[1]
|
Yoon, J.H., Lee, J.E., Yong, S.W., Moon, S.Y. and Lee, P.H. (2014) The Mild Cognitive Impairment Stage of Dementia with Lewy Bodies and Parkinson Disease: A Comparison of Cognitive Profiles. Alzheimer Disease and Associated Disorders, 28, 151-155. http://dx.doi.org/10.1097/WAD.0000000000000007
|
[2]
|
Gautier, C.A., Corti, O. and Brice, A. (2014) Mitochondrial Dysfunctions in Parkinson’s Disease. Revista de Neurología, 170, 339-343. http://dx.doi.org/10.1016/j.neurol.2013.06.003
|
[3]
|
Valente, E.M., et al. (2004) Hereditary Early-Onset Parkinson’s Disease Caused by Mutations in PINK1. Science, 304, 1158-1160. http://dx.doi.org/10.1126/science.1096284
|
[4]
|
Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.M. and Chung, J. (2006) Mitochondrial Dysfunction in Drosophila PINK1 Mutants Is Complemented by Parkin. Nature, 441, 1157-1161. http://dx.doi.org/10.1038/nature04788
|
[5]
|
Schapira, A.H. and Jenner, P. (2011) Etiology and Pathogenesis of Parkinson’s Disease. Movement Disorders, 26, 1049-1055. http://dx.doi.org/10.1002/mds.23732
|
[6]
|
Byers, B., Cord, B., Nguyen, H.N., Schüle, B., Fenno, L., Lee, P.C., Deisseroth, K., Langston, J.W., Pera, R.R. and Palmer, T.D. (2011) SNCA Triplication Parkinson’s Patient’s iPSC-Derived DA Neurons Accumulate α-Synuclein and Are Susceptible to Oxidative Stress. PLoS ONE, 6, e26159. http://dx.doi.org/10.1371/journal.pone.0026159
|
[7]
|
Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., Tanzi, R.E. and Bush, A.I. (1999) The A Beta Peptide of Alzheimer’s Disease Directly Produces Hydrogen Peroxide through Metal Ion Reduction. Bio-chemistry, 38, 7609-7616. http://dx.doi.org/10.1021/bi990438f
|
[8]
|
Bush, A.I. (2003) Themetallobiology of Alzheimer’s Disease. Trends in Neurosciences, 26, 207-214. http://dx.doi.org/10.1016/S0166-2236(03)00067-5
|
[9]
|
Abramov, A.Y., Canevari, L. and Duchen, M.R. (2004) Beta-Amyloid Peptides Induce Mitochondrial Dysfunction and Oxidative Stress in Astrocytes and Death of Neurons through Activation of NADPH Oxidase. Journal of Neuroscience, 24, 565-575. http://dx.doi.org/10.1523/JNEUROSCI.4042-03.2004
|
[10]
|
Kienlen-Campard, P., Miolet, S., Tasiaux, B. and Octave, J.N. (2002) Intracellular Amyloid-Beta 1-42, but Not Extracellular Soluble Amyloid-Beta Peptides, Induces Neuronal Apoptosis. Journal of Biological Chemistry, 277, 5666-5670. http://dx.doi.org/10.1074/jbc.M200887200
|
[11]
|
Wei, W., Norton, D.D., Wang, X. and Kusiak, J.W. (2002) Abeta 17-42 in Alzheimer’s Disease Activates JNK and Caspase-8 Leading to Neuronal Apoptosis. Brain, 125, 2036-2043. http://dx.doi.org/10.1093/brain/awf205
|
[12]
|
Cao, W., Song, H.J., Gangi, T., Kelkar, A., Antani, I., Garza, D. and Konsolaki, M. (2008) Identification of Novel Genes That Modify Phenotypes Induced by Alzheimer’s β-Amyloid Overexpression in Drosophila. Genetics, 178, 1457-1471. http://dx.doi.org/10.1534/genetics.107.078394
|
[13]
|
Linder, J.E. and Promislow, D.E. (2009) Cross-Generational Fitness Effects of Infection in Drosophila melanogaster. Fly, 3, 143-150. http://dx.doi.org/10.4161/fly.8051
|
[14]
|
Crowther, D.C., Kinghorn, K.J., Miranda, E., Page, R., Curry, J.A., Duthie, F.A., Gubb, D.C. and Lomas, D.A. (2005) Intraneuronal Aβ, Non-Amyloid Aggregates and Neurodegeneration in a Drosophila Model of Alzheimer’s Disease. Neuroscience, 132, 123-135. http://dx.doi.org/10.1016/j.neuroscience.2004.12.025
|
[15]
|
Nilsberth, C., Westlind-Danielsson, A., Eckman, C.B., Condron, M.M., Axelman, K., Forsell, C., Stenh, C., Luthman, J., Teplow, D.B., Younkin, S.G., Naslund, J. and Lannfelt, L. (2001) The “Arctic” APP Mutation (E693G) Causes Alzheimer’s Disease by Enhanced Aβ Protofibril Formation. Nature Neuroscience, 4, 887-893. http://dx.doi.org/10.1038/nn0901-887
|
[16]
|
Hong, Y.K., Lee, S., Park, S.H., Lee, J.H., Han, S.Y., Kim, S.T., Kim, Y.K., Jeon, S., Koo, B.S. and Cho, K.S. (2012) Inhibition of JNK/dFOXO Pathway and Caspases Rescues Neurological Impairments in Drosophila Alzheimer’s Disease Model. Biochemical and Biophysical Research Communications, 419, 49-53. http://dx.doi.org/10.1016/j.bbrc.2012.01.122
|
[17]
|
Abramoff, M.D., Magalhaes, P.J. and Ram, S.J. (2004) Image Processing with Image. Biophotonics International, 11, 36-42.
|
[18]
|
Pesah, Y., Pham, T., Burgess, H., Middlebrooks, B., Verstreken, P., Zhou, Y., et al. ((2004) Drosophila Parkin Mutants Have Decreased Mass and Cell Size and Increased Sensitivity to Oxygen Radical Stress. Development, 131, 2183-2194. http://dx.doi.org/10.1242/dev.01095
|
[19]
|
Leulier, F., Ribeiro, P.S., Palmer, E., Tenev, T., Takahashi, K., Robertson, D., et al. (2006) Systematic in Vivo RNAi Analysis of Putative Components of the Drosophila Cell Death Machinery. Cell Death and Differentiation, 13, 1663-1674. http://dx.doi.org/10.1038/sj.cdd.4401868
|
[20]
|
Vander Heiden, M.G., Chandel, N.S., Williamson, E.K., Schumacker, P.T. and Thompson, C.B. (1997) Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria. Cell, 91, 627-637. http://dx.doi.org/10.1016/S0092-8674(00)80450-X
|
[21]
|
Vander Heiden, M.G. and Thompson, C.B. (1999) Bcl-2 Proteins: Regulators of Apoptosis or of Mitochondrial Homeostasis? Nature Cell Biology, 1, E209-E216. http://dx.doi.org/10.1038/70237
|
[22]
|
Seo, J.S., Jung, E.Y., Kim, J.H., Lyu, Y.S., Han, P.L. and Kang, H.W. (2010) A Modified Preparation (LMK03) of the Oriental Medicine Jangwonhwan Reduces Aβ1-42 Level in the Brain of Tg-APPswe/PS1dE9 Mouse Model of Alzheimer Disease. Journal of Ethnopharmacology, 130, 578-585. http://dx.doi.org/10.1016/j.jep.2010.05.055
|
[23]
|
Seo, J.S., Yun, J.H., Baek, I.S., Leem, Y.H., Kang, H.W., Cho, H.K., Lyu, Y.S., Son, H.J. and Han, P.L. (2010) Oriental Medicine Jangwonhwan Reduces Aβ1-42 Level and Beta-Amyloid Deposition in the Brain of Tg-APPswe/PS1dE9 Mouse Model of Alzheimer Disease. Journal of Ethnopharmacology, 128, 206-212. http://dx.doi.org/10.1016/j.jep.2010.01.014
|
[24]
|
Kaushal, D. and Kansal, V.K. (2012) Probiotic Dahi Containing Lactobacillus acidophilus and Bifidobacterium bifidum Alleviates Age-Inflicted Oxidative Stress and Improves Expression of Biomarkers of Ageing in Mice. Molecular Biology Reports, 39, 1791-1799. http://dx.doi.org/10.1007/s11033-011-0920-1
|
[25]
|
Grompone, G., Martorell, P., Llopis, S., González, N., Genovés, S., Mulet, A.P., Fernández-Calero, T., Tiscornia, I., Bollati-Fogolín, M., Chambaud, I., Foligné, B., Montserrat, A. and Ramón, D. (2012) Anti-Inflammatory Lactobacillus rhamnosus CNCM I-3690 Strain Protects against Oxidative Stress and Increases Lifespan in Caenorhabditis elegans. PLoS ONE, 12, e52493. http://dx.doi.org/10.1371/journal.pone.0052493
|
[26]
|
Lee, K.A. and Lee, W.J. (2014) Drosophila as a Model for Intestinal Dysbiosis and Chronic Inflammatory Diseases. Developmental & Comparative Immunology, 42, 102-110. http://dx.doi.org/10.1016/j.dci.2013.05.005
|
[27]
|
Schriner, S.E., Katoozi, N.S., Pham, K.Q., Gazarian, M., Zarban, A. and Jafari, M. (2012) Extension of Drosophila lifespan by Rosa damascena Associated with an Increased Sensitivity to Heat. Biogerontology, 13, 105-117. http://dx.doi.org/10.1007/s10522-011-9357-0
|
[28]
|
Peng, C., Chan, H.Y., Huang, Y., Yu, H. and Chen, Z.Y. (2011) Apple Polyphenols Extend the Mean Lifespan of Drosophila melanogaster. Journal of Agricultural and Food Chemistry, 59, 2097-2106. http://dx.doi.org/10.1021/jf1046267
|
[29]
|
Long, J., Gao, H., Sun, L., Liu, J. and Zhao-Wilson, X. (2009) Grape Extract Protects Mitochondria from Oxidative Damage and Improves Locomotor Dysfunction and Extends Lifespan in a Drosophila Parkinson’s Disease Model. Rejuvenation Research, 12, 321-331. http://dx.doi.org/10.1089/rej.2009.0877
|
[30]
|
Li, Y.M., Chan, H.Y., Huang, Y. and Chen, Z.Y. (2007) Green Tea Catechins Upregulate Superoxide Dismutase and Catalase in Fruit Flies. Molecular Nutrition & Food Research, 51, 546-554. http://dx.doi.org/10.1002/mnfr.200600238
|
[31]
|
Peng, C., Chan, H.Y., Li, Y.M., Huang, Y. and Chen, Z.Y. (2009) Black Tea Theaflavins Extend the Lifespan of Fruit Flies. Experimental Gerontology, 44, 773-783. http://dx.doi.org/10.1016/j.exger.2009.09.004
|