisotropy of Wurtzite-Type Semiconductors. Physical Review B, 77, Article ID: 205204.
[11] Perlin, P., Suski, J. and Ager, W. (1999) Transverse Effective Charge and Its Pressure Dependence in GaN Single Crystals. Physical Review B, 60, 1480-1483.
[12] Gonze, X. and Lee, C. (1997) Dynamical Matrices, Born Effective Charges, Dielectric Permittivity Tensors, and Interatomic Force Constants from Density-Functional Perturbation Theory. Physical Review B, 55, 10355-10368.
[13] Gonze, X., Beuken, J.M. and Caracas, R. (2002) First-Principles Computation of Material Properties: The ABINIT Software Project. Computational Materials Science, 25, 478-492.
[14] Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A. and Jonannopoulos, J.D. (1992) Iterative Minimization Techniques for Ab initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Reviews of Modern Physics, 64, 1045-1097.
[15] Troullier, N. and Martins, J.L. (1991) Efficient Pseudopotentials for Plane-Wave Calculations. Physical Review B, 43, 1993-2006.
[16] Ueno, M., Onodera, A., Shimomura, O. and Takemura, K. (1992) X-Ray Observation of the Structural Phase Transition of Aluminum Nitride under High Pressure. Physical Review B, 45, 10123-10126.
[17] Ueno, M., Yoshida, M., Onodera, A., Shimomura, O. and Takemura, K. (1994) Stability of the Wurtzite-Type Structure under High Pressure: GaN and InN. Physical Review B, 49, 14-21.
[18] Manjón, F.J., Errandonea, D., Garro, N., Romero, A.H., Serrano, J. and Kuball, M. (2007) Effect of Pressure on the Raman Scattering of Wurtzite AlN. Physica Status Solidi (b), 244, 42-47.
[19] Wagner, J.M. and Bechstedt, F. (2002) Properties of Strained Wurtzite GaN and AlN: Ab initio Studies. Physical Review B, 66, 115202.
[20] Venkataraman, G., Feldkamp, L.A. and Sahni, V.C. (1975) Dynamics of Perfect Crystals. MIT Press, Cambridge, Massachusetts, 202.
[21] Sanjurjo, J.A., Lopez-Cruz, E., Vogl, P. and Cardona, M. (1983) Dependence on Volume of the Phonon Frequencies and the IR Effective Charges of Several III-V Semiconductors. Physical Review B, 28, 4579-4584.
[22] Xu, Y.N. and Ching, W.Y. (1993) Electronic, Optical, and Structural Properties of Some Wurtzite Crystals. Physical Review B, 48, 4335-4351.
[23] Bungaro, C., Rapcewicz, K. and Bernholc, J. (2000) Ab initio Phonon Dispersions of Wurtzite AlN, GaN, and InN. Physical Review B, 61, 6720-6725.
[24] Christensen, N.E. and Gorczyca, I. (1994) Optical and Structural Properties of III-V Nitrides under Pressure. Physical Review B, 50, 4397-4415.
[25] Karch, K. and Bechstedt, F. (1997) Ab initio Lattice Dynamics of BN and AlN: Covalent versus Ionic Forces. Physical Review B, 56, 7404-7415.
[26] Gorczyca, I., Christensen, N.E., Pelzery Blancá, E.L. and Rodriguez, C.O. (1995) Optical Phonon Modes in GaN and AlN. Physical Review B, 51, 11936-11939.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.