[1]
|
Otsuka, K. and Ren, X. (2005) Physical Metallurgy of Ti-Ni Based Shape Memory Alloys. Progress in Materials Science, 50, 511-678. http://dx.doi.org/10.1016/j.pmatsci.2004.10.001
|
[2]
|
Lagoudas, D., Ed. (2008) Shape Memory Alloys Modeling and Engineering Applications. Springer, New York.
|
[3]
|
Neupane, R. and Farhat, Z. (2013) Wear and Dent Resistance of Superelastic TiNi Alloy. Wear, 301, 682-687.
http://dx.doi.org/10.1016/j.wear.2012.11.017
|
[4]
|
Li, D. (2000) Development of Novel Wear-Resistant Materials: TiNi-Based Pseudoelastic Tribomaterials. Materials & Design, 21, 551-555. http://dx.doi.org/10.1016/S0261-3069(00)00015-7
|
[5]
|
Li, D. (1998) A New Type of Wear-Resistant Material: Pseudo-Elastic TiNi Alloy. Wear, 221, 116-123.
http://dx.doi.org/10.1016/S0043-1648(98)00269-5
|
[6]
|
Neupane, R. and Farhat, Z. (2014) Wear Mechanisms of Nitinol under Reciprocating Sliding Contact. Wear, 315, 25-30. http://dx.doi.org/10.1016/j.wear.2014.02.018
|
[7]
|
DellaCorte, C., Pepper, S., Noebe, R., Hull, D. and Glennon G. (2009) Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications. Power Transmission Engineering, 8, 26-35.
|
[8]
|
Julien, G. (2005) Nitinol Ball Bearing Element and Process for Making. US Patent No. 6886986 B1.
|
[9]
|
Julien, G. (2006) Shape Memory Parts of 60 Nitinol. US Patent No. 7005018 B2.
|
[10]
|
Farhat, Z., Jarjoura, G., and Shahirnia, M. (2013) Dent Resistance and Effect of Indentation Loading Rate on Superelastic TiNi Alloy. Metallurgical and Materials Transactions A, 44, 3544-3551.
http://dx.doi.org/10.1007/s11661-013-1727-6
|
[11]
|
Farhat, Z. and Zhang, C. (2010) The Role of Reversible Martensite Transformation in the Wear Process of TiNi Shape Memory Alloy. Tribology Transactions, 53, 917-926. http://dx.doi.org/10.1080/10402004.2010.510620
|
[12]
|
Li, D. and Liu, R. (1999) The Mechanism Responsible for High Wear Resistance of Pseudo-Elastic TiNi Alloy—A Novel Tribo-Material. Wear, 225-229, 777-783. http://dx.doi.org/10.1016/s0043-1648(98)00388-3
|
[13]
|
Lin, H., He, J., Chen, K., Liao, H. and Lin, K. (1997) Wear Characteristics of TiNi Shape Memory Alloys. Metallurgical and Materials Transactions A, 28, 1871-1877. http://dx.doi.org/10.1007/s11661-997-0117-3
|
[14]
|
Archard, J.F. (1953) Contact and Rubbing of Flat Surfaces. Journal of Applied Physics, 24, 981-988.
http://dx.doi.org/10.1063/1.1721448
|
[15]
|
DellaCorte, C., Moore III, L.E. and Clifton, J.S. (2013) The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi. NASA TM 2013-216479.
|
[16]
|
Canter, N. (2014) Corrosion-Proof Nickel Titanium Bearings. Tribology & Lubrication Technology, 70, 10-11.
|
[17]
|
Wang, Z., Lei, H., Zhou, B., Wang, Y. and Zhang, C. (2011) Influence of Strain Rate on Mechanical Properties of Shape Memory Alloy. Key Engineering Materials, 467-469, 585-588.
http://dx.doi.org/10.4028/www.scientific.net/KEM.467-469.585
|
[18]
|
Liu, Y., Li, Y. and Ramesh, K.T. (2002) Rate Dependence of Deformation Mechanisms in a Shape Memory Alloy. Philosophical Magazine A, 82, 2461-2473. http://dx.doi.org/10.1080/01418610208240046
|
[19]
|
Vitiello, A., Giorleo, G. and Morace, R.E. (2005) Analysis of Thermomechanical Behaviour of Nitinol Wires with High Strain Rates. Smart Materials and Structures, 14, 215. http://dx.doi.org/10.1088/0964-1726/14/1/021
|
[20]
|
Lim, T.J. and McDowell, D.L. (1999) Mechanical Behavior of an Ni-Ti Shape Memory Alloy under Axial-Torsional Proportional and Nonproportional Loading. Journal of Engineering Materials and Technology, 121, 9-18.
http://dx.doi.org/10.1115/1.2816007
|
[21]
|
Lin, P., Tobushi, H., Tanaka, K., Hattori, T. and Makita, M. (1994) Pseudoelastic Behaviour of TiNi Shape Memory Alloy Subjected to Strain Variations. Journal of Intelligent Material Systems and Structures, 5, 694-701.
http://dx.doi.org/10.1177/1045389X9400500514
|
[22]
|
Tobushi, H., Yoshirou, S., Takashi, H. and Kikuaki, T. (1998) Influence of Strain Rate on Superelastic Properties of TiNi Shape Memory Alloy. Mechanics of Materials, 30, 141-150. http://dx.doi.org/10.1016/S0167-6636(98)00041-6
|
[23]
|
Dayananda, G.N. and Rao, M.S. (2008) Effect of Strain Rate on Properties of Superelastic NiTi Thin Wires. Materials Science and Engineering: A, 486, 96-103. http://dx.doi.org/10.1016/j.msea.2007.09.006
|
[24]
|
Saletti, D., Pattofatto, S. and Zhao, H. (2010) Evolution of the Martensitic Transformation in Shape Memory Alloys under High Strain Rates. EPJ Web of Conferences, 14th International Conference on Experimental Mechanics, 6, Article No. 29008. http://dx.doi.org/10.1051/epjconf/20100629008
|
[25]
|
Shahirnia, M., Farhat, Z. and Jarjoura, G. (2011) Effects of Temperature and Loading Rate on the Deformation Characteristics of Superelastic TiNi Shape Memory Alloys under Localized Compressive Loads. Materials Science and Engineering: A, 530, 628-632. http://dx.doi.org/10.1016/j.msea.2011.10.034
|
[26]
|
Amini, A., He, Y. and Sun, Q. (2011) Loading rate Dependency of Maximum Nanoindentation Depth in Nano-Grained NiTi Shape Memory Alloy. Materials Letters, 65, 464-466. http://dx.doi.org/10.1016/j.matlet.2010.10.026
|
[27]
|
Oliver, W. and Pharr, G. (1992) An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. Journal of Materials Research, 7, 1564-1583.
http://dx.doi.org/10.1557/JMR.1992.1564
|
[28]
|
ASTM Standard G133-05 (2010) Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. ASTM International, West Conshohocken. http://dx.doi.org/10.1520/G0133-05R10
|
[29]
|
Otsuka, K. and Shimizu, K. (1986) Pseudoelasticity and Shape Memory Effects in Alloys. International Metals Reviews, 31, 93-114. http://dx.doi.org/10.1179/imtr.1986.31.1.93
|
[30]
|
Larsen-Basse, J. (1992) Introduction to Friction. In: Blau, P., Ed., ASM Handbook, Vol. 18: Friction, Lubrication, and Wear Technology, ASM International, Materials Park, 27-38.
|
[31]
|
Ashby, M.F. (2005) Materials Selection in Mechanical Design. Butterworth-Heinemann, Amsterdam.
|
[32]
|
Sen, S. and Sen, U. (2009) The Effect of Boronizing and Boro-Chromizing on Tribological Performance of AISI 52100 Bearing Steels. Industrial Lubrication and Tribology, 61, 146-153. http://dx.doi.org/10.1108/00368790910953668
|